JP3611257B2 - Heat pump air conditioner - Google Patents

Heat pump air conditioner Download PDF

Info

Publication number
JP3611257B2
JP3611257B2 JP09311295A JP9311295A JP3611257B2 JP 3611257 B2 JP3611257 B2 JP 3611257B2 JP 09311295 A JP09311295 A JP 09311295A JP 9311295 A JP9311295 A JP 9311295A JP 3611257 B2 JP3611257 B2 JP 3611257B2
Authority
JP
Japan
Prior art keywords
heat exchanger
temperature
defrosting
indoor heat
temperature difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09311295A
Other languages
Japanese (ja)
Other versions
JPH08261541A (en
Inventor
敦 岡田
喜啓 伊藤
康雄 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP09311295A priority Critical patent/JP3611257B2/en
Publication of JPH08261541A publication Critical patent/JPH08261541A/en
Application granted granted Critical
Publication of JP3611257B2 publication Critical patent/JP3611257B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明はヒートポンプ式空気調和機に関する。
【0002】
【従来の技術】
従来のヒートポンプ式空気調和機の暖房運転時、室外熱交換器への着霜によって室内熱交換器に吸い込まれる室内空気の吸込空気温度と室内熱交換器から吹き出される室内空気の吹出空気温度との温度差が所定値に低下した時点で除霜運転を開始し室外熱交換器に高温のガス冷媒、即ち、ホットガスを導入していた。そして、室外熱交換器の温度を室外熱交温度センサで検知し、これが所定値以上に上昇したとき除霜運転を終了していた。
【0003】
【発明が解決しようとする課題】
上記従来の空気調和機においては、室内熱交換器から吹き出される室内空気の吹出温度を検知するための吹出空気温度センサ及び室外熱交換器の温度を検知するための室外熱交温度センサを要するので、そのコストが嵩むという問題があった。
【0004】
また、吹出空気温度は吹出口に配設された風向板の揺動に応じて変動するので、除霜運転の開始時期が不安定となるという問題があった。
【0005】
【課題を解決するための手段】
本発明は上記課題を解決するために発明されたものであって、その要旨とするところは、圧縮機、四方弁、室外熱交換器、絞り機構、室内熱交換器等からなるヒートポンプサイクルを具備し、暖房運転時、上記室外熱交換器への着霜を感知したときこの室外熱交換器にホットガスを導入して除霜するヒートポンプ式空気調和機において、上記室内熱交換器に吸込まれる室内空気の温度を検出する吸込空気温度センサと、上記室内熱交換器の温度を検出する室内熱交温度センサと、上記両センサの検出する温度の温度差を検出する温度差検出手段と、上記温度差の変化により室外熱交換器への着霜を感知してデフロスト運転開始指令を出力するデフロスト指令手段と、暖房運転を開始してから除霜運転を経て再び暖房運転に入るまでの1サイクル中における上記両センサの温度差が最大となる無霜時の最大温度差を記憶する最大温度差記憶手段と、を設け、上記デフロスト指令手段は、上記最大温度差に対し上記温度差検出手段が検出した温度差が所定割合まで低下したとき、デフロスト運転開始指令を出力することを特徴とするヒートポンプ式空気調和機にある。
【0006】
他の特徴とするところは、除霜運転中に上記室内熱交温度センサの検出温度が設定温度になったとき、除霜運転を終了させるデフロスト終了手段を具備することにある。
【0007】
更に、他の特徴とするところは、圧縮機、四方弁、室外熱交換器、絞り機構、室内熱交換器等からなるヒートポンプサイクルを具備し、暖房運転時、上記室外熱交換器への着霜を感知したときこの室外熱交換器にホットガスを導入して除霜するヒートポンプ式空気調和機において、上記室内熱交換器に吸込まれる室内空気の温度を検出する吸込空気温度センサと、上記室内熱交換器の温度を検出する室内熱交温度センサと、上記両センサの検出する温度の温度差を検出する温度差検出手段と、上記温度差の変化により室外熱交換器への着霜を感知してデフロスト運転開始指令を出力するデフロスト指令手段とを設け、除霜運転中に上記室内熱交温度センサの検出温度が設定温度になったとき、除霜運転を終了させるデフロスト終了手段を具備することにある。
【0008】
更に、他の特徴とするところは、除霜時間を設定する手段と、この設定時間を室内熱交換器用フアンのオン・オフあるいは変速及び除霜運転直前の上記室内熱交温度センサの検出温度によって変更する除霜時間変更手段と、変更された除霜時間が経過したとき除霜運転を終了させるデフロスト終了手段を具備することにある。
【0009】
【作用】
本発明においては、吸込空気温度センサにより検出された室内熱交換器に吸込まれる室内空気の温度と室内熱交温度センサにより検出された室内熱交換器の温度との温度差により室外熱交換器への着霜を感知したとき、デフロスト指令手段はデフロスト指令を出力し、これによって除霜運転が開始されて室外熱交換器にホットガスが導入される。
【0010】
上記温度差が暖房運転を開始してから除霜運転を経て再び暖房運転に入るまでの1サイクル中の最大温度差に対し所定割合まで低下したとき、デフロスト指令を出力して除霜運転を開始することができる。
【0011】
除霜運転中に室内熱交温度センサの検出温度が設定温度になったとき、除霜運転を終了することができる。
【0012】
予め設定された除霜時間を室内熱交換器用フアンのオン・オフあるいは変速及び除霜運転直前の室内熱交温度センサの検出温度によって変更し、変更された除霜時間が経過したとき除霜運転を終了させることができる。
【0013】
【実施例】
本発明の第1の実施例が図1に示されている。
冷房運転時、圧縮機2から吐出されたガス冷媒は実線矢印で示すように、四方弁3を経て室外熱交換器4に入り、ここで室外フアン7により送られる外気に放熱することによって凝縮液化する。
【0014】
この液冷媒は絞り機構5を流過する過程で断熱膨張した後、室内熱交換器6に入り、ここで室内フアン8により送られる室内空気を冷却することによって蒸発気化する。しかる後、このガス冷媒は四方弁3を経て圧縮機2に戻る。
【0015】
暖房運転時には、圧縮機2から吐出された冷媒は破線矢印で示すように、四方弁3、室内熱交換器6、絞り機構5、室外熱交換器4、四方弁3をこの順に経て圧縮機2に戻る。
【0016】
室内熱交換器6に吸込まれる室内空気の温度を検出する吸込空気温度センサ10及び室内熱交換器6の温度を検出する室内熱交温度センサ11の検出温度はコントローラ20の温度差検出手段21に入力され、ここで両者の温度差が検出される。
【0017】
この温度差は最大温度差記憶手段22に入力されて、ここで暖房運転を開始してから除霜運転を経て暖房運転に復帰するまでの1サイクル中の最大温度差が記憶される。
なお、温度差は図2に示すように、上記1サイクル中に変化し、無霜時の最大温度差Bが記憶される。
【0018】
一方、温度差はデフロスト指令手段23に入力され、ここで最大温度差Bと比較される。この温度差は暖房運転を継続することにより室外熱交換器4に霜が蓄積されるのに従って次第に減少するので、これが最大温度差Bに対して所定の割合(例えば、85%)の温度差Aに到達したとき、デフロスト指令手段23はデフロスト指令を出力手段24を介して四方弁3、室外フアン7の駆動モータ12、室内フアン8の駆動モータ13に出力して四方弁3を冷房運転時の状態に切り換え、かつ、室外フアン7及び室内フアン8を停止する。
【0019】
これによって除霜運転が開始され、冷媒は冷房運転時と同様実線矢印で示すようにヒートポンプサイクルを循環し、圧縮機2から吐出された高温の冷媒ガス、即ち、ホットガスが四方弁3を経て室外熱交換器4に入り、この表面に付着している霜を溶融除去する。
【0020】
室内熱交温度センサ11の検出温度はデフロスト終了手段26に入力され、ここで設定手段25から入力された設定温度と比較される。除霜運転によって室内熱交温度センサ11の検出温度が設定温度になったとき、デフロスト終了手段26はデフロスト終了を決定し、この決定は出力手段24を介して四方弁3、室外フアン7の駆動モータ12、室内フアン8の駆動モータ13に出力される。
これによって、四方弁3は暖房運転時の状態に切り換えられ、かつ、室外フアン7及び室内フアン8が運転を開始して暖房運転に復帰する。
【0021】
本発明の第2の実施例が図3に示されている。この第2の実施例においては、コントローラ30は除霜時間を設定するための除霜時間設定手段27と除霜時間変更手段28を具備している。しかして、デフロスト指令手段23から出力されたデフロスト指令が除霜時間設定手段27に入力されると、ここに予め設定された除霜時間は除霜時間変更手段28に入力される。そして、これに入力された室フアンモータ13のON、OFF又はその変速、除霜運転直前の室内熱交温度センサ11の検出温度に応じて複数(例えば、3分、4分、7分等)に変更される。
【0022】
変更された除霜時間が経過して、この旨がデフロスト終了手段29に入力されたとき、デフロスト終了手段29はデフロスト終了を決定し、この決定は出力手段24を介して四方弁3、室外フアン7の駆動モータ12、室内フアン8の駆動モータ13に出力して四方弁3を暖房運転状態に切り換え、かつ、室外フアン7及び室内フアン8を運転する。
【0023】
かくして、除霜時間を室内フアン8のON、OFF 又はその変速、除霜運転直前の室内熱交換器6の温度に応じて変更することによって無駄な除霜運転をすることなく必要最小限の除霜運転によって室外熱交換器4 に付着した霜を溶融除去しうる。
【0024】
【発明の効果】
本発明においては、吸込空気温度センサの検出温度と殆ど全てのヒートポンプ式空気調和機に設けられている既設の室内熱交温度センサの検出温度との温度との温度差により室外熱交換器への着霜を感知してデフロスト指令手段を出力するので、従来のように吹出空気温度センサを要しない。
従って、吹出空気温度センサのコストを節減できるとともに風向板の揺動による影響を受けないので、正確にデフロスト指令に出力することができる。
【0025】
除霜運転中に室内熱交温度センサの検出温度が設定温度になったとき、デフロスト終了指令を出力するようにすれば、室外熱交換器の温度を検出するための室外熱交換温度センサを省略できるので、このコストを節減できる。
【0026】
予め設定された除霜時間を室内熱交換器用フアンのオン・オフあるいは変速及び除霜運転直前の室内熱交温度センサの検出温度によって変更すれば、必要最小限の除霜時間によって室外熱交換器に付着した霜を確実に溶融除去できる。
【図面の簡単な説明】
【図1】本発明の第1の実施例を示す系統図である。
【図2】上記実施例における温度差の経時変化を示す線図である。
【図3】本発明の第2の実施例を示す系統図である。
【符号の説明】
2 圧縮機
4 室外熱交換器
5 絞り機構
6 室内熱交換器
10 吸込空気温度センサ
11 室内熱交温度センサ
20 コントローラ
[0001]
[Industrial application fields]
The present invention relates to a heat pump type air conditioner.
[0002]
[Prior art]
During the heating operation of a conventional heat pump air conditioner, the intake air temperature of the indoor air sucked into the indoor heat exchanger due to frost formation on the outdoor heat exchanger and the blown air temperature of the indoor air blown out from the indoor heat exchanger The defrosting operation was started at the time when the temperature difference dropped to a predetermined value, and a high-temperature gas refrigerant, that is, hot gas was introduced into the outdoor heat exchanger. And the temperature of the outdoor heat exchanger was detected by the outdoor heat exchanger temperature sensor, and when this increased above a predetermined value, the defrosting operation was finished.
[0003]
[Problems to be solved by the invention]
The conventional air conditioner requires a blown air temperature sensor for detecting the blown temperature of indoor air blown from the indoor heat exchanger and an outdoor heat exchanger temperature sensor for detecting the temperature of the outdoor heat exchanger. Therefore, there was a problem that the cost increased.
[0004]
In addition, since the temperature of the blown air fluctuates according to the swing of the wind direction plate disposed at the blower outlet, there is a problem that the start time of the defrosting operation becomes unstable.
[0005]
[Means for Solving the Problems]
The present invention has been invented to solve the above-mentioned problems, and the gist of the present invention is that it comprises a heat pump cycle comprising a compressor, a four-way valve, an outdoor heat exchanger, a throttle mechanism, an indoor heat exchanger, and the like. In a heat pump type air conditioner that defrosts by introducing hot gas into the outdoor heat exchanger when frost formation on the outdoor heat exchanger is detected during heating operation, the air is sucked into the indoor heat exchanger a suction air temperature sensor for detecting the temperature of indoor air, and the indoor heat exchanger temperature sensor for detecting the temperature of the indoor heat exchanger, and the temperature difference detecting means for detecting a temperature difference between the temperature detected in the two sensors, the a defrosting command means for outputting a defrosting operation start command by sensing frost on the outdoor heat exchanger by a change in temperature difference, one cycle from the start of heating operation to enter a heating operation again after the defrosting operation A maximum temperature difference storage means for storing a maximum temperature difference at the time of no frost in which the temperature difference between the two sensors is maximum, and the defrost command means has the temperature difference detection means for the maximum temperature difference. The heat pump type air conditioner outputs a defrost operation start command when the detected temperature difference decreases to a predetermined rate .
[0006]
Another feature is that a defrosting end unit is provided to end the defrosting operation when the temperature detected by the indoor heat exchange temperature sensor reaches a set temperature during the defrosting operation .
[0007]
Furthermore, another feature is that a heat pump cycle including a compressor, a four-way valve, an outdoor heat exchanger, a throttle mechanism, an indoor heat exchanger, and the like is provided, and frost formation on the outdoor heat exchanger is performed during heating operation. In a heat pump air conditioner that defrosts by introducing hot gas into the outdoor heat exchanger when it senses the intake air temperature sensor that detects the temperature of the indoor air sucked into the indoor heat exchanger, and the indoor An indoor heat exchanger temperature sensor for detecting the temperature of the heat exchanger, a temperature difference detecting means for detecting a temperature difference between the temperatures detected by the two sensors, and detecting frost formation on the outdoor heat exchanger by the change in the temperature difference. and it provided the defrosting command means for outputting a defrosting operation start command and, when the detected temperature of the indoor heat exchange temperature sensor reaches the set temperature during the defrosting operation, including a defrost termination means for terminating the defrosting operation In the Rukoto.
[0008]
Further, another feature is that the defrosting time is set, and this set time is determined by the detected temperature of the indoor heat exchanger temperature sensor immediately before or after the indoor heat exchanger fan is turned on or off, or immediately before shifting and defrosting operations. A defrosting time changing means for changing and a defrosting ending means for ending the defrosting operation when the changed defrosting time elapses are provided.
[0009]
[Action]
In the present invention, the outdoor heat exchanger is determined by the temperature difference between the temperature of the indoor air sucked into the indoor heat exchanger detected by the intake air temperature sensor and the temperature of the indoor heat exchanger detected by the indoor heat exchanger temperature sensor. When defrosting is detected, the defrost command means outputs a defrost command, thereby starting the defrosting operation and introducing hot gas into the outdoor heat exchanger.
[0010]
When the temperature difference is reduced to a predetermined ratio with respect to the maximum temperature difference in one cycle from the start of heating operation to the start of heating operation after defrosting operation, a defrost command is output and defrosting operation is started. can do.
[0011]
When the temperature detected by the indoor heat exchanger temperature sensor reaches the set temperature during the defrosting operation, the defrosting operation can be terminated.
[0012]
The defrosting time set in advance is changed according to the temperature detected by the indoor heat exchanger temperature sensor immediately before or after the fan for the indoor heat exchanger or the speed change and the defrosting operation. Can be terminated.
[0013]
【Example】
A first embodiment of the present invention is shown in FIG.
During the cooling operation, the gas refrigerant discharged from the compressor 2 enters the outdoor heat exchanger 4 through the four-way valve 3 as indicated by a solid arrow, and condenses and liquefies by releasing heat to the outside air sent by the outdoor fan 7 here. To do.
[0014]
This liquid refrigerant adiabatically expands in the process of flowing through the throttle mechanism 5 and then enters the indoor heat exchanger 6 where it evaporates and evaporates by cooling the indoor air sent by the indoor fan 8. Thereafter, the gas refrigerant returns to the compressor 2 through the four-way valve 3.
[0015]
During the heating operation, the refrigerant discharged from the compressor 2 passes through the four-way valve 3, the indoor heat exchanger 6, the throttle mechanism 5, the outdoor heat exchanger 4, and the four-way valve 3 in this order, as indicated by broken line arrows. Return to.
[0016]
The detected temperature of the intake air temperature sensor 10 for detecting the temperature of the indoor air sucked into the indoor heat exchanger 6 and the temperature of the indoor heat exchanger temperature sensor 11 for detecting the temperature of the indoor heat exchanger 6 are the temperature difference detecting means 21 of the controller 20. Where the temperature difference between the two is detected.
[0017]
This temperature difference is input to the maximum temperature difference storage means 22, where the maximum temperature difference in one cycle from the start of the heating operation to the return to the heating operation through the defrosting operation is stored.
In addition, as shown in FIG. 2, a temperature difference changes during the said 1 cycle, and the maximum temperature difference B at the time of no frost is memorize | stored.
[0018]
On the other hand, the temperature difference is input to the defrost command means 23 where it is compared with the maximum temperature difference B. Since this temperature difference gradually decreases as frost accumulates in the outdoor heat exchanger 4 by continuing the heating operation, this temperature difference A is a predetermined ratio (for example, 85%) with respect to the maximum temperature difference B. The defrost command means 23 outputs the defrost command to the four-way valve 3, the drive motor 12 for the outdoor fan 7, and the drive motor 13 for the indoor fan 8 via the output means 24 to output the defrost command to the four-way valve 3 during the cooling operation. The state is switched to the state, and the outdoor fan 7 and the indoor fan 8 are stopped.
[0019]
As a result, the defrosting operation is started, and the refrigerant circulates in the heat pump cycle as indicated by the solid line arrow as in the cooling operation, and the high-temperature refrigerant gas discharged from the compressor 2, that is, hot gas passes through the four-way valve 3. It enters the outdoor heat exchanger 4 and melts and removes frost adhering to this surface.
[0020]
The temperature detected by the indoor heat exchanger temperature sensor 11 is input to the defrosting end unit 26, where it is compared with the set temperature input from the setting unit 25. When the temperature detected by the indoor heat exchanger temperature sensor 11 reaches the set temperature by the defrosting operation, the defrosting end means 26 determines the end of the defrosting, and this determination is made by driving the four-way valve 3 and the outdoor fan 7 via the output means 24. It is output to the motor 12 and the drive motor 13 of the indoor fan 8.
Thereby, the four-way valve 3 is switched to the state during the heating operation, and the outdoor fan 7 and the indoor fan 8 start to operate and return to the heating operation.
[0021]
A second embodiment of the present invention is shown in FIG. In the second embodiment, the controller 30 includes a defrosting time setting unit 27 and a defrosting time changing unit 28 for setting the defrosting time. Thus, when the defrost command output from the defrost command means 23 is input to the defrost time setting means 27, the defrost time preset here is input to the defrost time changing means 28. Then, ON in chamber fan motor 13 that is input thereto, OFF or the shifting, the plurality in accordance with the detected temperature of the defrosting operation just before the indoor heat exchanger temperature sensor 11 (e.g., 3 minutes, 4 minutes, 7 minutes, etc. ).
[0022]
When the changed defrosting time has elapsed and this is input to the defrost end means 29, the defrost end means 29 determines the end of the defrost, and this determination is made via the output means 24 via the four-way valve 3 and the outdoor fan. 7 to the drive motor 12 of the indoor fan 8, and the four-way valve 3 is switched to the heating operation state, and the outdoor fan 7 and the indoor fan 8 are operated.
[0023]
Thus, the defrosting time is changed according to the temperature of the indoor heat exchanger 6 immediately before the defrosting operation by turning on / off the indoor fan 8 or changing its speed, and the minimum necessary defrosting operation is performed without performing the defrosting operation. The frost adhering to the outdoor heat exchanger 4 can be melted and removed by the frost operation.
[0024]
【The invention's effect】
In the present invention, the temperature difference between the detected temperature of the intake air temperature sensor and the detected temperature of the existing indoor heat exchanger temperature sensor provided in almost all heat pump air conditioners is changed to the outdoor heat exchanger. Since frost formation is detected and the defrost command means is output, a blown air temperature sensor is not required as in the prior art.
Therefore, the cost of the blown air temperature sensor can be reduced and it is not affected by the swing of the wind direction plate, so that the defrost command can be output accurately.
[0025]
If the defrost end command is output when the detected temperature of the indoor heat exchange temperature sensor reaches the set temperature during the defrosting operation, the outdoor heat exchange temperature sensor for detecting the temperature of the outdoor heat exchanger is omitted. This cost can be saved.
[0026]
If the preset defrosting time is changed according to the detected temperature of the indoor heat exchanger temperature sensor immediately before the fan for indoor heat exchanger is turned on or off, or the speed change and defrosting operation, the outdoor heat exchanger is reduced with the minimum defrosting time. It is possible to reliably melt and remove frost adhering to the surface.
[Brief description of the drawings]
FIG. 1 is a system diagram showing a first embodiment of the present invention.
FIG. 2 is a diagram showing the change over time of the temperature difference in the example.
FIG. 3 is a system diagram showing a second embodiment of the present invention.
[Explanation of symbols]
2 Compressor 4 Outdoor heat exchanger 5 Throttle mechanism 6 Indoor heat exchanger 10 Suction air temperature sensor 11 Indoor heat exchange temperature sensor 20 Controller

Claims (4)

圧縮機、四方弁、室外熱交換器、絞り機構、室内熱交換器等からなるヒートポンプサイクルを具備し、暖房運転時、上記室外熱交換器への着霜を感知したときこの室外熱交換器にホットガスを導入して除霜するヒートポンプ式空気調和機において、上記室内熱交換器に吸込まれる室内空気の温度を検出する吸込空気温度センサと、上記室内熱交換器の温度を検出する室内熱交温度センサと、上記両センサの検出する温度の温度差を検出する温度差検出手段と、上記温度差の変化により室外熱交換器への着霜を感知してデフロスト運転開始指令を出力するデフロスト指令手段と、暖房運転を開始してから除霜運転を経て再び暖房運転に入るまでの1サイクル中における上記両センサの温度差が最大となる無霜時の最大温度差を記憶する最大温度差記憶手段と、を設け、上記デフロスト指令手段は、上記最大温度差に対し上記温度差検出手段が検出した温度差が所定割合まで低下したとき、デフロスト運転開始指令を出力することを特徴とするヒートポンプ式空気調和機。It has a heat pump cycle consisting of a compressor, four-way valve, outdoor heat exchanger, throttle mechanism, indoor heat exchanger, etc., and when it detects frost formation on the outdoor heat exchanger during heating operation, this outdoor heat exchanger In a heat pump air conditioner that defrosts by introducing hot gas, an intake air temperature sensor that detects the temperature of indoor air that is sucked into the indoor heat exchanger, and indoor heat that detects the temperature of the indoor heat exchanger and exchange temperature sensor, defrost for outputting a temperature difference detecting means for detecting a temperature difference between the temperature detected in the two sensors, the defrost operation start command by sensing frost on the outdoor heat exchanger by a change in the temperature difference maximum temperature for storing and command means, the maximum temperature difference at the time of non-frost temperature difference of the two sensors during one cycle from the start of heating operation to enter a heating operation again after the defrosting operation is maximum Storage means, the provided, the defrosting command means, when the temperature difference detected by said temperature difference detection means to the maximum temperature difference has decreased to a predetermined ratio, and outputs a defrosting operation start command pump Type air conditioner. 除霜運転中に上記室内熱交温度センサの検出温度が設定温度になったとき、除霜運転を終了させるデフロスト終了手段を具備することを特徴とする請求項1記載のヒートポンプ式空気調和機。The heat pump type air conditioner according to claim 1 , further comprising a defrost ending means for ending the defrosting operation when the temperature detected by the indoor heat exchange temperature sensor reaches a set temperature during the defrosting operation . 圧縮機、四方弁、室外熱交換器、絞り機構、室内熱交換器等からなるヒートポンプサイクルを具備し、暖房運転時、上記室外熱交換器への着霜を感知したときこの室外熱交換器にホットガスを導入して除霜するヒートポンプ式空気調和機において、上記室内熱交換器に吸込まれる室内空気の温度を検出する吸込空気温度センサと、上記室内熱交換器の温度を検出する室内熱交温度センサと、上記両センサの検出する温度の温度差を検出する温度差検出手段と、上記温度差の変化により室外熱交換器への着霜を感知してデフロスト運転開始指令を出力するデフロスト指令手段とを設け、除霜運転中に上記室内熱交温度センサの検出温度が設定温度になったとき、除霜運転を終了させるデフロスト終了手段を具備することを特徴とするヒートポンプ式空気調和機。 It has a heat pump cycle consisting of a compressor, four-way valve, outdoor heat exchanger, throttle mechanism, indoor heat exchanger, etc., and when it detects frost formation on the outdoor heat exchanger during heating operation, this outdoor heat exchanger In a heat pump air conditioner that defrosts by introducing hot gas, an intake air temperature sensor that detects the temperature of indoor air that is sucked into the indoor heat exchanger, and indoor heat that detects the temperature of the indoor heat exchanger An alternating temperature sensor, a temperature difference detecting means for detecting a temperature difference between the temperatures detected by the two sensors, and a defrost that outputs a defrost operation start command by sensing frost formation on the outdoor heat exchanger due to a change in the temperature difference. and command means provided, dividing when frost during operation detecting temperature of the indoor heat exchange temperature sensor reaches the set temperature, features and to Ruhi Topon by comprising defrost termination means for terminating the defrosting operation Expression air conditioner. 除霜時間を設定する手段と、この設定時間を室内熱交換器用ファンのオン・オフあるいは変速及び除霜運転直前の上記室内熱交温度センサの検出温度によって変更する除霜時間変更手段と、変更された除霜時間が経過したとき除霜運転を終了させるデフロスト終了手段を具備することを特徴とする請求項1記載のヒートポンプ式空気調和機。Means for setting a defrosting time, defrosting time changing means for changing the set time according to the detected temperature of the indoor heat exchanger temperature sensor immediately before turning on / off or shifting and defrosting the indoor heat exchanger fan, and changing The heat pump type air conditioner according to claim 1, further comprising a defrosting end unit that ends the defrosting operation when the defrosting time that has been performed has elapsed.
JP09311295A 1995-03-27 1995-03-27 Heat pump air conditioner Expired - Lifetime JP3611257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09311295A JP3611257B2 (en) 1995-03-27 1995-03-27 Heat pump air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09311295A JP3611257B2 (en) 1995-03-27 1995-03-27 Heat pump air conditioner

Publications (2)

Publication Number Publication Date
JPH08261541A JPH08261541A (en) 1996-10-11
JP3611257B2 true JP3611257B2 (en) 2005-01-19

Family

ID=14073449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09311295A Expired - Lifetime JP3611257B2 (en) 1995-03-27 1995-03-27 Heat pump air conditioner

Country Status (1)

Country Link
JP (1) JP3611257B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110207316A (en) * 2019-06-19 2019-09-06 宁波奥克斯电气股份有限公司 Defrosting control method, device and air conditioner

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5727395A (en) * 1997-02-14 1998-03-17 Carrier Corporation Defrost control for heat pump
US7412842B2 (en) 2004-04-27 2008-08-19 Emerson Climate Technologies, Inc. Compressor diagnostic and protection system
US7275377B2 (en) 2004-08-11 2007-10-02 Lawrence Kates Method and apparatus for monitoring refrigerant-cycle systems
US8590325B2 (en) 2006-07-19 2013-11-26 Emerson Climate Technologies, Inc. Protection and diagnostic module for a refrigeration system
US20080216494A1 (en) 2006-09-07 2008-09-11 Pham Hung M Compressor data module
US20090037142A1 (en) 2007-07-30 2009-02-05 Lawrence Kates Portable method and apparatus for monitoring refrigerant-cycle systems
US8393169B2 (en) 2007-09-19 2013-03-12 Emerson Climate Technologies, Inc. Refrigeration monitoring system and method
US9140728B2 (en) 2007-11-02 2015-09-22 Emerson Climate Technologies, Inc. Compressor sensor module
CA2934860C (en) 2011-02-28 2018-07-31 Emerson Electric Co. Residential solutions hvac monitoring and diagnosis
US9310439B2 (en) 2012-09-25 2016-04-12 Emerson Climate Technologies, Inc. Compressor having a control and diagnostic module
US9551504B2 (en) 2013-03-15 2017-01-24 Emerson Electric Co. HVAC system remote monitoring and diagnosis
CA2904734C (en) 2013-03-15 2018-01-02 Emerson Electric Co. Hvac system remote monitoring and diagnosis
US9803902B2 (en) 2013-03-15 2017-10-31 Emerson Climate Technologies, Inc. System for refrigerant charge verification using two condenser coil temperatures
US9765979B2 (en) 2013-04-05 2017-09-19 Emerson Climate Technologies, Inc. Heat-pump system with refrigerant charge diagnostics
CN103868296B (en) * 2014-04-01 2016-11-23 深圳麦克维尔空调有限公司 Air conditioning unit Defrost method and air conditioning unit
CN106152643B (en) * 2015-04-17 2018-09-11 陈则韶 Air source hot pump water heater Defrost method
CN107560079B (en) * 2017-09-04 2021-10-29 青岛海尔空调器有限总公司 Control method and device for preventing frosting and air conditioner
CN109028465B (en) * 2018-05-24 2021-04-20 青岛海尔空调器有限总公司 Defrosting control method for air conditioner
CN114151927B (en) * 2021-11-26 2023-02-10 宁波奥克斯电气股份有限公司 Anti-frosting control method and device and air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110207316A (en) * 2019-06-19 2019-09-06 宁波奥克斯电气股份有限公司 Defrosting control method, device and air conditioner
CN110207316B (en) * 2019-06-19 2021-05-18 宁波奥克斯电气股份有限公司 Defrosting control method and device and air conditioner

Also Published As

Publication number Publication date
JPH08261541A (en) 1996-10-11

Similar Documents

Publication Publication Date Title
JP3611257B2 (en) Heat pump air conditioner
JP3282719B2 (en) Indoor ventilation control device for air conditioner
JP3764551B2 (en) Air conditioner
JP2001004254A (en) Refrigeration system
JP2003050066A (en) Controller for air conditioner
JPH04356647A (en) Control device for air conditioner
JPH04131668A (en) Defrosting operation controller for air-conditioning apparatus
JPS63290370A (en) Defrostation operation controller for air conditioner
JPH0712437A (en) Defrosting method in heat pump type air conditioner
JPH10332231A (en) Air conditioner and air-conditioning method
JP2004116796A (en) Air conditioner
JP3072260U (en) Air conditioner defrost control device
JPH0244140A (en) Heat pump type air conditioner
JPH0799298B2 (en) Defrosting method for heat pump type air conditioner
KR100215068B1 (en) Defrosting apparatus and control method of air conditioner
JPH02136637A (en) Heat pump type air conditioner
JPH09222271A (en) Refrigerator
JPH08271101A (en) Heat pump type air conditioner
JPS6358048A (en) Defroster in air conditioner
KR100211602B1 (en) Defrosting time control method of airconditioner
JP3074026U (en) Indoor ventilation control device for air conditioner
JPH02306042A (en) Defroster in refrigeration apparatus
JPH04103943A (en) Defrosting controller for air conditioner
JP3059050U (en) Air conditioner defrost control device
KR100215067B1 (en) Defrosting apparatus and control method of air conditioner

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040109

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20040121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041018

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 9

EXPY Cancellation because of completion of term