JP3612708B2 - Grooved polishing cloth, workpiece polishing method and polishing apparatus - Google Patents

Grooved polishing cloth, workpiece polishing method and polishing apparatus Download PDF

Info

Publication number
JP3612708B2
JP3612708B2 JP2001364101A JP2001364101A JP3612708B2 JP 3612708 B2 JP3612708 B2 JP 3612708B2 JP 2001364101 A JP2001364101 A JP 2001364101A JP 2001364101 A JP2001364101 A JP 2001364101A JP 3612708 B2 JP3612708 B2 JP 3612708B2
Authority
JP
Japan
Prior art keywords
polishing
groove
polishing cloth
workpiece
grooved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001364101A
Other languages
Japanese (ja)
Other versions
JP2003163192A (en
Inventor
輝明 深見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2001364101A priority Critical patent/JP3612708B2/en
Publication of JP2003163192A publication Critical patent/JP2003163192A/en
Application granted granted Critical
Publication of JP3612708B2 publication Critical patent/JP3612708B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ワーク、特に半導体ウェーハ(以下、単にウェーハということがある)の研磨加工に関し、詳細にはワークの研磨加工に用いられる溝入り研磨布並びにその溝入り研磨布を用いたワークの研磨方法及び研磨装置に関する。
【0002】
【関連技術】
最近、最先端デバイスの製造工程等でCMP(Chemical Mechanical Polishing)技術が用いられている。この技術は半導体素子製造工程における素子分離形成、キャパシタ形成等で発生した余分な成膜部分を除去するのに用いられている。
【0003】
シリコンウェーハ製造工程においては、このCMP技術が、ウェーハ表面に存在する、波長が数mmから数百μmの凹凸(一般にはナノトポロジー又はナノトポグラフィーと呼ばれる)を除去する目的で使用される場合がある。この様な研磨(倣い研磨)では研磨代をウェーハ面内で均一にすることが重要である。
【0004】
通常行われているCMPは以下のようなものである。被研磨材である半導体ウェーハ等のワークは、発泡ウレタン等で形成された軟質なシート(一般にはバッキングパッドと呼ばれる)を貼り付けた研磨ヘッドに保持される。なお、ウェーハの周りはガラスエポキシ等の樹脂で形成されたリング状部材(一般にはリテーナリングと呼ばれる)で囲まれており、このリング状部材によって研磨中にワークが飛び出すのを防いでいる。
【0005】
この研磨ヘッドに対向して研磨定盤が設置されており、研磨定盤表面には研磨布が貼り付けられている。研磨の際には研磨ヘッドに保持されたウェーハを研磨布に接触させ、同時に研磨剤を研磨布上に供給し、研磨定盤及び研磨ヘッドを回転させながら、ウェーハに荷重を印加することによりウェーハを研磨する。
【0006】
このCMPにおいては、余分な成膜部分の除去効率やナノトポロジーの改善効率を上げるため、ショアD硬度で50以上の硬質な研磨布が一般には用いられている。ショアD硬度とは、反発式カタサ試験機の一種であるショア硬さ試験機D形により測定した硬さで、JIS Z2246に準拠したものである。
【0007】
上記したような硬質な研磨布においては一般に研磨剤の回り込みが悪い。これは軟質な研磨布(例えば不織布タイプの研磨布)に比べて発泡が小さい為である。特にワークが大型化すると、研磨剤の回り込みが悪いことの影響が顕著となり、ワークの平坦度の悪化につながる。そこで、研磨剤の回り込みを改善するために、硬質研磨布の表面に格子状、螺旋状、放射状等の溝を形なすることが提案されている(例えば、特開2001−1255号公報、特開2000−42901号公報、特開平10−277921号公報、特開平8−11051号公報等)。すなわち、図13に示したように、従来の研磨布は、研磨布本体Pの表面に溝を形成せず平坦な表面を有する溝無し研磨布29と、研磨布本体Pの表面に溝Gを形成した溝入り研磨布30とに大別される。図13(b)において、Mは溝ピッチである。
【0008】
【発明が解決しようとする課題】
このような溝入りの硬質研磨布でワークを研磨するとウェーハ製造工程においては、ワークの外周部で面ダレ等の形状異常を引き起こし、またデバイス作製工程においては段差修正を行う際にワークの外周ダレを起こしてしまう。これは、研磨時にワーク面内で研磨取り代がばらつくためであるが、特にウェーハ外周部での研磨代が異なってしまう。このため、ワークが半導体ウェーハの場合、最先端品で要求される品質、すなわちナノトポロジーとフラットネスを両立した品質を得ることが出来ないという問題が生じている。
【0009】
また、前記した提案においては研磨剤の回り込みを均一にすることを主眼とした対策が開示されているが、これらの対策のみではウェーハ外周部の形状異常を完全に防止することは不可能であった。
【0010】
本発明は、上記した問題点に鑑みなされたもので、ワーク、特に半導体ウェーハを研磨する際に、ウェーハ製造工程においてはワークの外周ダレを改善し、またナノトポロジーレベルを改善した研磨を行うことができ、さらにデバイス作製工程においてもワークの外周ダレを引き起こすことなく段差修正を行うことができるようにした溝入り研磨布、並びにこの溝入り研磨布を用いるワークの研磨方法及び研磨装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明の溝入り研磨布の第1の態様は、研磨布本体の表面に形成された溝をワークの研磨処理に用いられる溝入り研磨布において、前記研磨布本体の表面と前記溝の側面とのなす角度が、ワークの面取り角度以上であるようにしたことを特徴とする。
【0012】
本発明の溝入り研磨布の第2の態様は、研磨布本体の表面に形成された溝をワークの研磨処理に用いられる溝入り研磨布において、前記研磨布本体の表面から少なくとも深さ0.2mmより浅い場所における溝の側面の断面形状が直線状であり、該研磨布本体の表面と該溝の側面とのなす角度が、ワークの面取り角度以上であるようにしたことを特徴とする。
【0013】
ワークによって研磨布が押された場合、研磨布の圧縮によりワークがある部分と無い部分で厚さに差が生じる。図14に示したように、研磨布本体Pに形成された溝Gの断面形状が、例えばU字型〔図14(a)〕又は溝深さの深いV字型〔図14(b)〕の場合、溝Gの側面G1にワークが当たることによってワークの最外周部に大きな局圧がかかり、ワーク最外周部に面ダレを生じる。つまり、研磨代がワーク最外周部で大きくなってしまう。
【0014】
更にバッキングパッドにワークを保持している場合、ワークがバッキングパッド側に逃げる現象が発生する為、上記した面ダレ発生部よりも内側では研磨代が少ない部分が生じる。すなわち、ワーク外周部にウネリのような形状異常が発生してしまう。
【0015】
なお、図14において、P1は研磨布本体表面、Dは溝深さ、Eは溝幅、及びθpは研磨布本体表面P1と溝の側面G1とのなす角である。図14(a)にはθp=約90°及び図14(b)にはθp=約135°の場合が示されている。
【0016】
一方、本発明の研磨布を用いると、ワーク最外周部と溝側面との接触抵抗が小さくなり、ワーク外周部における面ダレ等の形状異常を抑制できる。特に図1に示したように、研磨布本体の表面と溝の側面とのなす角度θpをワークの面取り角度θw(本明細書においては、図12に示したように、ワークWの表面F1と面取り面F2とがなす角度を面取り角度という)以上にしたときに、ワーク外周部での形状異常は、特異点的に改善される。
【0017】
本発明の溝入り研磨布の第1及び第2の態様においては、特に溝の断面形状が直線状のV字型であり、上記条件を満たす形状が好ましい。V字型であれば溝の形成が容易であるからである。
【0018】
本発明の溝入り研磨布の第3の態様は、研磨布本体の表面に形成された溝をワークの研磨処理に用いられる溝入り研磨布において、前記研磨布本体の表面から少なくとも深さ0.2mmより浅い場所における溝の側面の断面形状が曲線状であり、該研磨布本体の表面と該溝の側面の接線とのなす角度が、ワークの面取り角度以上であるようにしたことを特徴とする。
【0019】
このように研磨布本体表面から少なくとも深さ0.2mmよりも浅い場所における溝の側面の全ての点での接線と研磨布本体表面がなす角度θt〔図3(b)〕が面取り角度θw以上であれば、すなわち、深さ0.2mmよりも浅い部分における溝側面の接線と研磨布本体の表面がなす角度θtの最小値が面取り角度θw以上となるようにすれば、ワーク最外周部と溝側面との接触抵抗が小さくなり、ワーク外周部における面ダレ等の形状異常を抑制できる。本発明の溝入り研磨布の第3の態様においては、溝の断面形状をU字型とすることができ、上記条件を満たす形状のものを採用することができる。
【0020】
上記した研磨布本体の表面と溝の側面がなす角度θp又は溝の側面の接線と研磨布本体表面がなす角度θtは160°以上であることが好ましい。多くのウェーハでは20°程度の面取り(面取り面とウェーハ表面とがなす角度、即ち面取り角度θwで表すと160°程度)であり、160°以上の角度にしておけば大抵のウェーハは問題なく研磨できるからである。また、前記角度θp及びθtの上限は、特に限定されるものではないが175°以内が好ましい。具体的には、これらの角度θp及びθtは研磨剤の回り込み等を考慮に入れ必要な溝の深さを設定し、それにより適宜決定する。
【0021】
研磨布本体表面における溝幅は特に限定するものではないが、3mm以下が望ましい。溝幅が3mmを超えると、ワーク外周部がワークの弾性変形によって溝内部に落ち込むことがあり、前述した要因とは別の要因で外周ダレ等の形状異常を引き起こす可能性がある。
【0022】
なお、溝の断面形状の効果は如何なる研磨布でも得られるが、ショアD硬度で50以上の研磨布で特に顕著な効果があらわれる。これは、研磨布が軟質な場合(例えば不織布の場合)、ワーク外周部と研磨布の溝との接触に伴う衝撃を研磨布側においてある程度吸収できるが、研磨布が硬質な場合、研磨布が吸収できる衝撃が少ない為である。
【0023】
本発明のワークの研磨方法は、ワーク保持プレートに保持されたワークを研磨定盤に貼付された研磨布に所定の研磨荷重で押し付けることによって、該ワークの片面に研磨加工を施すワークの研磨方法であって、前記研磨布として上記した本発明の溝入り研磨布を用いることを特徴とする。本発明の研磨方法でワークを研磨することにより、ワーク外周部における形状異常を防止することができる。研磨代を均一にする倣い研磨で特に有効である。また、硬質研磨布の使用によってナノトポロジーも良好となる。したがって、ワークが半導体ウェーハの場合、本発明の研磨方法によってフラットネス及びナノトポロジーの両者が共に要求される最先端デバイスで求められるウェーハを製造することができる。
【0024】
本発明のワークの研磨装置は、研磨ヘッドを構成するワーク保持プレートに保持されたワークを、研磨定盤に貼付された研磨布に、所定の研磨荷重で押し付けることによって、該ワークの片面に研磨加工を施すワークの研磨装置であって、前記研磨布として上記した本発明の溝入り研磨布を用いることを特徴とする。本発明の研磨装置でワークを研磨することにより、例えばワークが半導体ウェーハの場合、最先端デバイスで使用可能なウェーハを得ることができる。
【0025】
【発明の実施の形態】
以下に本発明の実施の形態を添付図面中、図1〜図7に基づいて更に具体的に説明するが、図示例は例示的に示されるもので、本発明の技術思想から逸脱しない限り種々の変形が可能なことはいうまでもない。
【0026】
図1は本発明のV字型溝を有する溝入り研磨布の一例を示す要部断面説明図である。図2は図1のV字型溝の種々の変形例を示す要部断面説明図で、(a)は第1変形例、(b)は第2変形例及び(c)は第3変形例をそれぞれ示す。図3は本発明のU字型溝を有する溝入り研磨布の一例を示す要部断面説明図で、(a)は全体図及び(b)は(a)の矢視円A部分の拡大図である。図4は図3のU字型溝の種々の変形例を示す要部断面説明図で、(a)は第1変形例及び(b)は第2変形例である。図5は本発明のV字型とU字型とを組み合わせた形状の溝を有する溝入り研磨布における溝形状の種々の変形例を示す要部断面説明図で、(a)は第1変形例、(b)は第2変形例及び(c)は第3変形例をそれぞれ示す。図6は本発明の溝入り研磨布の全体平面図で、(a)は第1の溝パターン、(b)は第2の溝パターン及び(c)は第3の溝パターンをそれぞれ示す。図7は本発明の研磨装置の一例を示す断面的説明図で、(a)は全体図及び(b)は研磨ヘッドの摘示拡大図である。
【0027】
図1において、30Aは本発明に係る溝入り研磨布で、研磨布本体Pの表面P1には溝VGが形成されている。該溝VGは、該溝VGと直交するように縦方向に切断(図6(a)に示したように、溝パターンが直線の場合は溝Gと直交する方向及び図6(b)(c)に示したように、溝パターンが曲線の場合には該曲線の接線LSと直交する方向に切断面Bを形成するように切断)した際の断面形状が図1に示したようにV字型となるように形成されている。この場合、該溝VGの側面VG1の断面形状は直線状となっている。該研磨布本体Pの表面P1と該溝VGの側面VG1とのなす角度θpは、ワークWの面取り角度θw(図12)以上とすることが必須である。なお、本明細書においては、前述したように、ワークWの表面F1と面取り面F2とのなす角θwを面取り角とする(図12)。
【0028】
つまり、ワークWの面取り角度θwが、例えば、160°であれば研磨布本体表面P1と溝VGの側面VG1とのなす角度θpも160°以上にする。例えば、上記したV字型の溝VGであれば3mmの溝幅Eに対して溝深さdを約0.5mm程度にする。なお、本明細書においては、前述したように、ワークWの表面F1と面取り面F2とのなす角θwを面取り角とする(図12)。
【0029】
上記したV字型溝VGの溝形状は種々の形状が採用可能であるが、図2にV字型溝VGの変形例を示した。図2(a)に示した研磨布30Bは、θp=約160°で溝幅Eが2mmの例である。図2(b)に示した研磨布30Cはθp=約160°で溝幅Eが3mmの例である。図2(b)の場合は溝深さdを2mmよりも深く形成できる。図2(c)に示した研磨布30Dはθp>160°にした例である。図2(c)の場合は溝深さdは浅くなる。
【0030】
本発明の溝入り研磨布の溝形状は、上記したV字型の他にも種々の形状を採用することが可能であり、次に説明する。図3はU字型の溝形状の溝入り研磨布30Eを示す。同図において、研磨布本体Pの表面P1には断面形状がU字型の溝UGが形成されている。この場合、研磨布本体Pと接する溝UGの側面UG1の断面形状が曲線状であり、該研磨布本体Pの表面P1から少なくとも深さd=0.2mmよりも浅い場所における該研磨布本体Pの表面P1と該溝UGの側面UG1の接線Lとのなす角度θtが、ワークWの面取り角度θw(図12)以上であることが必要である。つまり、ワークWの面取り角度θwが、例えば160°であれば、上記角度θtを160°以上とする。
【0031】
上記したU字型溝UGの溝形状も種々の形状を採用することが可能であるが、図4にU字型溝UGの変形例を示した。図4(a)に示した研磨布30Fは、θt>約160°で横幅が2mmの例である。溝深さd=0.2mmの位置における接線Lと研磨布本体Pの表面P1とのなす角θt>約160°となっている。図4(b)に示した研磨布30Gは、θp>160°で横幅が3mmの例である。溝深さd=0.2mmより深い位置まで角θt>約160°となっている例である。
【0032】
本発明の溝入り研磨布の溝形状は、上記したV字型及びU字型以外にも種々の溝形状を採用することは勿論で、例えば、図5に示すようにV字型とU字型を組み合わせた形状とすることもできる。図5(a)に示した研磨布30Hの溝VUGにおいては、研磨布本体Pの表面P1から溝深さd=0.2mmまでは、直線状(V字型溝の溝側面と同様)に形成し、溝深さd=0.2mmより深い部分、すなわち溝VUGの中央部分には凹部UG2(U字型溝の中央部分と同様)が形成されている。図5(a)は、θp=約160°で、溝幅Eが2mmの例である。
【0033】
図5(b)に示した研磨布30Iの溝VUGにおいては、研磨布本体Pの表面P1から溝深さdが0.2mmを超えた位置まで、直線状に形成し、溝VUGの中央部分に凹部UG2が形成されている。図5(b)は、θp>160°で、溝幅Eが2mmの例である。
【0034】
溝深さdが0.2mmよりも深い部分の溝形状は、本発明の溝入り研磨布による研磨効果には特別の影響を与えないので、図5(a)(b)に示したように、U字型としてもよいし、その他の形状としてもよい。例えば、図5(c)に示した研磨布30Jの溝VUGにおけるように、溝VUGの中央部分の凹部UG2の形状を半円形状とすることもできる。図5(c)において、その他の溝形状は図5(b)と同様である。図5(a)(b)(c)、図4(a)(b)及び図3(a)に示した凹部UG2は研磨剤の滞留を行う作用があるので、その形状を工夫することによって研磨剤の滞留量の調節を行うことができる。
【0035】
本発明の溝入り研磨布の研磨布本体Pの表面P1の溝パターンについても特に限定されず、図6(a)に示した溝入り研磨布30Kのように研磨布本体Pの表面P1に格子状の溝Gを形成し、また図6(b)に示した溝入り研磨布30Lのように研磨布本体Pの表面P1に同心円状の溝Gを形成することもできる。さらに、図6(c)に示した溝入り研磨布30Mのように研磨布本体Pの表面P1に螺旋状の溝Gを形成してもよいし、その他の形状の溝を形成してもよいことはいうまでもない。
【0036】
本発明の溝入り研磨布30A〜30Mの溝形状の形成の仕方は特に限定されるものではないが、例えば、溝形状と同様な形状をした刃を持つ加工機で研磨布本体Pの表面P1を削ることによって形成できる。
【0037】
研磨布本体の材質は特に限定されるものではないが、例えば、発泡ウレタン製の研磨布、不織布タイプの研磨布等が使用できる。また、積層化した研磨布、例えば発泡ウレタンと不織布を2層で積層した研磨布や更に中間層を入れ3層にした研磨布などでも使用できる。特に研磨面の硬度がショアD硬度で50以上の研磨布であると、本発明の溝入り研磨布において溝を形成した効果が大となる。
【0038】
本発明の溝入り研磨布30A〜30Mは、従来から使用されている研磨装置の研磨布として用いることができるが、図7(a)(b)に研磨布として本発明の溝入り研磨布を用いた本発明の研磨装置の一例を示した。
【0039】
図7(a)に示した本発明の研磨装置10の基本的構成は従来公知の研磨装置と同様であり、特別の限定はないが、本発明の溝入り研磨布30A〜30M(図示例では30Aを用いた)を研磨布として用いる点が特徴である。
【0040】
本発明の研磨装置10は、ワーク、例えばウェーハWの片面を研磨する装置として構成されている。該研磨装置10は、回転する研磨定盤12と、研磨ヘッド14の下面に装着されたワーク保持プレート16と、研磨剤供給管18を有している。該定盤12の上面には本発明の溝入り研磨布30Aが貼付してある。該定盤12は回転軸22により所定の回転速度で回転される。該研磨ヘッド14は回転軸15により所定の回転速度で回転される。
【0041】
そして、ワーク保持プレート16の表面には、バッキングパッド19が貼り付けられ、ワークWはバッキングパッド19を介してワーク保持プレート16に保持される。該ワーク保持プレート16の周辺部にはリテーナリング17が設けられており、ワーク保持プレート16に保持されたワークWの飛び出しが防止されている。該ワーク保持プレート16は、研磨ヘッド14の下面に装着され、研磨ヘッド14により回転されると同時に所定の研磨荷重で研磨布30AにワークWを押し付ける。研磨剤は研磨剤供給管18から所定の流量で溝入り研磨布30A上に供給され、この研磨剤がワークWと研磨布30Aの間に供給されることによりワークWが研磨される。
【0042】
さらに詳細に説明すれば、ワーク保持プレート16は、図7(b)に示したような構造を有している。図7(b)において、21は空気供給路で、ワーク保持プレート16の内部でかつワーク保持プレート本体16aの上方に設けられたエアバッグ加圧領域23に空気を供給することによってエアバッグゴムシート27によってワーク保持プレート16に揺動可能に支持されたワーク保持プレート本体16aを下方に押圧し、ワークWを定盤12の溝入り研磨布30Aに加圧状態で押し付けることができる。
【0043】
上記のような研磨装置10に研磨剤を供給しながら摺接することでワークWの面を研磨する。上記したような溝形状を有する本発明の溝入り研磨布を用いた研磨装置を用いてワークWを研磨加工することで高平坦度なワークWを製造することができる。
【0044】
【実施例】
以下に実施例をあげて本発明をさらに具体的に説明するが、これらの実施例は例示的に示されるもので限定的に解釈されるべきでないことはいうまでもない。
【0045】
研磨対象ワークとなる使用ウェーハとしては、直径200mm(8インチ)シリコン鏡面研磨ウェーハ(1次研磨後のウェーハ)を用いた。この試料ウェーハの面取り面とウェーハ表面のなす角度は160°とした。この試料ウェーハに対して、図7に示した装置と同様の研磨装置を用いて研磨加工を行った。基本的な研磨条件として、研磨圧力:40kPa(400g/cm)、相対速度:50m/min、研磨代:1μm、研磨剤:コロイダルシリカ系研磨剤(pHは無機アルカリの添加により10.5に調整)、バッキングパッド:BP104(富士紡績社製)、研磨布:発泡ウレタン製硬質研磨布(ショアD硬度:55°)で実施した。以下の実施例、比較例は特別な記載が無い限りすべて上記条件で研磨した。
【0046】
本発明の溝入り研磨布による研磨加工では研磨代分布がウェーハ面内で均一なほど好ましい。そこで、本発明の溝入り研磨布による研磨加工の効果の評価方法は、研磨前後のウェーハ形状を静電容量式の平坦度測定器(ADE社製 ULTRAGAGE 9700)で測定し、ウェーハ面内での研磨代分布(但し外周2mm除外)を比較した。
【0047】
研磨したウェーハの外周ダレの判断方法を図8に示した。図8(a)は研磨したウェーハWにおける測定ポイントを示す説明図及び図8(b)は図8(a)のウェーハ直径線DLに沿って観察した研磨代分布を示す概略説明図で、縦軸に研磨代〔研磨前後のウェーハ形状(厚さ等)を測定し、同一点における研磨前後の形状の差を求めた値〕、横軸にウェーハの直径方向を設定して、ウェーハ断面方向(厚さ方向)の研磨代分布を示したものである。図8(a)に示すようにウェーハ直径方向の研磨代部分の測定ポイントを外周縁部に多数箇所(35点)とり、これを平均した研磨代分布をとり、外周10mm(外周から中心方向へ10mmの地点)と外周2mm(外周から中心方向へ2mmの地点)での研磨代の差を求め、ダレ量とした。つまり、研磨代分布のウェーハ断面形状〔図8(b)〕を解析し、外周2〜10mmの範囲でのダレ量を評価した。
【0048】
ウェーハ表面のナノトポグラフィーについても評価した。ナノトポグラフィーは、波長が0.1mmから20mm程度で振幅が数nmから100nm程度の凹凸のことであり、その評価法としては1辺が0.1mmから10mm程度の正方形、又は直径が0.1mmから10mm程度の円形のブロック範囲(この範囲はWINDOW SIZE等と呼ばれる)の領域で、ウェーハ表面の凹凸の高低差(PV;Peak to Valley)を評価する。
【0049】
このPV値はNanotopography Height等とも呼ばれる。ナノトポグラフィーとしては、特に評価したウェーハ面内に存在する凹凸の最大値が小さいことが望まれている。ここでは2mmの正方形で複数のブロック範囲を評価しそのPV値の最大値を求めた。この値が20nm以下であれば良品とした。本実施例ではナノトポグラフィーは、ADE社製Nanomapper(2mm×2mm角のエリア)で測定した。
【0050】
(溝の有無及び溝の断面形状による研磨代分布について)
(実施例1、2及び比較例1、2)
溝無し研磨布の場合と溝入り研磨布の場合及び溝の断面形状の相違による研磨代分布を確認した。溝入り研磨布の溝パターンは図6(a)に示したような格子状のパターンとし、溝から溝へのピッチは20mmのものを用いた。
【0051】
研磨布としては、溝幅3mm、深さ0.5mmのV字型溝の溝入り研磨布(研磨布本体表面と溝側面のなす角度θpは160°)〔図2(b);実施例1〕、溝幅2mm、深さ0.5mmのU字型溝(但し、研磨布本体表面から少なくとも深さ0.2mmよりも浅い場所における溝側面の接線と研磨布本体表面がなす角度θtが、160°以上)〔図4(a);実施例2〕、溝無し研磨布(比較例1)、溝幅2mm、深さ0.5mmのU字型溝の溝入り研磨布〔図14(a);比較例2〕を使用した。
【0052】
ウェーハ面内での研磨代分布(但し外周2mm除外)を比較した結果、実施例1では、図9に示すように研磨代の分布はウェーハ面内で概ね均一になった。ナノトポグラフィーのPV値の最大値は9nm程度であった。これによりウェーハはダレることなく研磨され、またナノトポグラフィーも改善される。実施例2についても、実施例1と同様に研磨代はウェーハ面内で均一になった。
【0053】
比較例1では、研磨剤の回り込みが悪い為、図10に示すように研磨代の分布はウェーハの中央部で少なくなる凹形状になっていることがわかり、結果的にウェーハ形状が凸化する傾向となった。ナノトポグラフィーのPV値の最大値は12nm程度であった。
【0054】
比較例2では、図11に示すように研磨代の分布は、全体的には均一な取り代であったが最外周部で取り代のバラツキがあった。つまり、前形状を維持する傾向であったが、最外周で研磨量が増加し(いわゆる外周ダレ)、その内側で研磨量の低下(外周ハネ)が見られた。ナノトポグラフィーのPV値の最大値は13nm程度であった。
【0055】
このように本発明の溝入り研磨布を備えた研磨装置によってウェーハを研磨加工することにより、ウェーハ外周部のダレを抑制することができた。
【0056】
(溝の角度の影響について)
(実施例3、4及び比較例3〜5)
研磨布本体表面の形状は格子状のパターンであり20mmピッチで溝を形成した。U字型及びV字形の角度の変更を行い研磨した。溝深さは0.5mmである。溝形状は、それぞれθp=160°のV字型溝(実施例3)、θp=170°のV字型溝(実施例4)、θp=90°のU字型溝(図14(a);比較例3)、θp=120°のV字型溝(比較例4)、θp=140°のV字型溝(比較例5)であった。
【0057】
ウェーハ外周部のダレ量を確認した結果、実施例3(角度θp=160°)では、外周ダレは見られなかった(外周ダレ量が0.02μm以下であった)。実施例4(角度θp=170°)では、外周ダレ量は0.05μmであった。ナノトポグラフィーのPV値の最大値は10±2nm程度であった。
【0058】
比較例3(いわゆるU字型溝)では、外周ダレ量が0.20μm発生した。比較例4(角度θp=120°)では、外周ダレ量が0.13μm発生した。比較例5(角度θp=140°)では、外周ダレ量が0.10μm発生した。ナノトポグラフィーのPV値の最大値は12±2nm程度であった。
【0059】
上述した通り、角度θpが面取り角度θwよりも小さいと、溝側面とウェーハ外周との当たりが強くなり、外周ダレ抑制効果は不充分となる。また、角度θp=170°の場合は、溝深さを0.5mmに設定すると溝幅が約5mmと広くなる為、溝内部にウェーハ外周部が落ち込む現象が発生し、比較例の溝よりは良いものの外周ダレがやや悪くなる傾向にある。
【0060】
(実施例5、6及び比較例6,7)
次に、U字型溝に面取りを施した場合の例を示す。U字型溝のエッジ部の面取りを行い、深さ0.2mmよりも浅い部分において、溝側面の接線と研磨布本体表面がなす角度θtが、160°(実施例5)、170°(実施例6)、120°(比較例6)、140°(比較例7)である研磨布を用意した。研磨布本体表面の形状は格子状のパターンであり20mmピッチで溝を形成した。
【0061】
ウェーハ外周部のダレを確認した結果、実施例5ではダレ無し(ダレ量が0.02μm以下)、実施例6についてもダレ無し(ダレ量が0.02μm以下)、比較例6ではダレ量が0.15μm、比較例7では、ダレ量が0.10μmであった。ナノトポグラフィーのPV値の最大値は11±2nm程度であった。
【0062】
溝側面の接線と研磨布本体表面とのなす角度θtが面取り角度θwよりも小さいと、ウェーハ外周と溝側面との当たりを低減する効果が不十分となる。溝側面の接線と研磨布本体表面とのなす角度θtが面取り角度θw以上であることが望ましい。
【0063】
なお、上記した実施例ではV字型溝、U字型溝のエッジ部を面取りした例のみを示したが、本発明の溝入り研磨布の技術思想を取り入れた溝の断面形状であれば、上記した各実施例の溝形状に限定されるものではない。例えば、図5に示したようなV字型とU字型を組み合わせた溝形状も同様な効果がある。
【0064】
上記のようにウェーハのダレ形状(研磨の取り代分布の均一性)には溝形状が特に重要であるが、本発明の溝入り研磨布ではナノトポグラフィーも重要である。ナノトポグラフィーの最大PV値は20nm以下であれば良好な面状態であるが、上記した実施例及び比較例ともに15nm以下、特に実施例では10nm前後とナノトポグラフィーは良好であった。これは硬質な研磨布を用いているためである。ナノトポグラフィーは研磨布の硬さにも影響され、硬度が高いほど改善効果が大きいが、本発明の溝入り研磨布の溝形状が比較的軟質な研磨布にどの程度効果があるかを確認したので、その結果を以下に示す。
【0065】
(研磨布硬度の効果)
(実施例7、8)
上記研磨条件のうち研磨布の硬度を代え研磨した。具体的には研磨布として不織布系研磨布(ロデール・ニッタ社製Suba600、アスカーC硬度:約70のもの)を用いた。アスカーC硬度は、スプリング硬さ試験機の一種であるアスカーゴム硬度計C型により測定した値である。なお、不織布系研磨布ではショア硬さ試験機D型により測定した場合、不織布の空隙に測定端子(接触子)が刺さってしまうことがある為、正確な硬さの測定ができないことがある。そこでアスカーC硬度で示した。また、ショアD硬度55の研磨布をアスカーC硬度で測定した場合、アスカーC硬度はおよそ95〜100程度である。従って、アスカーC硬度70はショアD硬度にしておよそ30〜50前後の硬さである。
【0066】
溝形状としては、幅3mm、深さ0.5mmのV字型溝〔図2(b)、実施例7〕、幅2mm、深さ0.5mmの面取りされたU字型溝〔図4(a)、実施例8〕を有する溝入り研磨布を用いて試料ウェーハに対する研磨加工を行った。
【0067】
研磨したウェーハについてウェーハ外周部のダレを確認した結果、実施例7(V字型溝)ではダレ量は0.02μm以下、実施例8(U字型溝)ではダレ量は0.03μmと良好であった。ナノトポグラフィーのPV値の最大値は20nm程度であった。
【0068】
比較的軟質な不織布系研磨布でも溝の断面形状によるダレ改善の効果は見られる。ダレの改善には本発明の溝入り研磨布の溝形状が有効である事がわかる。しかし、軟質な研磨布では硬質研磨布使用時に見られた程の効果はなく、またナノトポグフィーのPV値も全体的に大きくなってしまうため、本発明の溝入り研磨布において、硬質の研磨布、特にショアD硬度で50以上の研磨布に適用すると特に好適である。
【0069】
【発明の効果】
以上述べたごとく、本発明の溝入研磨布を用いた研磨装置により、ワーク、特に半導体ウェーハを研磨することにより、ウェーハ製造工程においてはワークの外周ダレを改善し、またナノトポロジーレベルを改善した研磨を行う事ができ、さらに、デバイス作製工程においてもワークの外周ダレを引き起こすことなく段差修正を行うことができる。特に硬質な研磨布を適用した本発明の溝入研磨布を用いてウェーハを研磨するとダレがほとんどなく、ナノトポグラフィーの最大PV値もたいへん小さな研磨ウェーハを得ることができる。
【図面の簡単な説明】
【図1】本発明のV字型溝を有する溝入り研磨布の一例を示す要部断面説明図である。
【図2】図1のV字型溝の種々の変形例を示す要部断面説明図で、(a)は第1変形例、(b)は第2変形例及び(c)は第3変形例をそれぞれ示す。
【図3】本発明のU字型溝を有する溝入り研磨布の一例を示す要部断面説明図で、(a)は全体図及び(b)は(a)の矢視円A部分の拡大図である。
【図4】図3のU字型溝の種々の変形例を示す要部断面説明図で、(a)は第1変形例及び(b)は第2変形例である。
【図5】本発明のV字型とU字型とを組み合わせた形状の溝を有する溝入り研磨布における溝形状の種々の変形例を示す要部断面説明図で、(a)は第1変形例、(b)は第2変形例及び(c)は第3変形例をそれぞれ示す。
【図6】本発明の溝入り研磨布の全体平面図で、(a)は第1の溝パターン、(b)は第2の溝パターン及び(c)は第3の溝パターンをそれぞれ示す。
【図7】図7は本発明の研磨装置の一例を示す断面的説明図で、(a)は全体図及び(b)は研磨ヘッドの摘示拡大図である。
【図8】実施例及び比較例における研磨ウェーハの外周ダレの判断方法を示す説明図で、(a)は測定ポイントを示すウェーハの上面図及び(b)は(a)の直径線に沿って観察した研磨代分布を示す概略説明図で、縦軸に研磨代及び横軸にウェーハの直径方向を設定して、ウェーハ断面方向の研磨代分布を示すものである。
【図9】実施例1におけるウェーハ面内の研磨代分布を示すグラフである。
【図10】比較例1におけるウェーハ面内の研磨代分布を示すグラフである。
【図11】比較例2におけるウェーハ面内の研磨代分布を示すグラフである。
【図12】ワークの面取り角度を示す説明図である。
【図13】従来の研磨布を示す要部断面説明図で、(a)は溝無し研磨布及び(b)は溝入り研磨布をそれぞれ示す。
【図14】従来の溝入研磨布の溝形状を示す要部断面説明図で、(a)はU字型溝及び(b)はV字型溝をそれぞれ示す。
【符号の説明】
10:研磨装置、12:研磨定盤、14:研磨ヘッド、15:回転軸、16:ワーク保持プレート、16a:ワーク保持プレート本体、17:リテーナリング、18:研磨剤供給管、19:バッキングパッド、21:空気供給路、22:回転軸、23:エアバッグ加圧領域、27:エアバッグゴムシート、29:溝無し研磨布、30,31A,31B:従来の溝入り研磨布、30A〜30M:本発明の溝入り研磨布、D,d:溝深さ、E:溝幅、G,UG,VG,VUG:溝、G1,UG1,VG1:溝側面、L,LS:接線、P:研磨布本体、P1:研磨布本体表面、UG2:凹部、W:ワーク(ウェーハ)。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polishing process for a workpiece, particularly a semiconductor wafer (hereinafter, sometimes simply referred to as a wafer), and more specifically, a grooved polishing cloth used for workpiece polishing and a workpiece polishing using the grooved polishing cloth. The present invention relates to a method and a polishing apparatus.
[0002]
[Related technologies]
Recently, CMP (Chemical Mechanical Polishing) technology is used in the manufacturing process of the most advanced devices. This technique is used to remove an extra film forming portion generated in element isolation formation, capacitor formation, etc. in a semiconductor element manufacturing process.
[0003]
In the silicon wafer manufacturing process, this CMP technique is sometimes used for the purpose of removing unevenness (generally called nanotopology or nanotopography) having a wavelength of several mm to several hundred μm existing on the wafer surface. is there. In such polishing (copy polishing), it is important to make the polishing allowance uniform within the wafer surface.
[0004]
The CMP that is usually performed is as follows. A workpiece such as a semiconductor wafer as a material to be polished is held by a polishing head to which a soft sheet (generally called a backing pad) formed of foamed urethane or the like is attached. The wafer is surrounded by a ring-shaped member (generally called a retainer ring) formed of a resin such as glass epoxy, and the ring-shaped member prevents the workpiece from popping out during polishing.
[0005]
A polishing surface plate is installed facing the polishing head, and a polishing cloth is attached to the surface of the polishing surface plate. At the time of polishing, the wafer held by the polishing head is brought into contact with the polishing cloth, and at the same time, an abrasive is supplied onto the polishing cloth, and the wafer is applied by applying a load to the wafer while rotating the polishing surface plate and the polishing head. To polish.
[0006]
In this CMP, a hard polishing cloth having a Shore D hardness of 50 or more is generally used in order to increase the efficiency of removing excess film forming portions and improving the efficiency of nanotopology. The Shore D hardness is a hardness measured by a Shore hardness tester D type, which is a type of repulsive Katasa tester, and conforms to JIS Z2246.
[0007]
In the hard polishing cloth as described above, the polishing agent generally has poor wraparound. This is because foaming is smaller than that of a soft abrasive cloth (for example, a nonwoven cloth type abrasive cloth). In particular, when the workpiece is increased in size, the influence of poor wraparound of the abrasive becomes noticeable, leading to deterioration of the flatness of the workpiece. Therefore, in order to improve the wraparound of the abrasive, it has been proposed to form grooves such as lattices, spirals, radials, etc. on the surface of the hard polishing cloth (for example, Japanese Patent Application Laid-Open No. 2001-1255, No. 2000-42901, JP-A-10-277721, JP-A-8-11051, etc.). That is, as shown in FIG. 13, the conventional polishing cloth has a groove-free polishing cloth 29 having a flat surface without forming grooves on the surface of the polishing cloth main body P, and a groove G on the surface of the polishing cloth main body P. It is roughly classified into the formed grooved polishing cloth 30. In FIG. 13B, M is the groove pitch.
[0008]
[Problems to be solved by the invention]
When a workpiece is polished with such a grooved hard polishing cloth, in the wafer manufacturing process, a shape abnormality such as a surface sag occurs at the outer periphery of the workpiece, and when the step is corrected in the device manufacturing process, the outer periphery of the workpiece is sag. Will be caused. This is because the polishing allowance varies within the workpiece surface during polishing, but the polishing allowance particularly at the outer periphery of the wafer is different. For this reason, when the workpiece is a semiconductor wafer, there is a problem that the quality required for the most advanced product, that is, the quality that satisfies both the nanotopology and the flatness cannot be obtained.
[0009]
In addition, in the above proposal, measures mainly aiming at uniform wrapping of the polishing agent are disclosed, but it is impossible to completely prevent the abnormal shape of the outer periphery of the wafer only by these measures. It was.
[0010]
The present invention has been made in view of the above-described problems. When polishing a workpiece, particularly a semiconductor wafer, the wafer manufacturing process improves the peripheral sag of the workpiece and performs polishing with improved nanotopology level. Furthermore, there are provided a grooved polishing cloth capable of correcting a step without causing a peripheral sag of the work even in a device manufacturing process, and a work polishing method and a polishing apparatus using the grooved polishing cloth. For the purpose.
[0011]
[Means for Solving the Problems]
According to a first aspect of the grooved polishing cloth of the present invention, a groove formed on the surface of the polishing cloth main body is a grooved polishing cloth used for polishing a workpiece, and the surface of the polishing cloth main body, the side surface of the groove, The angle formed by is such that it is greater than the chamfering angle of the workpiece.
[0012]
According to a second aspect of the grooved polishing cloth of the present invention, in the grooved polishing cloth used for polishing a groove formed on the surface of the polishing cloth main body, at least a depth of 0. 0 from the surface of the polishing cloth main body. The cross-sectional shape of the side surface of the groove at a location shallower than 2 mm is linear, and the angle formed by the surface of the polishing cloth body and the side surface of the groove is equal to or greater than the chamfering angle of the workpiece.
[0013]
When the polishing cloth is pressed by the workpiece, the thickness of the portion with and without the workpiece varies due to the compression of the polishing cloth. As shown in FIG. 14, the cross-sectional shape of the groove G formed in the polishing pad body P is, for example, U-shaped (FIG. 14A) or V-shaped with a deep groove depth (FIG. 14B). In this case, when the workpiece hits the side surface G1 of the groove G, a large local pressure is applied to the outermost peripheral portion of the workpiece, resulting in surface sagging at the outermost peripheral portion of the workpiece. That is, the polishing allowance becomes large at the outermost periphery of the workpiece.
[0014]
Further, when the workpiece is held on the backing pad, a phenomenon that the workpiece escapes to the backing pad side occurs, and therefore a portion with less polishing allowance is generated on the inner side than the above-described surface sag generation portion. That is, a shape abnormality such as undulation occurs on the outer periphery of the workpiece.
[0015]
In FIG. 14, P1 is the surface of the polishing pad body, D is the groove depth, E is the groove width, and θp is the angle formed by the polishing pad body surface P1 and the side surface G1 of the groove. FIG. 14A shows the case where θp = about 90 ° and FIG. 14B shows the case where θp = about 135 °.
[0016]
On the other hand, when the polishing cloth of the present invention is used, the contact resistance between the outermost peripheral part of the workpiece and the side surface of the groove is reduced, and abnormal shapes such as surface sag in the outer peripheral part of the work can be suppressed. In particular, as shown in FIG. 1, the angle θp formed by the surface of the polishing cloth body and the side surface of the groove is the chamfering angle θw of the workpiece (in this specification, as shown in FIG. 12, the surface F1 of the workpiece W When the angle formed by the chamfered surface F2 is referred to as a chamfer angle or more), the shape abnormality at the outer periphery of the workpiece is improved in a singular point.
[0017]
In the first and second aspects of the grooved polishing cloth of the present invention, the groove is particularly preferably a V-shaped groove having a linear cross-sectional shape and satisfying the above conditions. This is because the groove can be easily formed if it is V-shaped.
[0018]
According to a third aspect of the grooved abrasive cloth of the present invention, in the grooved abrasive cloth used for polishing a groove formed on the surface of the abrasive cloth body, at least a depth of 0. 0 from the surface of the abrasive cloth body. The cross-sectional shape of the side surface of the groove in a place shallower than 2 mm is curved, and the angle formed by the surface of the polishing cloth body and the tangent line of the side surface of the groove is equal to or greater than the chamfering angle of the workpiece. To do.
[0019]
In this way, the angle θt (FIG. 3B) formed by the tangent to all points on the side surface of the groove and the surface of the polishing cloth body at a location shallower than the depth of 0.2 mm from the polishing cloth body surface is equal to or greater than the chamfering angle θw. That is, that is, if the minimum value of the angle θt formed by the tangent to the groove side surface and the surface of the polishing cloth body in the portion shallower than the depth of 0.2 mm is equal to or greater than the chamfering angle θw, The contact resistance with the side surface of the groove is reduced, and shape abnormality such as sag in the outer periphery of the workpiece can be suppressed. In the third aspect of the grooved abrasive cloth of the present invention, the cross-sectional shape of the groove can be U-shaped, and a shape satisfying the above conditions can be adopted.
[0020]
The angle θp formed by the surface of the polishing cloth main body and the side surface of the groove or the angle θt formed by the tangent to the side surface of the groove and the surface of the polishing cloth main body is preferably 160 ° or more. Most wafers have a chamfering of about 20 ° (the angle between the chamfered surface and the wafer surface, ie, the chamfering angle θw of about 160 °). If the angle is set to 160 ° or more, most wafers are polished without problems. Because it can. The upper limits of the angles θp and θt are not particularly limited, but are preferably within 175 °. Specifically, these angles θp and θt are determined as appropriate by setting the necessary groove depth in consideration of the wraparound of the abrasive.
[0021]
The groove width on the surface of the polishing cloth body is not particularly limited, but is preferably 3 mm or less. If the groove width exceeds 3 mm, the outer peripheral part of the workpiece may fall into the groove due to elastic deformation of the workpiece, and there is a possibility that a shape abnormality such as outer peripheral sag may be caused by a factor other than the above-described factors.
[0022]
The effect of the cross-sectional shape of the groove can be obtained with any polishing cloth, but a particularly remarkable effect is exhibited with a polishing cloth having a Shore D hardness of 50 or more. This is because when the polishing cloth is soft (for example, in the case of a non-woven fabric), the impact caused by the contact between the outer periphery of the workpiece and the groove of the polishing cloth can be absorbed to some extent on the polishing cloth side. This is because the impact that can be absorbed is small.
[0023]
The workpiece polishing method of the present invention is a workpiece polishing method in which a workpiece held on a workpiece holding plate is pressed against a polishing cloth affixed to a polishing surface plate with a predetermined polishing load, thereby polishing one surface of the workpiece. The grooved polishing cloth of the present invention described above is used as the polishing cloth. By polishing the workpiece with the polishing method of the present invention, it is possible to prevent abnormal shapes on the outer periphery of the workpiece. This is particularly effective in copying polishing that makes the polishing allowance uniform. In addition, the use of a hard abrasive cloth also improves the nanotopology. Therefore, when the workpiece is a semiconductor wafer, a wafer required for a state-of-the-art device that requires both flatness and nanotopology can be manufactured by the polishing method of the present invention.
[0024]
The workpiece polishing apparatus of the present invention polishes one side of the workpiece by pressing the workpiece held by the workpiece holding plate constituting the polishing head against a polishing cloth affixed to the polishing surface plate with a predetermined polishing load. A polishing apparatus for a workpiece to be processed, wherein the above-described grooved polishing cloth of the present invention is used as the polishing cloth. By polishing the workpiece with the polishing apparatus of the present invention, for example, when the workpiece is a semiconductor wafer, a wafer that can be used in the most advanced device can be obtained.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below in more detail with reference to FIGS. 1 to 7 in the accompanying drawings. However, the illustrated examples are illustrative only, and various embodiments are possible without departing from the technical idea of the present invention. Needless to say, it is possible to modify this.
[0026]
FIG. 1 is a cross-sectional explanatory view of an essential part showing an example of a grooved polishing cloth having a V-shaped groove of the present invention. FIG. 2 is an explanatory cross-sectional view of a principal part showing various modifications of the V-shaped groove of FIG. 1, wherein (a) is a first modification, (b) is a second modification, and (c) is a third modification. Respectively. FIGS. 3A and 3B are cross-sectional explanatory views showing an example of a grooved polishing cloth having a U-shaped groove according to the present invention. FIG. 3A is an overall view, and FIG. 3B is an enlarged view of a circle A portion in FIG. It is. FIG. 4 is an explanatory cross-sectional view of a main part showing various modifications of the U-shaped groove of FIG. 3, wherein (a) is a first modification and (b) is a second modification. FIG. 5 is a cross-sectional explanatory view of a main part showing various modified examples of the groove shape in the grooved polishing cloth having a groove formed by combining the V-shape and the U-shape of the present invention, and (a) is a first modification. An example, (b) shows a second modification, and (c) shows a third modification. FIG. 6 is an overall plan view of the grooved polishing cloth of the present invention, wherein (a) shows a first groove pattern, (b) shows a second groove pattern, and (c) shows a third groove pattern. 7A and 7B are cross-sectional explanatory views showing an example of the polishing apparatus of the present invention. FIG. 7A is an overall view and FIG. 7B is an enlarged view of the polishing head.
[0027]
In FIG. 1, reference numeral 30A denotes a grooved polishing cloth according to the present invention, and a groove VG is formed on the surface P1 of the polishing cloth main body P. The groove VG is cut in the vertical direction so as to be orthogonal to the groove VG (as shown in FIG. 6A, when the groove pattern is a straight line, the direction orthogonal to the groove G and FIGS. 6B and 6C). As shown in FIG. 1, when the groove pattern is a curve, the cross-sectional shape when the groove pattern is cut so as to form a cut surface B in a direction perpendicular to the tangent LS of the curve is V-shaped as shown in FIG. It is formed to be a mold. In this case, the cross-sectional shape of the side surface VG1 of the groove VG is linear. It is essential that the angle θp formed by the surface P1 of the polishing pad main body P and the side surface VG1 of the groove VG is equal to or greater than the chamfering angle θw (FIG. 12) of the workpiece W. In the present specification, as described above, an angle θw formed by the surface F1 and the chamfered surface F2 of the workpiece W is defined as a chamfer angle (FIG. 12).
[0028]
That is, if the chamfering angle θw of the workpiece W is, for example, 160 °, the angle θp formed by the polishing pad body surface P1 and the side surface VG1 of the groove VG is also set to 160 ° or more. For example, in the case of the V-shaped groove VG described above, the groove depth d is set to about 0.5 mm with respect to the groove width E of 3 mm. In the present specification, as described above, an angle θw formed by the surface F1 and the chamfered surface F2 of the workpiece W is defined as a chamfer angle (FIG. 12).
[0029]
Various shapes can be adopted as the shape of the V-shaped groove VG described above. FIG. 2 shows a modification of the V-shaped groove VG. The polishing pad 30B shown in FIG. 2A is an example in which θp = about 160 ° and the groove width E is 2 mm. The polishing pad 30C shown in FIG. 2B is an example in which θp = about 160 ° and the groove width E is 3 mm. In the case of FIG. 2B, the groove depth d can be formed deeper than 2 mm. The polishing pad 30D shown in FIG. 2C is an example in which θp> 160 °. In the case of FIG. 2C, the groove depth d is shallow.
[0030]
The groove shape of the grooved polishing cloth of the present invention can adopt various shapes in addition to the V-shape described above, and will be described next. FIG. 3 shows a U-shaped grooved polishing cloth 30E. In the figure, a groove UG having a U-shaped cross-section is formed on the surface P1 of the polishing pad body P. In this case, the cross-sectional shape of the side surface UG1 of the groove UG in contact with the polishing pad main body P is a curved shape, and the polishing pad main body P in a place shallower than the surface P1 of the polishing pad main body P is at least a depth d = 0.2 mm. The angle θt formed by the surface P1 of the groove tangent to the tangent L of the side surface UG1 of the groove UG needs to be equal to or greater than the chamfering angle θw (FIG. 12) of the workpiece W. That is, if the chamfering angle θw of the workpiece W is, for example, 160 °, the angle θt is set to 160 ° or more.
[0031]
Various shapes can be adopted as the shape of the U-shaped groove UG. FIG. 4 shows a modification of the U-shaped groove UG. The polishing pad 30F shown in FIG. 4A is an example in which θt> about 160 ° and the lateral width is 2 mm. The angle θt formed by the tangent L at the position of the groove depth d = 0.2 mm and the surface P1 of the polishing pad main body P is approximately 160 °. The polishing pad 30G shown in FIG. 4B is an example in which θp> 160 ° and the lateral width is 3 mm. In this example, the angle θt> approximately 160 ° up to a position deeper than the groove depth d = 0.2 mm.
[0032]
The groove shape of the grooved polishing cloth of the present invention adopts various groove shapes in addition to the V-shape and U-shape described above. For example, as shown in FIG. The shape can also be a combination of molds. In the groove VUG of the polishing pad 30H shown in FIG. 5A, from the surface P1 of the polishing pad main body P to the groove depth d = 0.2 mm, it is linear (similar to the groove side surface of the V-shaped groove). A concave portion UG2 (similar to the central portion of the U-shaped groove) is formed in a portion deeper than the groove depth d = 0.2 mm, that is, in the central portion of the groove VUG. FIG. 5A shows an example in which θp = about 160 ° and the groove width E is 2 mm.
[0033]
In the groove VUG of the polishing pad 30I shown in FIG. 5B, the groove VUG is linearly formed from the surface P1 of the polishing pad main body P to the position where the groove depth d exceeds 0.2 mm, and the central portion of the groove VUG. A recess UG2 is formed in the upper surface. FIG. 5B shows an example in which θp> 160 ° and the groove width E is 2 mm.
[0034]
The groove shape where the groove depth d is deeper than 0.2 mm does not have a special effect on the polishing effect of the grooved polishing cloth of the present invention, so as shown in FIGS. 5 (a) and 5 (b). , May be U-shaped, or other shapes. For example, as in the groove VUG of the polishing pad 30J shown in FIG. 5 (c), the shape of the recess UG2 at the center of the groove VUG can be a semicircular shape. In FIG. 5C, other groove shapes are the same as those in FIG. The recess UG2 shown in FIGS. 5 (a), (b), (c), FIGS. 4 (a), (b), and FIG. 3 (a) has an action of retaining the abrasive, so by devising its shape The amount of retention of the abrasive can be adjusted.
[0035]
The groove pattern on the surface P1 of the polishing cloth body P of the grooved polishing cloth of the present invention is not particularly limited, and a lattice pattern is formed on the surface P1 of the polishing cloth body P as in the grooved polishing cloth 30K shown in FIG. It is also possible to form a concentric groove G on the surface P1 of the polishing pad main body P as in the grooved polishing cloth 30L shown in FIG. Furthermore, a spiral groove G may be formed on the surface P1 of the polishing pad main body P as in the grooved polishing cloth 30M shown in FIG. 6C, or grooves of other shapes may be formed. Needless to say.
[0036]
The method of forming the groove shape of the grooved polishing cloth 30A to 30M of the present invention is not particularly limited. For example, the surface P1 of the polishing cloth main body P with a processing machine having a blade having the same shape as the groove shape. It can be formed by shaving.
[0037]
The material of the abrasive cloth body is not particularly limited, and for example, urethane foam abrasive cloth, nonwoven cloth type abrasive cloth, or the like can be used. Further, a laminated abrasive cloth, for example, an abrasive cloth in which foamed urethane and a nonwoven fabric are laminated in two layers, or an abrasive cloth in which an intermediate layer is added to form three layers can be used. In particular, when the polishing surface has a Shore D hardness of 50 or more, the effect of forming grooves in the grooved polishing cloth of the present invention is significant.
[0038]
The grooved polishing cloth 30A to 30M of the present invention can be used as a polishing cloth of a conventionally used polishing apparatus, but the grooved polishing cloth of the present invention is used as the polishing cloth in FIGS. 7 (a) and 7 (b). An example of the polishing apparatus of the present invention used was shown.
[0039]
The basic configuration of the polishing apparatus 10 of the present invention shown in FIG. 7A is the same as that of a conventionally known polishing apparatus, and there is no particular limitation. However, the grooved polishing cloths 30A to 30M of the present invention (in the illustrated example) 30A) is used as an abrasive cloth.
[0040]
The polishing apparatus 10 of the present invention is configured as an apparatus for polishing one surface of a workpiece, for example, a wafer W. The polishing apparatus 10 includes a rotating polishing platen 12, a work holding plate 16 mounted on the lower surface of the polishing head 14, and an abrasive supply pipe 18. A grooved polishing cloth 30A of the present invention is attached to the upper surface of the surface plate 12. The surface plate 12 is rotated at a predetermined rotation speed by a rotating shaft 22. The polishing head 14 is rotated by a rotation shaft 15 at a predetermined rotation speed.
[0041]
A backing pad 19 is affixed to the surface of the workpiece holding plate 16, and the workpiece W is held on the workpiece holding plate 16 via the backing pad 19. A retainer ring 17 is provided around the work holding plate 16 to prevent the work W held on the work holding plate 16 from jumping out. The workpiece holding plate 16 is mounted on the lower surface of the polishing head 14 and is rotated by the polishing head 14 and simultaneously presses the workpiece W against the polishing cloth 30A with a predetermined polishing load. The abrasive is supplied onto the grooved abrasive cloth 30A from the abrasive supply pipe 18 at a predetermined flow rate, and the abrasive is supplied between the workpiece W and the abrasive cloth 30A, whereby the work W is polished.
[0042]
More specifically, the work holding plate 16 has a structure as shown in FIG. In FIG. 7B, reference numeral 21 denotes an air supply path, and an air bag rubber sheet is provided by supplying air to an air bag pressurizing region 23 provided inside the work holding plate 16 and above the work holding plate main body 16a. 27, the work holding plate main body 16a supported by the work holding plate 16 in a swingable manner is pressed downward, and the work W can be pressed against the grooved polishing cloth 30A of the surface plate 12 in a pressurized state.
[0043]
The surface of the workpiece W is polished by making sliding contact with the polishing apparatus 10 as described above while supplying the abrasive. By polishing the workpiece W using the polishing apparatus using the grooved polishing cloth of the present invention having the groove shape as described above, the workpiece W with high flatness can be manufactured.
[0044]
【Example】
The present invention will be described more specifically with reference to the following examples. However, it is needless to say that these examples are shown by way of illustration and should not be construed in a limited manner.
[0045]
As a wafer to be used as a workpiece to be polished, a silicon mirror polished wafer having a diameter of 200 mm (8 inches) (wafer after primary polishing) was used. The angle formed between the chamfered surface of the sample wafer and the wafer surface was 160 °. The sample wafer was polished using a polishing apparatus similar to the apparatus shown in FIG. As basic polishing conditions, polishing pressure: 40 kPa (400 g / cm 2 ), Relative speed: 50 m / min, polishing margin: 1 μm, polishing agent: colloidal silica-based polishing agent (pH adjusted to 10.5 by addition of inorganic alkali), backing pad: BP104 (manufactured by Fuji Boseki Co., Ltd.), polishing cloth : Implemented with urethane foam hard polishing cloth (Shore D hardness: 55 °). Unless otherwise specified, the following examples and comparative examples were all polished under the above conditions.
[0046]
In the polishing process using the grooved polishing cloth of the present invention, it is preferable that the polishing allowance distribution is uniform within the wafer surface. Therefore, in the method for evaluating the effect of polishing using the grooved polishing cloth of the present invention, the wafer shape before and after polishing is measured with a capacitance-type flatness measuring instrument (ULTRAGAGE 9700 manufactured by ADE), and the wafer surface is measured. The polishing allowance distribution (excluding the outer periphery of 2 mm) was compared.
[0047]
FIG. 8 shows a method for judging the peripheral sag of the polished wafer. 8A is an explanatory diagram showing measurement points on the polished wafer W, and FIG. 8B is a schematic explanatory diagram showing a polishing margin distribution observed along the wafer diameter line DL in FIG. 8A. Polishing allowance [value of wafer shape before and after polishing (thickness, etc., measured difference in shape before and after polishing at the same point) and setting the wafer diameter direction on the horizontal axis, This shows the distribution of polishing allowance in the thickness direction). As shown in FIG. 8 (a), a large number (35 points) of measurement points of the polishing allowance in the wafer diameter direction are taken at the outer peripheral edge, and an average polishing allowance distribution is obtained to obtain an outer periphery of 10 mm (from the outer periphery toward the center). The difference between the polishing allowances at a point of 10 mm) and an outer periphery of 2 mm (a point of 2 mm from the outer periphery toward the center) was determined and used as a sagging amount. That is, the wafer cross-sectional shape [FIG. 8B] of the polishing allowance distribution was analyzed, and the sagging amount in the range of 2 to 10 mm on the outer periphery was evaluated.
[0048]
The nanotopography on the wafer surface was also evaluated. Nanotopography is unevenness having a wavelength of about 0.1 mm to 20 mm and an amplitude of about several nm to 100 nm. As an evaluation method thereof, a square having a side of about 0.1 mm to 10 mm, or a diameter of 0.1 mm. In a region of a circular block range of about 1 mm to 10 mm (this range is called WINDOW SIZE etc.), the height difference (PV: Peak to Valley) of the unevenness on the wafer surface is evaluated.
[0049]
This PV value is also called Nanotopography Height or the like. As nanotopography, it is desired that the maximum value of the unevenness existing in the evaluated wafer surface is small. Here, a plurality of block ranges were evaluated with a 2 mm square, and the maximum PV value was obtained. If this value was 20 nm or less, it was judged as a good product. In this example, nanotopography was measured with Nanomapper (2 mm × 2 mm square area) manufactured by ADE.
[0050]
(Distribution of polishing allowance depending on the presence of grooves and the cross-sectional shape of grooves)
(Examples 1 and 2 and Comparative Examples 1 and 2)
The distribution of the polishing allowance due to the difference in the cross-sectional shape of the groove and the grooved abrasive cloth was confirmed. The groove pattern of the grooved polishing cloth was a lattice pattern as shown in FIG. 6A, and the pitch from groove to groove was 20 mm.
[0051]
As a polishing cloth, a grooved polishing cloth having a V-shaped groove having a groove width of 3 mm and a depth of 0.5 mm (the angle θp formed by the surface of the polishing cloth main body and the groove side surface is 160 °) [FIG. 2B; Example 1 ] U-shaped groove having a groove width of 2 mm and a depth of 0.5 mm (however, the angle θt formed between the tangent to the groove side surface and the surface of the polishing cloth body at a location shallower than the depth of 0.2 mm from the polishing cloth body surface is 160 ° or more) [FIG. 4 (a); Example 2], groove-free polishing cloth (Comparative Example 1), grooved polishing cloth of U-shaped groove having a groove width of 2 mm and a depth of 0.5 mm [FIG. ); Comparative Example 2] was used.
[0052]
As a result of comparing the polishing allowance distribution in the wafer surface (excluding the outer periphery of 2 mm), in Example 1, the distribution of the polishing allowance was substantially uniform in the wafer surface as shown in FIG. The maximum PV value of nanotopography was about 9 nm. As a result, the wafer is polished without sagging and the nanotopography is improved. Also in Example 2, as in Example 1, the polishing allowance was uniform within the wafer surface.
[0053]
In Comparative Example 1, since the abrasive wraparound is poor, it can be seen that the distribution of the polishing allowance has a concave shape that decreases at the center of the wafer as shown in FIG. 10, and as a result, the wafer shape becomes convex. It became a trend. The maximum PV value of nanotopography was about 12 nm.
[0054]
In Comparative Example 2, as shown in FIG. 11, the distribution of the polishing allowance was uniform as a whole, but there was variation in the allowance at the outermost peripheral portion. That is, although it was the tendency to maintain the front shape, the polishing amount increased at the outermost periphery (so-called outer periphery sag), and a decrease in the polishing amount (outer periphery splash) was observed on the inner side. The maximum PV value of nanotopography was about 13 nm.
[0055]
As described above, by polishing the wafer with the polishing apparatus provided with the grooved polishing cloth of the present invention, it was possible to suppress sagging of the outer peripheral portion of the wafer.
[0056]
(About the effect of groove angle)
(Examples 3 and 4 and Comparative Examples 3 to 5)
The shape of the surface of the polishing cloth body was a lattice pattern, and grooves were formed at a pitch of 20 mm. Polishing was performed by changing the angles of the U-shape and V-shape. The groove depth is 0.5 mm. The groove shapes are a V-shaped groove with θp = 160 ° (Example 3), a V-shaped groove with θp = 170 ° (Example 4), and a U-shaped groove with θp = 90 ° (FIG. 14A). Comparative Example 3), V-shaped groove with θp = 120 ° (Comparative Example 4), and V-shaped groove with θp = 140 ° (Comparative Example 5).
[0057]
As a result of confirming the sagging amount at the outer peripheral portion of the wafer, no sagging was found in Example 3 (angle θp = 160 °) (the outer sagging amount was 0.02 μm or less). In Example 4 (angle θp = 170 °), the amount of outer peripheral sag was 0.05 μm. The maximum PV value of nanotopography was about 10 ± 2 nm.
[0058]
In Comparative Example 3 (so-called U-shaped groove), an outer sagging amount of 0.20 μm was generated. In Comparative Example 4 (angle θp = 120 °), an outer sagging amount of 0.13 μm was generated. In Comparative Example 5 (angle θp = 140 °), an outer peripheral sag amount of 0.10 μm was generated. The maximum PV value of nanotopography was about 12 ± 2 nm.
[0059]
As described above, when the angle θp is smaller than the chamfering angle θw, the contact between the groove side surface and the wafer outer periphery becomes strong, and the effect of suppressing the outer peripheral sag becomes insufficient. In addition, when the angle θp = 170 °, the groove width becomes as wide as about 5 mm when the groove depth is set to 0.5 mm. Therefore, a phenomenon that the outer peripheral portion of the wafer falls into the groove occurs. There is a tendency that the sagging of the outer periphery of a good one is somewhat worse.
[0060]
(Examples 5 and 6 and Comparative Examples 6 and 7)
Next, an example of chamfering the U-shaped groove will be shown. The edge portion of the U-shaped groove is chamfered, and the angle θt formed by the tangent to the side surface of the groove and the surface of the polishing cloth body is 160 ° (Example 5) and 170 ° (implemented) at a depth shallower than 0.2 mm. Example 6), polishing cloths of 120 ° (Comparative Example 6) and 140 ° (Comparative Example 7) were prepared. The shape of the surface of the polishing cloth body was a lattice pattern, and grooves were formed at a pitch of 20 mm.
[0061]
As a result of checking the sagging of the outer periphery of the wafer, there was no sagging in Example 5 (the sagging amount was 0.02 μm or less), and there was no sagging in Example 6 (the sagging amount was 0.02 μm or less). In the case of 0.15 μm and Comparative Example 7, the sagging amount was 0.10 μm. The maximum PV value of nanotopography was about 11 ± 2 nm.
[0062]
If the angle θt formed between the tangent to the groove side surface and the surface of the polishing pad body is smaller than the chamfering angle θw, the effect of reducing the contact between the wafer outer periphery and the groove side surface becomes insufficient. It is desirable that the angle θt formed between the tangent to the groove side surface and the surface of the polishing pad main body is not less than the chamfering angle θw.
[0063]
In the above-described embodiment, only the example in which the edge portion of the V-shaped groove and the U-shaped groove is chamfered is shown, but if the cross-sectional shape of the groove adopts the technical idea of the grooved polishing cloth of the present invention, It is not limited to the groove shape of each of the embodiments described above. For example, a groove shape combining a V shape and a U shape as shown in FIG. 5 has the same effect.
[0064]
As described above, the groove shape is particularly important for the sagging shape of the wafer (uniformity of polishing allowance distribution), but nanotopography is also important for the grooved polishing cloth of the present invention. When the maximum PV value of nanotopography is 20 nm or less, the surface state is good. However, in both the above examples and comparative examples, the nanotopography is good at 15 nm or less, particularly in the examples, around 10 nm. This is because a hard polishing cloth is used. Nanotopography is also affected by the hardness of the polishing cloth, and the higher the hardness, the greater the improvement effect, but the effect of the groove shape of the grooved polishing cloth of the present invention on a relatively soft polishing cloth is confirmed. The results are shown below.
[0065]
(Effect of polishing cloth hardness)
(Examples 7 and 8)
Among the above polishing conditions, polishing was performed by changing the hardness of the polishing cloth. Specifically, a non-woven polishing cloth (Suba600 manufactured by Rodel Nitta, Asker C hardness: about 70) was used as the polishing cloth. The Asker C hardness is a value measured by an Asker rubber hardness meter C type which is a kind of spring hardness tester. In addition, when measuring with a Shore hardness tester D type in the nonwoven fabric-based abrasive cloth, the measurement terminal (contactor) may be stuck in the gap of the nonwoven fabric, so that the accurate hardness may not be measured. Therefore, it was indicated by Asker C hardness. Moreover, when the polishing cloth of Shore D hardness 55 is measured by Asker C hardness, Asker C hardness is about 95-100 grade. Therefore, the Asker C hardness 70 is approximately 30-50 in terms of Shore D hardness.
[0066]
As the groove shape, a V-shaped groove having a width of 3 mm and a depth of 0.5 mm (FIG. 2B, Example 7), a chamfered U-shaped groove having a width of 2 mm and a depth of 0.5 mm [FIG. The sample wafer was polished using a grooved polishing cloth having a) and Example 8].
[0067]
As a result of confirming the sagging of the outer peripheral portion of the polished wafer, the sagging amount in Example 7 (V-shaped groove) is 0.02 μm or less, and the sagging amount in Example 8 (U-shaped groove) is 0.03 μm. Met. The maximum PV value of nanotopography was about 20 nm.
[0068]
Even with a relatively soft nonwoven fabric-based polishing cloth, the effect of improving the sagging due to the cross-sectional shape of the groove can be seen. It can be seen that the groove shape of the grooved polishing cloth of the present invention is effective in improving sagging. However, the soft abrasive cloth is not as effective as used when using the hard abrasive cloth, and the PV value of the nanotopogee is also increased overall, so in the grooved abrasive cloth of the present invention, the hard abrasive cloth, It is particularly suitable when applied to a polishing cloth having a Shore D hardness of 50 or more.
[0069]
【The invention's effect】
As described above, the polishing apparatus using the grooved polishing cloth of the present invention is used to polish a workpiece, particularly a semiconductor wafer, thereby improving the sagging of the workpiece and improving the nanotopology level in the wafer manufacturing process. Polishing can be performed, and further, step correction can be performed without causing sagging of the outer periphery of the workpiece even in the device manufacturing process. In particular, when the wafer is polished using the grooved polishing cloth of the present invention to which a hard polishing cloth is applied, there is almost no sagging and a polished wafer with a very small maximum PV value of nanotopography can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional explanatory view of an essential part showing an example of a grooved polishing cloth having a V-shaped groove of the present invention.
FIGS. 2A and 2B are cross-sectional explanatory views of main parts showing various modifications of the V-shaped groove of FIG. 1, wherein FIG. 2A is a first modification, FIG. 2B is a second modification, and FIG. Each example is shown.
3A and 3B are cross-sectional explanatory views showing an example of a grooved polishing cloth having a U-shaped groove according to the present invention, in which FIG. 3A is an overall view and FIG. FIG.
FIGS. 4A and 4B are cross-sectional explanatory views of main parts showing various modifications of the U-shaped groove of FIG. 3, wherein FIG. 4A is a first modification, and FIG. 4B is a second modification.
FIGS. 5A and 5B are cross-sectional explanatory views of main parts showing various modifications of groove shapes in a grooved polishing cloth having grooves formed by combining a V shape and a U shape according to the present invention. FIG. A modification, (b) shows a second modification, and (c) shows a third modification.
6A and 6B are overall plan views of a grooved polishing cloth according to the present invention, in which FIG. 6A shows a first groove pattern, FIG. 6B shows a second groove pattern, and FIG. 6C shows a third groove pattern.
FIGS. 7A and 7B are cross-sectional explanatory views showing an example of the polishing apparatus of the present invention. FIG. 7A is an overall view and FIG. 7B is an enlarged view of the polishing head.
FIGS. 8A and 8B are explanatory views showing a method for determining the peripheral sag of a polished wafer in Examples and Comparative Examples, wherein FIG. 8A is a top view of the wafer showing measurement points, and FIG. 8B is along the diameter line of FIG. It is a schematic explanatory drawing showing the observed polishing allowance distribution, where the vertical axis indicates the polishing allowance and the horizontal axis indicates the wafer diameter direction, and shows the polishing allowance distribution in the wafer cross-sectional direction.
9 is a graph showing a polishing allowance distribution in a wafer surface in Example 1. FIG.
10 is a graph showing a polishing allowance distribution in a wafer surface in Comparative Example 1. FIG.
11 is a graph showing a polishing margin distribution in a wafer surface in Comparative Example 2. FIG.
FIG. 12 is an explanatory diagram showing a chamfer angle of a workpiece.
FIGS. 13A and 13B are cross-sectional explanatory views showing a main part of a conventional polishing cloth, in which FIG. 13A shows a grooveless polishing cloth and FIG. 13B shows a grooved polishing cloth.
FIGS. 14A and 14B are cross-sectional explanatory views of the main part showing the groove shape of a conventional grooved polishing cloth, wherein FIG. 14A shows a U-shaped groove and FIG. 14B shows a V-shaped groove.
[Explanation of symbols]
10: Polishing device, 12: Polishing platen, 14: Polishing head, 15: Rotating shaft, 16: Work holding plate, 16a: Work holding plate body, 17: Retainer ring, 18: Abrasive supply pipe, 19: Backing pad 21: Air supply path, 22: Rotating shaft, 23: Air bag pressurizing area, 27: Air bag rubber sheet, 29: Non-grooved polishing cloth, 30, 31A, 31B: Conventional grooved polishing cloth, 30A to 30M : Grooved polishing cloth of the present invention, D, d: groove depth, E: groove width, G, UG, VG, VUG: groove, G1, UG1, VG1: groove side surface, L, LS: tangent, P: polishing Cloth body, P1: surface of polishing cloth body, UG2: recess, W: work (wafer).

Claims (11)

研磨布本体の表面に形成された溝を有しかつワークの研磨処理に用いられる溝入り研磨布において、前記研磨布本体の表面と前記溝の側面とのなす角度が、ワークの面取り角度以上であるようにしたことを特徴とする溝入り研磨布。In a grooved polishing cloth having a groove formed on the surface of the polishing cloth body and used for polishing the workpiece, an angle formed between the surface of the polishing cloth body and the side surface of the groove is equal to or greater than a chamfering angle of the workpiece. A grooved polishing cloth characterized by being provided. 研磨布本体の表面に形成された溝を有しかつワークの研磨処理に用いられる溝入り研磨布において、前記研磨布本体の表面から少なくとも深さ0.2mmより浅い場所における溝の側面の断面形状が直線状であり、該研磨布本体の表面と該溝の側面とのなす角度が、ワークの面取り角度以上であるようにしたことを特徴とする溝入り研磨布。In a grooved polishing cloth having grooves formed on the surface of the polishing cloth body and used for polishing a workpiece, the cross-sectional shape of the side surface of the groove at a location shallower than the depth of 0.2 mm from the surface of the polishing cloth body A grooved polishing cloth, wherein the angle between the surface of the polishing cloth body and the side surface of the groove is equal to or greater than the chamfering angle of the workpiece. 前記溝の断面形状がV字型であることを特徴とする請求項1又は2記載の溝入り研磨布。The grooved abrasive cloth according to claim 1 or 2, wherein a cross-sectional shape of the groove is V-shaped. 前記研磨布本体の表面と前記溝の側面とのなす角度が、160°以上であることを特徴とする請求項1〜3のいずれか1項記載の溝入り研磨布。The grooved abrasive cloth according to any one of claims 1 to 3, wherein an angle formed between a surface of the abrasive cloth body and a side surface of the groove is 160 ° or more. 研磨布本体の表面に形成された溝を有しかつワークの研磨処理に用いられる溝入り研磨布において、前記研磨布本体の表面から少なくとも深さ0.2mmより浅い場所における溝の側面の断面形状が曲線状であり、該研磨布本体の表面と該溝の側面の接線とのなす角度が、ワークの面取り角度以上であるようにしたことを特徴とする溝入り研磨布。In a grooved polishing cloth having grooves formed on the surface of the polishing cloth body and used for polishing a workpiece, the cross-sectional shape of the side surface of the groove at a location shallower than the depth of 0.2 mm from the surface of the polishing cloth body A grooved polishing cloth, wherein the angle between the surface of the polishing cloth body and the tangent to the side surface of the groove is equal to or greater than the chamfering angle of the workpiece. 前記溝の断面形状がU字型であることを特徴とする請求項5記載の溝入り研磨布。6. The grooved polishing cloth according to claim 5, wherein the groove has a U-shaped cross section. 前記研磨布本体の表面と前記溝の側面の接線とのなす角度が、160°以上であることを特徴とする請求項5又は6記載の溝入り研磨布。The grooved polishing cloth according to claim 5 or 6, wherein an angle formed by a surface of the polishing cloth main body and a tangent to a side surface of the groove is 160 ° or more. 前記溝の中央部に研磨剤滞溜調節用の凹部を設けたことを特徴とする請求項1〜7のいずれか1項記載の溝入り研磨布。The grooved polishing cloth according to any one of claims 1 to 7, wherein a concave portion for adjusting an abrasive stagnation is provided at a central portion of the groove. 前記研磨布本体の硬度がショアD硬度で50以上であることを特徴とする請求項1〜8のいずれか1項記載の溝入り研磨布。The grooved abrasive cloth according to any one of claims 1 to 8, wherein the hardness of the abrasive cloth body is 50 or more in Shore D hardness. ワーク保持プレートに保持されたワークを研磨定盤に貼付された研磨布に所定の研磨荷重で押し付けることによって、該ワークの片面に研磨加工を施すワークの研磨方法であって、前記研磨布として請求項1〜9のいずれか1項記載の溝入り研磨布を用いることを特徴とするワークの研磨方法。A work polishing method for polishing a surface of a work by pressing a work held on a work holding plate against a polishing cloth affixed to a polishing surface plate with a predetermined polishing load. Item 10. A method for polishing a workpiece, wherein the grooved polishing cloth according to any one of Items 1 to 9 is used. 研磨ヘッドを構成するワーク保持プレートに保持されたワークを、研磨定盤に貼付された研磨布に、所定の研磨荷重で押し付けることによって、該ワークの片面に研磨加工を施すワークの研磨装置であって、前記研磨布として請求項1〜9のいずれか1項記載の研磨布を用いることを特徴とするワークの研磨装置。This is a workpiece polishing apparatus that applies a polishing process to one surface of a workpiece by pressing the workpiece held on a workpiece holding plate constituting the polishing head against a polishing cloth affixed to a polishing surface plate with a predetermined polishing load. A polishing apparatus for a workpiece, wherein the polishing cloth according to any one of claims 1 to 9 is used as the polishing cloth.
JP2001364101A 2001-11-29 2001-11-29 Grooved polishing cloth, workpiece polishing method and polishing apparatus Expired - Fee Related JP3612708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001364101A JP3612708B2 (en) 2001-11-29 2001-11-29 Grooved polishing cloth, workpiece polishing method and polishing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001364101A JP3612708B2 (en) 2001-11-29 2001-11-29 Grooved polishing cloth, workpiece polishing method and polishing apparatus

Publications (2)

Publication Number Publication Date
JP2003163192A JP2003163192A (en) 2003-06-06
JP3612708B2 true JP3612708B2 (en) 2005-01-19

Family

ID=19174338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001364101A Expired - Fee Related JP3612708B2 (en) 2001-11-29 2001-11-29 Grooved polishing cloth, workpiece polishing method and polishing apparatus

Country Status (1)

Country Link
JP (1) JP3612708B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009241205A (en) * 2008-03-31 2009-10-22 Toyo Tire & Rubber Co Ltd Polishing pad
JP5357561B2 (en) * 2009-02-13 2013-12-04 信越化学工業株式会社 Manufacturing method of semiconductor wafer with uniform surface polishing
CN103347652A (en) * 2011-02-15 2013-10-09 东丽株式会社 Polishing pad
JP5621702B2 (en) * 2011-04-26 2014-11-12 信越半導体株式会社 Semiconductor wafer and manufacturing method thereof
JPWO2013011922A1 (en) * 2011-07-15 2015-02-23 東レ株式会社 Polishing pad
JPWO2013011921A1 (en) * 2011-07-15 2015-02-23 東レ株式会社 Polishing pad
JP5923353B2 (en) * 2012-03-21 2016-05-24 富士紡ホールディングス株式会社 Polishing pad sheet and manufacturing method thereof, polishing pad and manufacturing method thereof, and polishing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615561A (en) * 1992-07-03 1994-01-25 Sumitomo Electric Ind Ltd Lapping surface plate
JPH1177515A (en) * 1997-09-10 1999-03-23 Toshiba Mach Co Ltd Surface polishing device and abrasive cloth used for polishing device
JP2000158327A (en) * 1998-12-02 2000-06-13 Rohm Co Ltd Polishing cloth for chemimechanical polishing and chemimechanical polisher using same
JP2001212752A (en) * 2000-02-02 2001-08-07 Nikon Corp Polishing body, polishing device, semiconductor device manufacturing method and semiconductor device
JP2001079755A (en) * 1999-09-08 2001-03-27 Nikon Corp Abrasive body and polishing method

Also Published As

Publication number Publication date
JP2003163192A (en) 2003-06-06

Similar Documents

Publication Publication Date Title
JP4151799B2 (en) Mosaic polishing pad and related method
KR100818683B1 (en) Mirror chamfered wafer, mirror chamfering polishing cloth, and mirror chamfering polishing machine and method
US5899745A (en) Method of chemical mechanical polishing (CMP) using an underpad with different compression regions and polishing pad therefor
US7582221B2 (en) Wafer manufacturing method, polishing apparatus, and wafer
TWI553720B (en) Method for polishing a semiconductor wafer
JP3099209B2 (en) Improved composite polishing pad for semiconductor processing
JP5143528B2 (en) Polishing pad
US5876269A (en) Apparatus and method for polishing semiconductor device
EP0658401B1 (en) Polishing member and wafer polishing apparatus
US5649855A (en) Wafer polishing device
KR102581481B1 (en) Method of chemical mechanical polishing, method of manufacturing semiconductor device and apparatus of manufacturing semiconductor
SG188731A1 (en) Method for the double-side polishing of a semiconductor wafer
JP3612708B2 (en) Grooved polishing cloth, workpiece polishing method and polishing apparatus
US7695347B2 (en) Method and pad for polishing wafer
US6656818B1 (en) Manufacturing process for semiconductor wafer comprising surface grinding and planarization or polishing
KR100741216B1 (en) Method for producing semicon ductor wafer and semiconductor wafer
TWI597127B (en) Workpiece grinding device
KR20040079965A (en) Polishing pad, polishing device, and polishing method
US20090042494A1 (en) Pad conditioner of semiconductor wafer polishing apparatus and manufacturing method thereof
US20030032378A1 (en) Polishing surface constituting member and polishing apparatus using the polishing surface constituting member
KR102686298B1 (en) Wafer polishing method and silicon wafer
JP2004022677A (en) Semiconductor wafer
JP6295807B2 (en) Polishing tool and polishing apparatus
WO2017125987A1 (en) Wafer polishing method, back pad manufacturing method, back pad, and polishing head provided with back pad
WO2023095503A1 (en) Template assembly, polishing head, and polishing method of wafer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041017

R150 Certificate of patent or registration of utility model

Ref document number: 3612708

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071105

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees