JP3611289B2 - Cylindrical solid electrolyte fuel cell - Google Patents

Cylindrical solid electrolyte fuel cell Download PDF

Info

Publication number
JP3611289B2
JP3611289B2 JP20579499A JP20579499A JP3611289B2 JP 3611289 B2 JP3611289 B2 JP 3611289B2 JP 20579499 A JP20579499 A JP 20579499A JP 20579499 A JP20579499 A JP 20579499A JP 3611289 B2 JP3611289 B2 JP 3611289B2
Authority
JP
Japan
Prior art keywords
current collecting
base tube
solid electrolyte
cell
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20579499A
Other languages
Japanese (ja)
Other versions
JP2001035515A (en
Inventor
和男 冨田
長生 久留
浩二 池田
潤一 神前
健一郎 小阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP20579499A priority Critical patent/JP3611289B2/en
Publication of JP2001035515A publication Critical patent/JP2001035515A/en
Application granted granted Critical
Publication of JP3611289B2 publication Critical patent/JP3611289B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、円筒型固体電解質燃料電池のセル関する。
【0002】
【従来の技術】
円筒型固体電解質燃料電池の従来のセル構造を図5に示す。
【0003】
図5に示すように、多孔質性の円筒型の基体管101の外周面には、多孔質性の燃料極102が軸心方向に沿って所定の間隔で複数成膜されている。これら燃料極102上には、多孔質性の固体電解質103が各々成膜されている。これら固体電解質103上には、多孔質性の空気極104がそれぞれ成膜されている。隣り合う燃料極102と空気極104との間には、緻密性のインタコネクタ105がそれぞれ成膜されている。
【0004】
つまり、基体管101上にそれぞれ積層された燃料極102、固体電解質103、空気極104により単電池膜が構成され、インタコネクタ105により上記単電池膜間の基体管101の内側と外側との間がシールされると共に当該単電池膜が直列に接続されるのである。
【0005】
前記基体管101の一端側の外周面上には、当該基体管101の最も一端側に位置する空気極104に前記インタコネクタ105を介して接続するリード膜106が成膜されている。また、基体管101の他端側の外周面上には、当該基体管101の最も他端側に位置する燃料極102に直接的に接続するリード膜107が成膜されている。
【0006】
前記基体管101の一端部の端面および内外周面には、上記リード膜106に接続する端部集電膜108が成膜されている。また、基体管101の一端部の端面および内外周面には、上記リード膜107に接続する端部集電膜109が成膜されている。
【0007】
前記基体管101の内部一端側には、円柱型をなす集電部材112が集電フェルト110を介して上記端部集電膜108に接続している。基体管101の内部他端側には、フランジ113aを有する管型の集電部材113が集電フェルト111を介して上記端部集電膜109に接続している。前記集電部材112には、基体管101を貫通する集電棒112aが連結されており、当該集電棒112aは、上記集電部材113と接触しないように当該集電部材113を貫通している。
【0008】
このような構造をなすセルにおいては、基体管101の外周面上に燃料極102、リード膜107,108、固体電解質103、インタコネクタ105を成膜して焼成した後、端部集電膜108,109の原料スラリ中に基体管101の一端側を浸漬し、取り出して乾燥させたら、当該原料スラリ中に当該基体管101の他端側を浸漬し、取り出して乾燥させ、当該基体管101を焼成してから、空気極104を成膜して焼成した後、前記集電フェルト110,111、集電部材112,113を組み付けることにより得ることができる。
【0009】
このような円筒型固体電解質燃料電池のセルによれば、所定の運転温度で基体管101の内側に水素などの燃料ガスを流通させると共に基体管101の外側に空気を流通させると、基体管101および燃料極102を透過した燃料ガスと空気極104を透過した空気(酸素)とが固体電解質膜103上で電気化学的に反応し、リード膜106,107、端部集電膜108,109、集電フェルト110,111を介して集電部材112,113から電力を取り出すことができる。
【0010】
【発明が解決しようとする課題】
前述したような従来のセルでは、先に説明したように、端部集電膜108,109の原料スラリ中に基体管101の一端側を浸漬し、取り出して乾燥させた後に当該原料スラリ中に当該基体管101の他端側を浸漬し、取り出して再び乾燥させてから基体管101を焼成するため、端部集電膜108,109の製造工程が長く、作業効率が悪かった。
【0011】
このようなことから、本発明は、製造工程を短く済ますことができる円筒型固体電解質燃料電池のセル提供することを目的とする。
【0012】
【課題を解決するための手段】
前述した課題を解決するための、本発明による円筒型固体電解質燃料電池のセルは基体管の外周面に軸心方向に沿ってインタコネクタを介して接続される単電池膜が複数形成され、当該基体管の軸心方向最外端側に位置する当該単電池膜にそれぞれ接続するリード膜が当該基体管の外周面の軸心方向両端側に形成された円筒型固体電解質燃料電池のセルであって、周縁に襞を有する穴を形成した集電フェルトの当該襞が少なくとも一方の前記リード膜に当接するように当該集電フェルトの当該穴が当該基体管に差し込まれると共に、当該集電フェルトの当該襞が当該基体管に緊締されるように当該基体管にリード線を巻き付けて当該リード線を介して電力を取り出すようにしたことを特徴とする。
【0013】
【発明の実施の形態】
本発明による円筒型固体電解質燃料電池のセル第一番目の実施の形態を図1を用いて説明する。図1は、円筒型固体電解質燃料電池のセルの概略構造図である。
【0014】
図1(a)に示すように、多孔質性の円筒型の基体管1の外周面には、多孔質性の燃料極2が軸心方向に沿って所定の間隔で複数成膜されている。これら燃料極2上には、多孔質性の固体電解質3が各々成膜されている。これら固体電解質3上には、多孔質性の空気極4がそれぞれ成膜されている。隣り合う燃料極2と空気極4との間には、緻密性のインタコネクタ5がそれぞれ成膜されている。
【0015】
つまり、基体管1上にそれぞれ積層された燃料極2、固体電解質3、空気極4により単電池膜が構成され、インタコネクタ5により上記単電池膜間の基体管1の内側と外側との間がシールされると共に当該単電池膜が直列に接続されるのである。
【0016】
前記基体管1の一端側の外周面上には、当該基体管1の最も一端側に位置する空気極4に前記インタコネクタ5を介して接続するリード膜6が成膜されている。また、基体管1の他端側の外周面上には、当該基体管1の最も他端側に位置する燃料極2に直接的に接続するリード膜7が成膜されている。
【0017】
前記基体管1の一端部の端面および内外周面には、上記リード膜6に接続する端部集電膜8が成膜されている。前記基体管1の内部一端側には、円柱型をなす集電部材12が集電フェルト10を介して上記端部集電膜8に接続している。基体管1の内部他端側には、フランジ13aを有する管型の集電部材13が嵌合している。上記集電部材12には、基体管1を貫通する集電棒12aが連結されており、当該集電棒12aは、上記集電部材13と接触しないように当該集電部材13を貫通している。
【0018】
前記基体管1の他端側のリード膜7上には、NiやPtなどからなるリード線14(直径0.5mm程度)の一端寄りが巻き付けられている。このリード線14の他端側は、前記集電部材13に固着されている。集電部材13は、図1(b)に示すように、集電フェルト15を介して他のセルの集電部材13と接続している。
【0019】
このような構造をなすセルにおいては、基体管1の外周面上に燃料極2、リード膜7,8、固体電解質3、インタコネクタ5を成膜して焼成した後、端部集電膜8の原料スラリ中に基体管1の一端側を浸漬し、取り出して乾燥させて当該基体管1を焼成した後、空気極4を成膜して焼成してから前記集電フェルト10、集電部材12を組み付ける一方、基体管1の他端側のリード膜7上にリード線14を巻き付けると共に集電部材13を組み付けてリード線7と連結することにより得ることができる。
【0020】
つまり、本実施の形態のセルは、基体管1の他端側に端部集電膜を形成せずにリード線14を巻き付けて集電部材13と連結するようにしたのである。このため、リード線14の巻付工程よりも手間のかかる端部集電膜形成工程を簡略化することができる。
【0021】
したがって、本実施の形態によれば、製造工程を短く済ますことができるので、製造コストを削減することができる。
【0022】
本発明による円筒型固体電解質燃料電池のセル第二番目の実施の形態を図2を用いて説明する。図2は、円筒型固体電解質燃料電池のセルの概略構造図である。ただし、前述した第一番目の実施の形態の部材と同様な部材については、前述した第一番目の実施の形態の説明で用いた符号と同様な符号を用いることにより、その説明を省略する。
【0023】
図2に示すように、基体管1の他端側には、外周面にねじ山を有するパイプ16aに2個のナット16bを螺合した集電部材16が取り付けられている。この集電部材16の一方のナット16bには、前記リード線14の他端側が連結されている。この集電部材16のナット16bの間には、集電フェルト15が挟まれている。
【0024】
つまり、前述した第一番目の実施の形態では、専用に加工された集電部材13を用いたが、本実施の形態では、市販のパイプ16aやナット16bからなる集電部材16を用いるようにしたのである。
【0025】
したがって、本実施の形態によれば、前述した第一番目の実施の形態の場合と同様に、製造工程を短く済ますことができ、製造コストを削減することができるのはもちろんのこと、集電部材の製造にかかる手間やコストを削減することができるので、前述した第一番目の実施の形態の場合よりも、製造コストをさらに削減することができる。
【0026】
本発明による円筒型固体電解質燃料電池のセル第三番目の実施の形態を図3を用いて説明する。図3は、円筒型固体電解質燃料電池のセルの概略構造図である。ただし、前述した第一,二番目の実施の形態の部材と同様な部材については、前述した第一,二番目の実施の形態の説明で用いた符号と同様な符号を用いることにより、その説明を省略する。
【0027】
図3(a)に示すように、基体管1の他端側には、当該基体管1の外径と同径の穴17aを形成された集電フェルト17が差し込まれている。この集電フェルト17は、図3(b)に示すように、上記穴17aの周縁に襞17bを形成できるように当該穴17aの径方向に沿う切り込みが周方向にわたって複数形成され、図3(c)に示すように、集電フェルト17の上記穴17aに基体管1の他端を差し込むことにより、図3(a)に示すように、当該集電フェルト17の上記襞17bを立設させて基体管1の他端側のリード膜7およびリード線14に当接させることができるようになっている。この集電フェルト17は、その襞17bがリード線14により基体管1に緊締されている。
【0028】
つまり、前述した第一,二番目の実施の形態では、リード線14と集電フェルト15とを集電部材13,16を介して接続するようにしたが、本実施の形態では、リード線14と集電フェルト17とを直接連結するようにしたのである。
【0029】
したがって、本実施の形態によれば、前述した第一,二番目の実施の形態の場合と同様に、製造工程を短く済ますことができ、製造コストを削減することができるのはもちろんのこと、集電部材13,16にかかるコストをなくすことができるので、前述した第一,二番目の実施の形態の場合よりも、製造コストをさらに低減することができる。
【0030】
本発明による円筒型固体電解質燃料電池のセル第四番目の実施の形態を図4を用いて説明する。図4は、円筒型固体電解質燃料電池のセルの概略構造図である。ただし、前述した第一〜三番目の実施の形態の部材と同様な部材については、前述した第一〜三番目の実施の形態の説明で用いた符号と同様な符号を用いることにより、その説明を省略する。
【0031】
図4に示すように、リード線14の他端側は、集電板18に接続している。
【0032】
つまり、前述した第一〜三番目の実施の形態では、集電フェルト15,17を介するようにしたが、本実施の形態では、集電フェルトを介することなくリード線14を集電板18に直接接続するようにしたのである。
【0033】
したがって、本実施の形態によれば、前述した第一〜三番目の実施の形態の場合と同様に、製造工程を短く済ますことができ、製造コストを削減することができるのはもちろんのこと、集電フェルト15,17にかかるコストをなくすことができるので、前述した第一〜三番目の実施の形態の場合よりも、製造コストをさらに低減することができる。
【0034】
なお、前述した第三番目の実施の形態では、集電フェルト17の襞17bをリード線14で緊締するようにしたが、非導電性のワイヤ等で緊締することも可能である。しかしながら、リード膜6,7が組み付け焼成時に体積収縮して集電フェルト17の襞17bとの間に隙間を生じる虞があるため、前述した第三番目の実施の形態の場合のように、リード膜7に巻き付けたリード線14で集電フェルト17の襞17bを緊締した方が好ましい。
【0035】
また、前述した各実施の形態では、基体管1側に燃料極2を設けて外側に空気極4を設けた単電池膜を備えた円筒型固体電解質燃料電池のセル構造の場合について説明したが、基体管側に空気極を設けて外側に燃料極を設けた単電池膜を備えた円筒型固体電解質燃料電池のセル構造の場合であっても、前述した各実施の形態の場合と同様にして適用することができる。
【0036】
【発明の効果】
本発明の円筒型固体電解質燃料電池のセルよれば、端部集電膜形成工程を簡略化することができるので、製造工程を短く済ますことができ、製造コストを削減することができる。
【図面の簡単な説明】
【図1】本発明による円筒型固体電解質燃料電池のセル第一番目の実施の形態概略構造図である。
【図2】本発明による円筒型固体電解質燃料電池のセル第二番目の実施の形態概略構造図である。
【図3】本発明による円筒型固体電解質燃料電池のセル第三番目の実施の形態概略構造図である。
【図4】本発明による円筒型固体電解質燃料電池のセル第四番目の実施の形態概略構造図である。
【図5】円筒型固体電解質燃料電池の従来のセルの概略構造図である。
【符号の説明】
1 基体管
2 燃料極
3 固体電解質
4 空気極
5 インタコネクタ
6,7 リード膜
8 端部集電膜
10 集電フェルト
12 集電部材
12a 集電棒
13 集電部材
13a フランジ
14 リード線
15 集電フェルト
16 集電部材
16a パイプ
16b ナット
17 集電フェルト
17a 穴
17b 襞
18 集電板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cylindrical solid electrolyte fuel cell of the cell.
[0002]
[Prior art]
A conventional cell structure of a cylindrical solid electrolyte fuel cell is shown in FIG.
[0003]
As shown in FIG. 5, a plurality of porous fuel electrodes 102 are formed on the outer peripheral surface of a porous cylindrical base tube 101 at predetermined intervals along the axial direction. A porous solid electrolyte 103 is formed on each of the fuel electrodes 102. On these solid electrolytes 103, porous air electrodes 104 are respectively formed. A dense interconnector 105 is formed between the adjacent fuel electrode 102 and air electrode 104.
[0004]
In other words, the unit cell membrane is constituted by the fuel electrode 102, the solid electrolyte 103, and the air electrode 104 respectively laminated on the base tube 101, and the interconnector 105 between the inner side and the outer side of the base tube 101 between the unit cell membranes. Is sealed and the cell membranes are connected in series.
[0005]
On the outer peripheral surface on one end side of the base tube 101, a lead film 106 is formed to connect to the air electrode 104 located on the most end side of the base tube 101 via the interconnector 105. On the outer peripheral surface of the base tube 101 on the other end side, a lead film 107 that is directly connected to the fuel electrode 102 located on the most other end side of the base tube 101 is formed.
[0006]
An end current collecting film 108 connected to the lead film 106 is formed on the end surface and the inner and outer peripheral surfaces of one end portion of the base tube 101. Further, an end current collecting film 109 connected to the lead film 107 is formed on the end surface and the inner and outer peripheral surfaces of one end portion of the base tube 101.
[0007]
A cylindrical current collecting member 112 is connected to the end current collecting film 108 via a current collecting felt 110 at one end inside the base tube 101. A tube-shaped current collecting member 113 having a flange 113 a is connected to the end current collecting film 109 via a current collecting felt 111 at the other end side inside the base tube 101. A current collecting rod 112 a penetrating the base tube 101 is connected to the current collecting member 112, and the current collecting rod 112 a passes through the current collecting member 113 so as not to contact the current collecting member 113.
[0008]
In the cell having such a structure, the fuel electrode 102, the lead films 107 and 108, the solid electrolyte 103, and the interconnector 105 are formed on the outer peripheral surface of the base tube 101 and fired, and then the end current collecting film 108 is formed. 109, the one end side of the base tube 101 is immersed in the raw material slurry, taken out and dried, and the other end side of the base tube 101 is immersed in the raw material slurry, taken out and dried, and the base tube 101 is After firing, the air electrode 104 is formed and fired, and then the current collecting felts 110 and 111 and the current collecting members 112 and 113 are assembled.
[0009]
According to such a cylindrical solid electrolyte fuel cell, when a fuel gas such as hydrogen is circulated inside the base tube 101 and air is circulated outside the base tube 101 at a predetermined operating temperature, the base tube 101 is used. The fuel gas that has passed through the fuel electrode 102 and the air (oxygen) that has passed through the air electrode 104 electrochemically react on the solid electrolyte membrane 103, leading to lead films 106 and 107, end collector films 108 and 109, Electric power can be taken out from the current collecting members 112 and 113 via the current collecting felts 110 and 111.
[0010]
[Problems to be solved by the invention]
In the conventional cell as described above, as described above, one end side of the base tube 101 is immersed in the raw material slurry of the end current collecting films 108 and 109, taken out, dried, and then into the raw material slurry. Since the base tube 101 is fired after the other end side of the base tube 101 is dipped, taken out and dried again, the manufacturing process of the end current collecting films 108 and 109 is long, and the working efficiency is poor.
[0011]
Accordingly, an object of the present invention is to provide a cylindrical solid electrolyte fuel cell that can shorten the manufacturing process.
[0012]
[Means for Solving the Problems]
To solve the problems described above, a cylindrical solid electrolyte fuel cell of the cell according to the present invention, the single cell membrane which is connected via the interconnector along the axial direction on the outer circumferential surface of the substrate tube is formed with a plurality of, In the cell of the cylindrical solid electrolyte fuel cell, lead membranes respectively connected to the single cell membranes positioned on the outermost end in the axial direction of the base tube are formed on both end sides in the axial direction of the outer peripheral surface of the base tube. The current collector felt is formed with a hole having a hole on the periphery thereof, and the hole of the current collecting felt is inserted into the base tube so that the lead film contacts at least one of the lead films, and the current collector felt It is characterized in that a lead wire is wound around the base tube so as to be fastened to the base tube, and electric power is taken out through the lead wire.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment of a cell of a cylindrical solid electrolyte fuel cell according to the present invention will be described with reference to FIG. FIG. 1 is a schematic structural diagram of a cell of a cylindrical solid electrolyte fuel cell.
[0014]
As shown in FIG. 1A, a plurality of porous fuel electrodes 2 are formed on the outer peripheral surface of a porous cylindrical base tube 1 at predetermined intervals along the axial direction. . A porous solid electrolyte 3 is formed on each of the fuel electrodes 2. On these solid electrolytes 3, porous air electrodes 4 are respectively formed. A dense interconnector 5 is formed between the adjacent fuel electrode 2 and air electrode 4.
[0015]
That is, a unit cell membrane is constituted by the fuel electrode 2, the solid electrolyte 3, and the air electrode 4 laminated on the substrate tube 1, respectively, and the interconnector 5 is provided between the inside and outside of the substrate tube 1 between the unit cell membranes. Is sealed and the cell membranes are connected in series.
[0016]
On the outer peripheral surface on one end side of the base tube 1, a lead film 6 connected to the air electrode 4 located on the most end side of the base tube 1 via the interconnector 5 is formed. Further, on the outer peripheral surface on the other end side of the base tube 1, a lead film 7 that is directly connected to the fuel electrode 2 located on the most other end side of the base tube 1 is formed.
[0017]
An end current collecting film 8 connected to the lead film 6 is formed on the end surface and inner and outer peripheral surfaces of one end of the base tube 1. A cylindrical current collecting member 12 is connected to the end current collecting film 8 through a current collecting felt 10 at one end inside the base tube 1. A tube-shaped current collecting member 13 having a flange 13a is fitted to the other inner end side of the base tube 1. A current collecting rod 12 a penetrating the base tube 1 is connected to the current collecting member 12, and the current collecting rod 12 a penetrates the current collecting member 13 so as not to contact the current collecting member 13.
[0018]
A lead wire 14 (diameter of about 0.5 mm) made of Ni, Pt or the like is wound around the lead film 7 on the other end side of the base tube 1. The other end side of the lead wire 14 is fixed to the current collecting member 13. As shown in FIG. 1B, the current collecting member 13 is connected to the current collecting member 13 of another cell via the current collecting felt 15.
[0019]
In the cell having such a structure, the fuel electrode 2, the lead films 7 and 8, the solid electrolyte 3 and the interconnector 5 are formed on the outer peripheral surface of the base tube 1 and fired, and then the end current collecting film 8. One end side of the base tube 1 is immersed in the raw material slurry, taken out and dried to fire the base tube 1, and then the air electrode 4 is formed and fired, and then the current collecting felt 10, the current collecting member 12, while the lead wire 14 is wound around the lead film 7 on the other end side of the base tube 1 and the current collecting member 13 is assembled and connected to the lead wire 7.
[0020]
That is, in the cell of the present embodiment, the lead wire 14 is wound around the other end side of the base tube 1 without being connected to the current collecting member 13. For this reason, it is possible to simplify the end current collecting film forming process which is more laborious than the winding process of the lead wire 14.
[0021]
Therefore, according to the present embodiment , the manufacturing process can be shortened, and the manufacturing cost can be reduced.
[0022]
A second embodiment of the cell of the cylindrical solid electrolyte fuel cell according to the present invention will be described with reference to FIG. FIG. 2 is a schematic structural diagram of a cell of the cylindrical solid electrolyte fuel cell. However, the description of the same members as those of the first embodiment described above is omitted by using the same reference numerals as those used in the description of the first embodiment described above.
[0023]
As shown in FIG. 2, a current collecting member 16 in which two nuts 16 b are screwed to a pipe 16 a having a thread on the outer peripheral surface is attached to the other end side of the base tube 1. The other end side of the lead wire 14 is connected to one nut 16 b of the current collecting member 16. A current collecting felt 15 is sandwiched between the nuts 16 b of the current collecting member 16.
[0024]
That is, in the first embodiment described above, the current collecting member 13 processed exclusively is used, but in this embodiment, the current collecting member 16 composed of a commercially available pipe 16a and nut 16b is used. It was.
[0025]
Therefore, according to the present embodiment, as in the case of the first embodiment described above, the manufacturing process can be shortened, and the manufacturing cost can be reduced as well as the current collector. Since it is possible to reduce the labor and cost for manufacturing the member, the manufacturing cost can be further reduced as compared with the case of the first embodiment described above.
[0026]
A third embodiment of the cell of the cylindrical solid electrolyte fuel cell according to the present invention will be described with reference to FIG. FIG. 3 is a schematic structural diagram of a cell of the cylindrical solid electrolyte fuel cell. However, members similar to those of the first and second embodiments described above are described by using the same reference numerals as those used in the description of the first and second embodiments described above. Is omitted.
[0027]
As shown in FIG. 3A, a current collecting felt 17 having a hole 17 a having the same diameter as the outer diameter of the base tube 1 is inserted into the other end of the base tube 1. As shown in FIG. 3B, the current collecting felt 17 is formed with a plurality of cuts along the radial direction of the hole 17a in the circumferential direction so that a flange 17b can be formed on the periphery of the hole 17a. 3C, the other end of the base tube 1 is inserted into the hole 17a of the current collecting felt 17 so that the flange 17b of the current collecting felt 17 is erected as shown in FIG. Thus, the lead film 7 and the lead wire 14 on the other end side of the base tube 1 can be brought into contact with each other. The current collecting felt 17 has a flange 17 b fastened to the base tube 1 by a lead wire 14.
[0028]
That is, in the first and second embodiments described above, the lead wire 14 and the current collecting felt 15 are connected via the current collecting members 13 and 16, but in this embodiment, the lead wire 14 is connected. And the current collecting felt 17 are directly connected to each other.
[0029]
Therefore, according to the present embodiment, as in the case of the first and second embodiments described above, the manufacturing process can be shortened and the manufacturing cost can be reduced. Since the cost concerning the current collecting members 13 and 16 can be eliminated, the manufacturing cost can be further reduced as compared with the case of the first and second embodiments described above.
[0030]
The fourth-th embodiment of the cylindrical solid electrolyte fuel cell of the cell according to the present invention will be described with reference to FIG. FIG. 4 is a schematic structural diagram of a cell of the cylindrical solid electrolyte fuel cell. However, about the same member as the member of 1st-3rd embodiment mentioned above, the description is used by using the code | symbol similar to the code | symbol used in description of 1st-3rd embodiment mentioned above. Is omitted.
[0031]
As shown in FIG. 4, the other end of the lead wire 14 is connected to a current collector plate 18.
[0032]
In other words, in the first to third embodiments described above, the current collecting felts 15 and 17 are used. However, in this embodiment, the lead wire 14 is connected to the current collecting plate 18 without using the current collecting felt. It was made to connect directly.
[0033]
Therefore, according to this embodiment, as in the case of the first to third embodiments described above, the manufacturing process can be shortened, and the manufacturing cost can be reduced. Since the cost concerning the current collecting felts 15 and 17 can be eliminated, the manufacturing cost can be further reduced as compared with the case of the first to third embodiments described above.
[0034]
In the third embodiment described above, the flange 17b of the current collecting felt 17 is tightened with the lead wire 14, but it is also possible to tighten with a non-conductive wire or the like. However, since the lead films 6 and 7 may shrink in volume during assembly and firing, a gap may be formed between the current collecting felt 17 and the flange 17b. Therefore, as in the case of the third embodiment described above, the lead film It is preferable to tighten the flange 17b of the current collecting felt 17 with the lead wire 14 wound around the membrane 7.
[0035]
In each of the embodiments described above, the case of the cell structure of a cylindrical solid electrolyte fuel cell provided with a single cell membrane in which the fuel electrode 2 is provided on the base tube 1 side and the air electrode 4 is provided on the outside has been described. Even in the case of a cell structure of a cylindrical solid electrolyte fuel cell having a single cell membrane in which an air electrode is provided on the substrate tube side and a fuel electrode is provided on the outside, the same as in the case of each of the embodiments described above. Can be applied.
[0036]
【The invention's effect】
According to the cell of the cylindrical solid electrolyte fuel cell of the present invention, since the end current collecting film forming process can be simplified, the manufacturing process can be shortened and the manufacturing cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a schematic structural diagram of a first embodiment of a cell of a cylindrical solid electrolyte fuel cell according to the present invention.
FIG. 2 is a schematic structural diagram of a second embodiment of a cell of a cylindrical solid electrolyte fuel cell according to the present invention.
FIG. 3 is a schematic structural diagram of a third embodiment of a cell of a cylindrical solid electrolyte fuel cell according to the present invention.
FIG. 4 is a schematic structural diagram of a fourth embodiment of a cell of a cylindrical solid electrolyte fuel cell according to the present invention.
FIG. 5 is a schematic structural diagram of a conventional cell of a cylindrical solid electrolyte fuel cell.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Base tube 2 Fuel electrode 3 Solid electrolyte 4 Air electrode 5 Interconnector 6, 7 Lead film 8 End current collecting film 10 Current collecting felt 12 Current collecting member 12a Current collecting rod 13 Current collecting member 13a Flange 14 Lead wire 15 Current collecting felt 16 Current collecting member 16a Pipe 16b Nut 17 Current collecting felt 17a Hole 17b 襞 18 Current collecting plate

Claims (1)

基体管の外周面に軸心方向に沿ってインタコネクタを介して接続される単電池膜が複数形成され、当該基体管の軸心方向最外端側に位置する当該単電池膜にそれぞれ接続するリード膜が当該基体管の外周面の軸心方向両端側に形成された円筒型固体電解質燃料電池のセルであって、周縁に襞を有する穴を形成した集電フェルトの当該襞が少なくとも一方の前記リード膜に当接するように当該集電フェルトの当該穴が当該基体管に差し込まれると共に、当該集電フェルトの当該襞が当該基体管に緊締されるように当該基体管にリード線を巻き付けて当該リード線を介して電力を取り出すようにしたことを特徴とする円筒型固体電解質燃料電池のセル。A plurality of unit cell membranes are formed on the outer peripheral surface of the base tube along the axial direction via an interconnector, and are connected to the single cell membranes located on the outermost end side in the axial direction of the base tube. A lead membrane is a cell of a cylindrical solid electrolyte fuel cell formed on both axial ends of the outer peripheral surface of the base tube, and at least one of the ridges of the current collecting felt in which a hole having ridges is formed on the periphery. The hole of the current collecting felt is inserted into the base tube so as to contact the lead film, and a lead wire is wound around the base tube so that the flange of the current collecting felt is tightened to the base tube. A cylindrical solid electrolyte fuel cell, wherein electric power is taken out via the lead wire.
JP20579499A 1999-07-21 1999-07-21 Cylindrical solid electrolyte fuel cell Expired - Fee Related JP3611289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20579499A JP3611289B2 (en) 1999-07-21 1999-07-21 Cylindrical solid electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20579499A JP3611289B2 (en) 1999-07-21 1999-07-21 Cylindrical solid electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2001035515A JP2001035515A (en) 2001-02-09
JP3611289B2 true JP3611289B2 (en) 2005-01-19

Family

ID=16512803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20579499A Expired - Fee Related JP3611289B2 (en) 1999-07-21 1999-07-21 Cylindrical solid electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP3611289B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4884596B2 (en) * 2001-04-02 2012-02-29 三菱重工業株式会社 Solid oxide fuel cell module
JP4562951B2 (en) * 2001-06-01 2010-10-13 三菱重工業株式会社 SUBSTRATE TUBE FOR FUEL CELL, SUBSTRATE TUBE MATERIAL FOR FUEL CELL, AND METHOD FOR PRODUCING FUEL CELL CELL
JP5039260B2 (en) * 2001-06-08 2012-10-03 三菱重工業株式会社 Fuel cell and fuel cell system
JP2003045455A (en) * 2001-07-26 2003-02-14 Hitachi Ltd High temperature solid oxide fuel cell
JP4910347B2 (en) * 2005-09-27 2012-04-04 トヨタ自動車株式会社 Fuel cell module with current collecting electrode that also serves as a spacer
JP2009110852A (en) * 2007-10-31 2009-05-21 Mitsubishi Heavy Ind Ltd Fuel cell module
JP6344548B2 (en) * 2014-03-07 2018-06-20 Toto株式会社 Method for manufacturing solid oxide fuel cell device
JP6344547B2 (en) * 2014-03-07 2018-06-20 Toto株式会社 Solid oxide fuel cell device and manufacturing method thereof
JP6264552B2 (en) * 2014-03-07 2018-01-24 Toto株式会社 Method for manufacturing solid oxide fuel cell device
JP2015170496A (en) * 2014-03-07 2015-09-28 Toto株式会社 Solid oxide fuel cell device and manufacturing method of the same

Also Published As

Publication number Publication date
JP2001035515A (en) 2001-02-09

Similar Documents

Publication Publication Date Title
US4874678A (en) Elongated solid electrolyte cell configurations and flexible connections therefor
US4174260A (en) Compound cell for high-temperature electrochemical reactions
US5116696A (en) Gas and air feed member for a feed cell battery and a fuel cell battery
JP3611289B2 (en) Cylindrical solid electrolyte fuel cell
RU2007141681A (en) CONFIGURATIONS OF BATTERIES OF TUBULAR SOLID OXIDE FUEL CELLS
CA2204413A1 (en) Gas sensor
JP4686123B2 (en) Solid oxide fuel cell submodule and solid oxide fuel cell module using the same
WO1999060642A1 (en) Multi-element fuel cell system
JPH0850914A (en) Cylindrical layer-built fuel cell
JPH10125346A (en) Cylindrical solid oxide fuel cell
EP0536909B1 (en) Solid oxide fuel cell generator
JP3487630B2 (en) Cylindrical solid electrolyte fuel cell
JP4057822B2 (en) Fuel cell, cell stack and fuel cell
JP2002533869A (en) PEM fuel cell with improved long-term performance, method of operating PEM fuel cell, and PEM fuel cell storage battery
KR101301354B1 (en) Solid oxide fuel cell and solid oxide fuel cell module
GB2261544A (en) Metal oxide-hydrogen battery having rectangular modules in a cylindrical pressure vessel
JP2769629B2 (en) Cylindrical solid electrolyte fuel cell
JP3572194B2 (en) Cylindrical solid electrolyte fuel cell and method of manufacturing the same
JP3015663U (en) Spiral lithium battery
JP2019091645A (en) Fuel cell stack installation method and fuel cell stack
JPH0613089A (en) Solid electrolytic fuel cell
US3354000A (en) Electrochemical cell
JP2000058101A (en) Cylindrical cell type solid electrolyte fuel cell
JP2927816B2 (en) Solid oxide fuel cell stack
JP2000058089A (en) Cylindrical cell type solid electrolyte fuel cell

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040811

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041018

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees