JP3610942B2 - Method for producing niobium and / or tantalum powder - Google Patents

Method for producing niobium and / or tantalum powder Download PDF

Info

Publication number
JP3610942B2
JP3610942B2 JP2001315470A JP2001315470A JP3610942B2 JP 3610942 B2 JP3610942 B2 JP 3610942B2 JP 2001315470 A JP2001315470 A JP 2001315470A JP 2001315470 A JP2001315470 A JP 2001315470A JP 3610942 B2 JP3610942 B2 JP 3610942B2
Authority
JP
Japan
Prior art keywords
niobium
powder
alkaline earth
tantalum
stage reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001315470A
Other languages
Japanese (ja)
Other versions
JP2003119506A (en
JP2003119506A5 (en
Inventor
敏行 大迫
哲史 小向
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2001315470A priority Critical patent/JP3610942B2/en
Priority to TW091123262A priority patent/TW570852B/en
Priority to KR1020020061528A priority patent/KR100609715B1/en
Priority to CA002406932A priority patent/CA2406932A1/en
Priority to IL15222602A priority patent/IL152226A0/en
Priority to DE60208287T priority patent/DE60208287T2/en
Priority to US10/268,615 priority patent/US6855185B2/en
Priority to EP02257048A priority patent/EP1302263B1/en
Priority to HU0203436A priority patent/HUP0203436A2/en
Priority to CNB021515980A priority patent/CN1223424C/en
Publication of JP2003119506A publication Critical patent/JP2003119506A/en
Publication of JP2003119506A5 publication Critical patent/JP2003119506A5/ja
Priority to US11/030,384 priority patent/US7351271B2/en
Application granted granted Critical
Publication of JP3610942B2 publication Critical patent/JP3610942B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes
    • H01G9/0525Powder therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G35/00Compounds of tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/20Obtaining niobium, tantalum or vanadium
    • C22B34/24Obtaining niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/04Dry methods smelting of sulfides or formation of mattes by aluminium, other metals or silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/18Reducing step-by-step
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Powder Metallurgy (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電解キャパシタ材料として好適なニオブやタンタルの粉末及びその製造法に関し、特にアルカリ金属やアルカリ土類金属でニオブやタンタルの酸化物を還元する製造法に関する。
【0002】
【従来の技術】
ナトリウムやカリウムなどのアルカリ金属やマグネシウムやカルシウムなどのアルカリ土類金属でニオブやタンタルのフッ化物や酸化物を還元して、1.0μmの粒子径で均一に分布し、BET比表面積が5m/gを超える微細なニオブやタンタル粉末が得られている。
【0003】
ニオブやタンタルの粉末を電解キャパシタ材料として使用する場合、微細なほど、即ち比表面積が大きいほど、容量が大きくなる。
【0004】
しかし、ニオブは酸化しやすく、またその酸化物が安定なため、粉末が微細なほど、表面酸化により、酸素量が増大する。
【0005】
また、アルカリ金属やアルカリ土類金属を還元剤とする反応は発熱反応で、1次粒子が0.1〜1.0μmの粒子径にある微粉末を得ようとすると、還元プロセス中の熱的不均一のために、0.01μmのオーダーの極微粒子が生成される。このような極微粒子が存在すると、電解キャパシタの焼結の均一性が失われるという問題があった。
【0006】
さらに、還元剤であるアルカリ金属やアルカリ土類金属がニオブやタンタルの中に固溶・残留し、電解キャパシタの容量や電気的特性に悪影響を及ぼすという問題があった。即ち、通常の操業で、還元反応には理論当量より過剰の還元剤を用いるので、還元剤の一部がニオブやタンタルに固溶する。アルカリ金属やアルカリ土類金属に対するニオブ・タンタルの固溶限は小さいが、それでも200〜400ppm程度は固溶して残留する。従って、従来は、還元剤であるアルカリ金属やアルカリ土類金属を200ppm以下に低減することは困難であった。
【0007】
一方、アルカリ金属やアルカリ土類金属によるニオブやタンタルの酸化物の還元は、発熱的に進行し、アルカリ金属やアルカリ土類金属をニオブやタンタルの酸化物に直接接触させるので、その制御が困難になるほどであった。
【0008】
特開2000−119710号公報では、発熱量を抑制するために、アルカリ土類金属や希土類金属による還元を2段階で行い、第1段階の反応で、(NbTa)O、但し式中x=0.5〜1.5、で表される低級酸化物粉末を得ている。そして、第1段階の還元生成物から還元剤の酸化物を除去してから、第2段階の還元を行っている。しかしこの場合、第2段階の還元反応が制御困難で、得られる粉末の比表面積が小さくなったり、アルカリ金属やアルカリ土類金属の残留量が多くなるという問題があった。
【0009】
【発明が解決しようとする課題】
本発明の目的は、電解キャパシタ用として好適なニオブおよび/またはタンタル粉末およびその製造法を提供することである。
【0010】
特に、本発明の目的は、アルカリ金属やアルカリ土類金属によるニオブおよび/またはタンタル酸化物の還元を2段階で行うに際し、得られる粉末の比表面積を大きくし、比表面積あたりの酸素含有量、及びアルカリ金属やアルカリ土類金属の残留量を少なくする製造法を提供することである。
【0011】
【課題を解決するための手段】
本発明のニオブおよび/またはタンタルの粉末の製造法は次の各工程からなる。
【0012】
(1)ニオブおよび/またはタンタルの酸化物をアルカリ金属およびアルカリ土類金属からなる群から選ばれた1種以上で還元して、(NbTa)O、但し式中x=0.06〜0.35、で表される低級酸化物粉末を得る第1段階還元工程、
(2)第1段階還元工程で生成したアルカリ金属および/またはアルカリ土類金属の酸化物を除去する工程、
(3)第1段階還元工程で得られた低級酸化物粉末をアルカリ金属およびアルカリ土類金属からなる群から選ばれた1種以上の融液を用いて400〜1200℃の温度範囲で還元して、ニオブおよび/またはタンタル粉末を得る第2段階還元工程。
【0013】
第1段階還元工程で得られた低級酸化物粉末を、第2段階還元工程において、アルカリ金属およびアルカリ土類金属からなる群から選ばれた1種以上で還元する際、アルカリ金属およびアルカリ土類金属からなる群から選ばれた1種以上の混合量を、低級酸化物粉末の中の残留酸素除去に必要な化学量論に対して0.5〜1.5当量に調整して、アルカリ金属およびアルカリ土類金属からなる群から選ばれた1種以上の残留量を200ppm以下にするのが好ましい。第2段階還元工程において、400〜1200℃の温度範囲で反応を行うことも、前記残留量の低下に効果がある。
【0014】
第2段階還元工程において、前記低級酸化物粉末をアルカリ金属およびアルカリ土類金属からなる群から選ばれた1種以上の融液と接触させることにより、一次粒子の調整が脱酸素と同時に行われるので、本発明のニオブおよび/またはタンタル粉末は、一次粒子が0.1〜1.0μmの粒子径で均一に分布し、ppmで表した酸素量とm/gで表したBET比表面積との比が3100以下である。
【0015】
【発明の実施の形態】
本発明においては、ニオブおよび/またはタンタルの酸化物をアルカリ金属やアルカリ土類金属で還元してニオブおよび/またはタンタルの粉末を得るに際し、還元を2段階に分けて行い、第1段階で、(NbTa)O、ただし式中x=0.06〜0.35、で表される低級酸化物粉末を得るまで行い、第1段階の還元反応で生成したアルカリ金属やアルカリ土類金属の酸化物を除去し、第1段階還元工程で得られた低級酸化物粉末をアルカリ金属やアルカリ土類金属の融液で第2段階の還元を行い、ニオブおよび/またはタンタルの粉末を得る。この場合、第1段の反応を制御するために、原料の逐次投入や、蒸気を用いることができる。また、これらの方法を用い、さらに多段に分解することを排除しない。前記xの値が0.06未満では、一部では還元が進行し、還元剤であるアルカリ金属やアルカリ土類金属がニオブやタンタルの中に拡散してしまい、不純物として残留してしまう。0.35を超えると、酸素量過剰で、第2段階工程時に、発熱・粒子の粗大化が生じる。
【0016】
第2段階還元工程で、還元剤であるアルカリ金属やアルカリ土類金属の融液の存在により、ニオブやタンタルの表面拡散が阻害されるために、粒子の結合に際して比表面積の減少が抑制される。また、還元剤であるアルカリ金属やアルカリ土類金属の融液が、濡れ性良く、毛細管現象により、微細なニオブやタンタルの粉末中に均一に浸透できる。この結果、0.01μmのオーダの極めて微細な粒子の発生が抑制され、一次粒子が0.1〜1.0μmの粒子径で均一に分布した微細粉末が得られる。
【0017】
第1段階還元工程で得られた低級酸化物粉末をアルカリ金属やアルカリ土類金属で還元する際、アルカリ金属やアルカリ土類金属の混合量を、低級酸化物粉末の中の残留酸素除去に必要な化学量論に対して0.5〜1.5当量に調整することで、アルカリ金属やアルカリ土類金属の残留量を200ppm以下にすることができる。これは、ニオブやタンタルと接触したアルカリ金属やアルカリ土類金属の融液が、ニオブやタンタルに接触したところで、残留酸素と反応して酸化物となるので、ニオブやタンタルの中へ固溶することが困難になるためであると考えられる。0.5当量未満では、還元不十分で、酸素量が多くなり、1.5当量を超えると、還元剤であるアルカリ金属やアルカリ土類金属の残留が多くなってしまう。
【0018】
また、アルカリ金属やアルカリ土類金属の混合量を、低級酸化物粉末の中の残留酸素除去に必要な化学量論に対して0.5〜1.5当量と不足気味にしているにもかかわらず、酸素量が7000ppm以下で、m/gで表したBET比表面積が0.6以上で、且つ酸素量とBET比表面積の比が3100以下になる。これは、還元剤であるアルカリ金属やアルカリ土類金属の融液が、濡れ性良く、毛細管現象により、微細なニオブやタンタルの粉末中に均一に浸透するからであると考えられる。
【0019】
原料となるニオブおよび/またはタンタルの酸化物は、特に限定されるものではなく、五酸化ニオブ、五酸化タンタル、あるいはその混合物が好ましい。また、還元剤であるアルカリ金属やアルカリ土類金属は、ナトリウム、カリウム、マグネシウム、カルシウムが好ましい。
【0020】
第1段階還元工程では、アルカリ金属やアルカリ土類金属をニオブやタンタルの酸化物から分離して配置し、アルカリ金属やアルカリ土類金属を蒸気の形でニオブやタンタルの酸化物に接触させる。これにより、還元段階における反応速度を穏やかにし、時間あたりの発熱量を抑制できる。還元速度は、アルカリ金属やアルカリ土類金属の蒸気圧、従って加熱温度によって制御できる。第1段目の加熱温度は600〜1400℃で、加熱時間は粒子の大きさによるが、1〜8時間とするのが好ましい。
【0021】
たとえば、マグネシウムの場合、加熱温度を800℃以上にするのが好ましい。加熱温度が800℃未満であると、揮発に伴う吸熱のために、マグネシウムの蒸発が十分に進まない。他のアルカリ金属やアルカリ土類金属についても単位時間あたりの発熱量や還元終了までの時間で、加熱温度を選定すればよい。
【0022】
還元により得られる低級酸化物粉末は、1400℃を超える温度では、燒結して粗大化するので、還元温度を1400℃以下にするのが好ましい。逆に、600℃未満であると、充分な反応が得られない。還元反応は8時間以内にすでに終了するので、これ以上に長時間保持する必要はない。高温で長時間保持すると、粒子の粗大化が生じる可能性がある。1時間より短いと、還元反応が不十分である可能性がある。
【0023】
また、還元をアルゴン、窒素のような不活性ガス雰囲気の中で行うことにより、均一で安定した還元反応を進めることができる。
【0024】
第2段階還元工程は、低級酸化物粉末と所定の還元金属の融液と混合して行う点が第1段の還元と異なる。還元金属の融液の存在により、ニオブおよび/またはタンタルの表面拡散が阻害されて、比表面積の減少を抑制できる。また、第2段の還元は第1段と同じか低い温度で、400〜1200℃の範囲で、加熱時間は1〜4時間が望ましい。一般に、温度とともにニオブやタンタル中の不純物元素固溶限が拡大し、また、拡散も速くなる。蒸気還元のように温度が高い場合、還元が十分に行われ、過剰の還元金属蒸気が存在すると還元金属の溶解度が大きくなり、還元金属の残留量が増加してしまう。そこで、第2段の還元は第1段と同じか低い温度で、具体的には400〜1200℃の温度範囲内で、所定量の還元剤で完全な還元を行うために混合法を用いる必要がある。
【0025】
第1段階で、ニオブ・タンタル酸化物をアルカリ金属やアルカリ土類金属で、(NbTa)O、但し式中x=0.06〜0.35、で表される低級酸化物粉末にまで還元するが、その還元終了の判定は還元物の質量変化測定で行う。
【0026】
第1段階還元工程で生成したアルカリ金属および/またはアルカリ土類金属の酸化物を除去するには,酸による浸出で行う。
【0027】
第1段階還元工程で得られた低級酸化物粉末をアルカリ金属やアルカリ土類金属で還元して、ニオブやタンタルの粉末を得る第2段階還元工程では、還元剤に融液を使用すること、および低温で所定量の還元剤で完全な還元を行うことに留意する。
【0028】
平均粒径の測定はマイクロトラックなどのレーザ回折法で行い、含有酸素量の測定は赤外線吸収方式などの酸素分析計、比表面積はISO9277などに基づく方法で行うことができる。
【0029】
【実施例】
以下に、実施例および比較例を説明する(表1参照)。
【0030】
(実施例1)
図1に示す縦型電気炉1内に、円筒形のニオブ製反応容器2を配置し、該反応容器2の底部に還元金属用にニオブ製バケット4を置き、その上方に該バケット4から十分に隔てて、原料酸化物用ニオブ製トレイ6を置いた。
【0031】
原料には五酸化ニオブ粉末(平均粒径3.5μm)を500g挿入し、還元金属には、マグネシウム(宇部興産(株)製、純度99.97%、塊状)を酸化物粉末に対して1.1モル当量使用した。
【0032】
ニオブ製反応容器2に蓋2aをして、該蓋2aに設けたガス供給孔からアルゴンガスを100ml/minの割合で供給しつつ、電気炉1の発熱体1aにより反応容器2内を1000℃の温度に保持して、6時間反応させた。冷却後、トレイ6内の低級酸化物粉末を取り出して、1規定の塩酸に浸漬してマグネシウム酸化物を溶解除去し、さらに水洗及び乾燥を行った。得られた低級酸化物粉末は、NbO 0.2 の組成で、360gであった。
【0033】
低級酸化物粉末をそのまま前記ニオブ製反応容器2のトレイ6に挿入し、マグネシウム(関東化学社製、切削片状、純度99%以上)を0.9モル当量、トレイ6内の低級酸化物粉末に添加混合し、800℃、2時間保持して融解反応させた。
【0034】
すなわち、ニオブ製反応容器2に蓋2aをして、該蓋2aに設けたガス供給孔からアルゴンガスを100ml/minの割合で供給しつつ、電気炉1の発熱体1aにより反応容器2内を800℃の温度に保持して、2時間反応させた。冷却後、トレイ6内の粉末を取り出して、1規定の塩酸に浸漬してマグネシウム酸化物を溶解除去し、さらに水洗及び乾燥を行った。該粉末は、純粋なニオブ粉末で、そのBET比表面積を測定するとともに、平均粒径および含有酸素の量を測定したところ、それぞれ、BET1.6m/g、平均粒径0.6μm、酸素量4800ppm、マグネシウム量150ppmであった。
【0035】
(実施例2)
実施例1において、第1段階還元工程の反応時間(温度)を1100℃にし、得られた低級酸化物粉末をそのまま前記ニオブ製トレイ6に挿入し、マグネシウム(関東化学社製、切削片状、純度99%以上)を該低級酸化物粉末に対して0.8モル当量添加混合した。酸化物粉末は、NbO0.3の組成で、365gであった。
【0036】
第2段階還元工程で、ニオブ製反応容器2に蓋2aをして、該蓋2aに設けたガス供給孔からアルゴンガスを100ml/minの割合で供給しつつ、電気炉1の発熱体1aにより反応容器2内を750℃の温度に保持して、4時間融液反応させた。冷却後、トレイ6内の粉末を取り出して、1規定の塩酸に浸漬してマグネシウム酸化物を溶解除去し、さらに水洗及び乾燥を行った。該粉末は、純粋なニオブ粉末で、そのBET比表面積を測定するとともに、平均粒径および含有酸素の量を測定したところ、それぞれBET2.0m/g、平均粒径0.5μm、酸素量5700ppm、マグネシウム量130ppmであった。
【0037】
(実施例3)
図1に示す縦型電気炉1内に、円筒形のニオブ製反応容器2を配置し、該反応容器2の底部に還元金属ニオブ製バケット4を置き、その上方に該バケット4から十分に隔てて、原料酸化物用ニオブ製トレイ6を置いた。
【0038】
原料には五酸化タンタル粉末(平均粒径2.4μm)を500g挿入し、還元金属には、マグネシウム(宇部興産社製、塊状、純度99.97%以上)を酸化物粉末に対して1.0モル当量使用した。
【0039】
ニオブ製反応容器2に蓋2aをして、該蓋2aに設けたガス供給孔からアルゴンガスを100ml/minの割合で供給しつつ、電気炉1の発熱体1aにより反応容器2内を1000℃の温度に保持して、6時間反応させた。冷却後、トレイ6内の低級酸化物粉末を取り出して、1規定の塩酸に浸漬してマグネシウムの酸化物を溶解除去し、さらに水洗及び乾燥を行った。得られた低級酸化物粉末は、TaO0.2の組成で、392gであった。
【0040】
低級酸化物粉末をそのまま前記ニオブ製反応容器2に挿入し、マグネシウム(関東化学社製、切削片状、純度99%以上)を該低級酸化物粉末に対して0.8モル当量添加混合した。
【0041】
ニオブ製反応容器2に蓋2aをして、該蓋2aに設けたガス供給孔からアルゴンガスを100ml/minの割合で供給しつつ、電気炉1の発熱体1aにより反応容器2内を800℃の温度に保持して、2時間融液反応させた。冷却後、トレイ6内の粉末を取り出して、1規定の塩酸に浸漬してマグネシウムの酸化物を溶解除去し、さらに水洗及び乾燥を行った。該粉末は、純粋なタンタル粉末で、そのBET比表面積を測定するとともに、平均粒径および含有酸素の量を測定したところ、それぞれ BET3.2m/g、平均粒径0.4μm、酸素量3000ppm、マグネシウム量110ppmであった。
【0042】
(実施例4)
図1に示す縦型電気炉1内に、円筒形のニオブ製反応容器2を配置し、該反応容器2の底部に還元金属用にニオブ製バケット4を置き、その上方に該バケット4から十分に隔てて、原料酸化物用ニオブ製トレイ6を置いた。
【0043】
原料には酸化ニオブ粉末(平均粒径3.5μm)を500g挿入し、還元金属3には、マグネシウム(宇部興産社製、塊状、純度99.97%以上)を酸化物粉末に対して1.0モル当量使用した。
【0044】
ニオブ製反応容器2に蓋2aをして、該蓋2aに設けたガス供給孔からアルゴンガスを100ml/minの割合で供給しつつ、電気炉1の発熱体1aにより反応容器2内を1000℃の温度に保持して、4時間反応させた。冷却後、トレイ6内の低級酸化物粉末を取り出して、1規定の塩酸に浸漬してマグネシウムの酸化物を溶解除去し、さらに水洗及び乾燥を行った。得られた低級酸化物粉末は、TaO0.15の組成で、355gであった。
【0045】
低級酸化物粉末をそのまま前記ニオブ製トレイ6に挿入し、マグネシウム(関東化学社製、切削片状、純度99%以上)を該低級酸化物粉末に対して0.9モル当量添加混合した。
【0046】
ニオブ製反応容器2に蓋2aをして、該蓋2aに設けたガス供給孔からアルゴンガスを100ml/minの割合で供給しつつ、電気炉1の発熱体1aにより反応容器2内を800℃の温度に保持して、2時間反応させた。冷却後、トレイ6内の粉末を取り出して、1規定の塩酸に浸漬してマグネシウムの酸化物を溶解除去し、さらに水洗及び乾燥を行った。該粉末は、純粋なニオブ粉末で、そのBET比表面積を測定するとともに、平均粒径および含有酸素の量を測定したところ、それぞれ BET1.9m/g、平均粒径0.5μm、酸素量4300ppm、マグネシウム量130ppmであった。
【0047】
(実施例5)
図1に示す縦型電気炉1内に、円筒形のニオブ製反応容器2を配置し、該反応容器2の底部に還元金属用にニオブ製バケット4を置き、その上方に該バケット4から十分に隔てて、原料酸化物用ニオブ製トレイ6を置いた。
【0048】
原料には五酸化タンタル粉末(平均粒径2.4μm)を500g挿入し、還元金属には、ナトリウム(関東化学社製、塊状、純度99%以上)を酸化物粉末に対して1.0モル当量使用した。
【0049】
ニオブ製反応容器2に蓋2aをして、該蓋2aに設けたガス供給孔からアルゴンガスを100ml/minの割合で供給しつつ、電気炉1の発熱体1aにより反応容器2内を800℃の温度に保持して、6時間反応させた。冷却後、トレイ6内の低級酸化物粉末を取り出して、1規定の塩酸に浸漬してナトリウムの酸化物を溶解除去し、さらに水洗及び乾燥を行った。得られた低級酸化物粉末は、TaO0.2の組成で、392gであった。
【0050】
低級酸化物粉末をそのまま前記ニオブ製トレイ6に挿入し、ナトリウム(関東化学社製、粒状、純度98%以上)を該低級酸化物粉末に対して0.8モル当量添加混合した。
【0051】
ニオブ製反応容器2に蓋2aをして、該蓋2aに設けたガス供給孔からアルゴンガスを100ml/minの割合で供給しつつ、電気炉1の発熱体1aにより反応容器2内を400℃の温度に保持して、2時間融液反応させた。冷却後、トレイ6内の粉末を取り出して、1規定の塩酸に浸漬してナトリウムの酸化物を溶解除去し、さらに水洗及び乾燥を行った。該粉末は、純粋なタンタル粉末で、そのBET比表面積を測定するとともに、平均粒径および含有酸素の量を測定したところ、それぞれ BET1.0m/g、平均粒径0.6μm、酸素量3000ppm、ナトリウム量48ppmであった。
【0052】
(比較例1)
実施例1において、第2段階還元工程におけるマグネシウム当量を1.7とし、1050℃で4時間還元を行った。得られた還元物を1規定の塩酸に浸漬して、マグネシウム酸化物を浸出し、さらに水洗および乾燥を行った。該粉末は純粋な金属ニオブであり、340gであった。そのBET2.1m/g、平均粒径0.8μm、酸素量5100ppm、マグネシウム量370ppmであった。
【0053】
(比較例2)
実施例1において、第1段階還元工程において、マグネシウム当量を0.85とし、1050℃で4時間還元を行った。得られた還元物を1規定の塩酸に浸漬して、マグネシウム酸化物を浸出し、さらに水洗および乾燥を行った。該粉末の組成はNbO0.4であり、370gであった。第2段階還元工程において、マグネシウムを0.9当量添加混合し、800℃で2時間融液反応させた。そのBET0.6m/g、平均粒径2.3μm、酸素量7300ppm、マグネシウム量570ppmであった。粉末は第2段階還元時の発熱量が大きく、粒子が粗大化するとともに、局所的な発熱によって、マグネシウムが粉末中に混入したと考えられる。
【0054】
(比較例3)
実施例1において、第1段階間還元工程におけるマグネシウム当量を0.95とし、1050℃で4時間還元を行った。得られた還元物を1規定の塩酸に浸漬して、マグネシウム酸化物を浸出し、さらに水洗および乾燥を行った。該粉末の組成はNbO0.25であり、355gであった。第2段階還元工程では、前記低級酸化物にマグネシウムを0.3当量添加混合し、800℃で2時間反応させた。そのBET1.8m/g、平均粒径0.5μm、酸素量29000ppm、マグネシウム量67ppmであった。
【0055】
(比較例4)
実施例1において、第1段階還元工程におけるマグネシウム当量を0.95とし、1050℃で4時間還元を行った。得られた還元物を1規定の塩酸に浸漬して、マグネシウム酸化物を浸出し、さらに水洗および乾燥を行った。該粉末の組成はNbO0.25であり、355gであった。第2段階還元工程において、前記低級酸化物にマグネシウムを2.0当量添加混合し、800℃で2時間反応させた。そのBET1.6m/g、平均粒径0.6μm、酸素量5300ppm、マグネシウム量370ppmであった。
【0056】
【表1】

Figure 0003610942
【0057】
【発明の効果】
本発明は、アルカリ金属やアルカリ土類金属により、ニオブやタンタルの酸化物を還元する方法において、還元剤の量を制御することによって、酸素および還元金属残留量の少ない電解キャパシタ用として好適なニオブやタンタルの微細粉末を提供することができる。
【図面の簡単な説明】
【図1】本発明の製造法を実施するための装置の具体例を示す概略断面図である。
【符号の説明】
1 電気炉
1a 発熱体
2 ニオブ製反応容器
3 還元金属
4 ニオブ製バケット
5 酸化物粉末
6 ニオブ製トレイ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a powder of niobium or tantalum suitable as an electrolytic capacitor material and a method for producing the same, and more particularly to a method for reducing an oxide of niobium or tantalum with an alkali metal or an alkaline earth metal.
[0002]
[Prior art]
Niobium and tantalum fluorides and oxides are reduced with alkali metals such as sodium and potassium and alkaline earth metals such as magnesium and calcium, and uniformly distributed with a particle diameter of 1.0 μm, and a BET specific surface area of 5 m 2. Fine niobium or tantalum powder exceeding / g is obtained.
[0003]
When using niobium or tantalum powder as an electrolytic capacitor material, the finer, that is, the larger the specific surface area, the larger the capacity.
[0004]
However, since niobium is easily oxidized and its oxide is stable, the finer the powder, the greater the amount of oxygen due to surface oxidation.
[0005]
In addition, the reaction using alkali metal or alkaline earth metal as a reducing agent is an exothermic reaction, and when trying to obtain fine powder with primary particles having a particle diameter of 0.1 to 1.0 μm, thermal reaction during the reduction process is performed. Due to the non-uniformity, ultrafine particles of the order of 0.01 μm are generated. When such ultrafine particles exist, there is a problem that the uniformity of sintering of the electrolytic capacitor is lost.
[0006]
Furthermore, there has been a problem that the alkali metal or alkaline earth metal as a reducing agent is dissolved and remains in niobium or tantalum, which adversely affects the capacity and electrical characteristics of the electrolytic capacitor. That is, in a normal operation, a reducing agent is used in excess of the theoretical equivalent in the reduction reaction, so that a part of the reducing agent is dissolved in niobium or tantalum. Although the solid solubility limit of niobium tantalum with respect to alkali metals and alkaline earth metals is small, about 200 to 400 ppm still remains in solid solution. Therefore, conventionally, it has been difficult to reduce the alkali metal or alkaline earth metal as a reducing agent to 200 ppm or less.
[0007]
On the other hand, the reduction of niobium and tantalum oxides by alkali metals and alkaline earth metals proceeds exothermically, making alkali metal and alkaline earth metals directly contact with niobium and tantalum oxides, making it difficult to control. It was so.
[0008]
In Japanese Patent Application Laid-Open No. 2000-119710, reduction with an alkaline earth metal or rare earth metal is performed in two stages in order to suppress the amount of heat generated, and (Nb , Ta) O x in the first stage reaction, A lower oxide powder represented by x = 0.5 to 1.5 is obtained. Then, the oxide of the reducing agent is removed from the first-stage reduction product, and then the second-stage reduction is performed. However, in this case, there is a problem that the second stage reduction reaction is difficult to control, the specific surface area of the obtained powder is reduced, and the residual amount of alkali metal or alkaline earth metal is increased.
[0009]
[Problems to be solved by the invention]
An object of the present invention is to provide a niobium and / or tantalum powder suitable for an electrolytic capacitor and a method for producing the same.
[0010]
In particular, the object of the present invention is to increase the specific surface area of the obtained powder when reducing niobium and / or tantalum oxide with an alkali metal or alkaline earth metal in two stages, and the oxygen content per specific surface area, And a production method for reducing the residual amount of alkali metal or alkaline earth metal.
[0011]
[Means for Solving the Problems]
The method for producing niobium and / or tantalum powder of the present invention comprises the following steps.
[0012]
(1) An oxide of niobium and / or tantalum is reduced with one or more selected from the group consisting of alkali metals and alkaline earth metals, and (Nb , Ta) O x , where x = 0.06 A first stage reduction step of obtaining a lower oxide powder represented by ˜0.35,
(2) a step of removing the alkali metal and / or alkaline earth metal oxide produced in the first stage reduction step;
(3) The lower oxide powder obtained in the first stage reduction step is reduced in a temperature range of 400 to 1200 ° C. using one or more melts selected from the group consisting of alkali metals and alkaline earth metals. A second stage reduction process to obtain niobium and / or tantalum powder.
[0013]
When reducing the lower oxide powder obtained in the first stage reduction process with one or more selected from the group consisting of alkali metals and alkaline earth metals in the second stage reduction process, the alkali metal and alkaline earth The mixed amount of one or more selected from the group consisting of metals is adjusted to 0.5 to 1.5 equivalents with respect to the stoichiometry necessary for removing residual oxygen in the lower oxide powder, And the residual amount of at least one selected from the group consisting of alkaline earth metals is preferably 200 ppm or less. In the second stage reduction process, performing the reaction in the temperature range of 400 to 1200 ° C. is also effective in reducing the residual amount.
[0014]
In the second stage reduction step, the primary particles are adjusted simultaneously with deoxidation by bringing the lower oxide powder into contact with one or more melts selected from the group consisting of alkali metals and alkaline earth metals. Therefore, in the niobium and / or tantalum powder of the present invention, the primary particles are uniformly distributed with a particle size of 0.1 to 1.0 μm, the oxygen amount expressed in ppm, and the BET specific surface area expressed in m 2 / g The ratio is 3100 or less .
[0015]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, when the niobium and / or tantalum oxide is reduced with an alkali metal or alkaline earth metal to obtain a niobium and / or tantalum powder, the reduction is performed in two stages, and in the first stage, (Nb , Ta) O x , where x = 0.06 to 0.35 is obtained until obtaining a lower oxide powder, and the alkali metal or alkaline earth metal produced by the first reduction reaction The lower oxide powder obtained in the first stage reduction step is subjected to the second stage reduction with a melt of alkali metal or alkaline earth metal to obtain niobium and / or tantalum powder. In this case, in order to control the reaction in the first stage, it is possible to use raw materials sequentially or steam. In addition, using these methods does not exclude further multistage decomposition. When the value of x is less than 0.06, the reduction proceeds in part, and the alkali metal or alkaline earth metal as a reducing agent diffuses into niobium or tantalum and remains as an impurity. If it exceeds 0.35, the amount of oxygen is excessive, and heat generation and particle coarsening occur during the second stage process.
[0016]
In the second stage reduction process, the surface diffusion of niobium and tantalum is hindered by the presence of the alkali metal or alkaline earth metal melt as the reducing agent, so that the reduction of the specific surface area during particle bonding is suppressed. . In addition, the alkali metal or alkaline earth metal melt as the reducing agent can be uniformly penetrated into fine niobium or tantalum powder by capillary action with good wettability. As a result, generation of extremely fine particles on the order of 0.01 μm is suppressed, and a fine powder in which primary particles are uniformly distributed with a particle size of 0.1 to 1.0 μm is obtained.
[0017]
When reducing the lower oxide powder obtained in the first stage reduction process with alkali metal or alkaline earth metal, the mixed amount of alkali metal or alkaline earth metal is necessary to remove residual oxygen in the lower oxide powder. By adjusting to 0.5 to 1.5 equivalents relative to the stoichiometric amount, the residual amount of alkali metal or alkaline earth metal can be reduced to 200 ppm or less. This is because the alkali metal or alkaline earth metal melt that comes into contact with niobium or tantalum reacts with residual oxygen to form an oxide when it comes into contact with niobium or tantalum, so it dissolves in niobium or tantalum. This is considered to be difficult. If the amount is less than 0.5 equivalent, the reduction is insufficient and the amount of oxygen increases. If the amount exceeds 1.5 equivalents, residual alkali metal or alkaline earth metal as a reducing agent increases.
[0018]
In addition, although the mixing amount of alkali metal or alkaline earth metal is deficient at 0.5 to 1.5 equivalents relative to the stoichiometry necessary for removing residual oxygen in the lower oxide powder. The oxygen amount is 7000 ppm or less, the BET specific surface area expressed in m 2 / g is 0.6 or more, and the ratio of the oxygen amount and the BET specific surface area is 3100 or less . This is presumably because the alkali metal or alkaline earth metal melt, which is a reducing agent, penetrates fine niobium or tantalum powder uniformly with good wettability by capillary action.
[0019]
The oxide of niobium and / or tantalum used as a raw material is not particularly limited, and niobium pentoxide, tantalum pentoxide, or a mixture thereof is preferable. Further, the alkali metal or alkaline earth metal that is the reducing agent is preferably sodium, potassium, magnesium, or calcium.
[0020]
In the first reduction step, alkali metal or alkaline earth metal is arranged separately from niobium or tantalum oxide, and the alkali metal or alkaline earth metal is brought into contact with the niobium or tantalum oxide in the form of vapor. Thereby, the reaction rate in a reduction | restoration stage can be made mild and the emitted-heat amount per time can be suppressed. The reduction rate can be controlled by the alkali metal or alkaline earth metal vapor pressure, and hence the heating temperature. The heating temperature in the first stage is 600 to 1400 ° C., and the heating time is preferably 1 to 8 hours depending on the size of the particles.
[0021]
For example, in the case of magnesium, the heating temperature is preferably set to 800 ° C. or higher. When the heating temperature is less than 800 ° C., the evaporation of magnesium does not proceed sufficiently due to the endotherm accompanying volatilization. For other alkali metals and alkaline earth metals, the heating temperature may be selected based on the calorific value per unit time and the time until the end of the reduction.
[0022]
Since the lower oxide powder obtained by reduction is sintered and coarsened at a temperature exceeding 1400 ° C., the reduction temperature is preferably 1400 ° C. or lower. Conversely, if the temperature is lower than 600 ° C., sufficient reaction cannot be obtained. Since the reduction reaction has already been completed within 8 hours, it is not necessary to hold it for a longer time. When kept at a high temperature for a long time, coarsening of the particles may occur. If it is shorter than 1 hour, the reduction reaction may be insufficient.
[0023]
Further, by performing the reduction in an inert gas atmosphere such as argon or nitrogen, a uniform and stable reduction reaction can be promoted.
[0024]
The second stage reduction process is different from the first stage reduction in that the second stage reduction process is performed by mixing a lower oxide powder and a predetermined reduced metal melt. Due to the presence of the reduced metal melt, the surface diffusion of niobium and / or tantalum is inhibited, and the reduction of the specific surface area can be suppressed. Further, the reduction in the second stage is the same as or lower than that in the first stage, and the heating time is preferably 1 to 4 hours in the range of 400 to 1200 ° C. In general, the solid solubility limit of impurity elements in niobium and tantalum increases with temperature, and the diffusion speeds up. When the temperature is high as in the case of steam reduction, the reduction is sufficiently performed, and if there is an excess of reduced metal vapor, the solubility of the reduced metal increases and the residual amount of reduced metal increases. Therefore, the second stage reduction needs to use a mixing method in order to perform a complete reduction with a predetermined amount of reducing agent at the same or lower temperature as the first stage, specifically within a temperature range of 400 to 1200 ° C. There is.
[0025]
In the first stage, the niobium tantalum oxide is converted to a lower oxide powder represented by (Nb , Ta) O x , where x = 0.06 to 0.35, using an alkali metal or an alkaline earth metal. However, the end of the reduction is determined by measuring the mass change of the reduced product.
[0026]
In order to remove the oxide of alkali metal and / or alkaline earth metal produced in the first reduction step, leaching with acid is performed.
[0027]
In the second stage reduction step of obtaining a niobium or tantalum powder by reducing the lower oxide powder obtained in the first stage reduction step with an alkali metal or an alkaline earth metal, using a melt as a reducing agent, Note the complete reduction with a certain amount of reducing agent at low temperature.
[0028]
The average particle size can be measured by a laser diffraction method such as microtrack, the oxygen content can be measured by an oxygen analyzer such as an infrared absorption method, and the specific surface area can be measured by a method based on ISO9277.
[0029]
【Example】
Examples and comparative examples will be described below (see Table 1).
[0030]
Example 1
A cylindrical niobium reaction vessel 2 is placed in a vertical electric furnace 1 shown in FIG. 1, a niobium bucket 4 for reducing metal 3 is placed at the bottom of the reaction vessel 2, and the bucket 4 is placed above the bucket 4. A niobium tray 6 for the raw material oxide 5 was placed at a sufficient distance.
[0031]
500 g of niobium pentoxide powder (average particle size 3.5 μm) is inserted into the raw material, and magnesium (Ube Industries, Ltd., purity 99.97%, lump) is added to the reduced metal 3 with respect to the oxide powder. 1.1 molar equivalent was used.
[0032]
A niobium reaction vessel 2 is covered with a lid 2a, and argon gas is supplied at a rate of 100 ml / min from a gas supply hole provided in the lid 2a, while the inside of the reaction vessel 2 is heated to 1000 ° C. by a heating element 1a of the electric furnace 1. The reaction was continued for 6 hours. After cooling, the lower oxide powder in the tray 6 was taken out, immersed in 1N hydrochloric acid to dissolve and remove the magnesium oxide, and further washed with water and dried. The obtained lower oxide powder had a composition of NbO 0.2 and was 360 g.
[0033]
The lower oxide powder is directly inserted into the tray 6 of the reaction vessel 2 made of niobium, and 0.9 molar equivalent of magnesium (manufactured by Kanto Chemical Co., Inc., cut piece, purity 99% or more), lower oxide powder in the tray 6 The mixture was added to and mixed, and kept at 800 ° C. for 2 hours for melting reaction.
[0034]
That is, the reaction container 2 made of niobium is covered with a lid 2a, and argon gas is supplied at a rate of 100 ml / min from a gas supply hole provided in the lid 2a, while the inside of the reaction container 2 is heated by the heating element 1a of the electric furnace 1. The reaction was carried out for 2 hours while maintaining the temperature at 800 ° C. After cooling, the powder in the tray 6 was taken out and immersed in 1N hydrochloric acid to dissolve and remove the magnesium oxide, followed by washing with water and drying. The powder was pure niobium powder, and its BET specific surface area was measured, and the average particle size and the amount of oxygen contained were measured. BET 1.6 m 2 / g, average particle size 0.6 μm, oxygen content, respectively. It was 4800 ppm and the amount of magnesium was 150 ppm.
[0035]
(Example 2)
In Example 1, the reaction time (temperature) of the first-stage reduction step was set to 1100 ° C., and the obtained lower oxide powder was directly inserted into the niobium tray 6, and magnesium (manufactured by Kanto Chemical Co., Inc., cut pieces, The purity was 99% or more) and 0.8 molar equivalent was added and mixed with the lower oxide powder. The oxide powder had a composition of NbO 0.3 and was 365 g.
[0036]
In the second stage reduction process, the niobium reaction vessel 2 is covered with a lid 2a, and argon gas is supplied at a rate of 100 ml / min from the gas supply hole provided in the lid 2a, while the heating element 1a of the electric furnace 1 is used. The inside of the reaction vessel 2 was kept at a temperature of 750 ° C., and the melt reaction was performed for 4 hours. After cooling, the powder in the tray 6 was taken out and immersed in 1N hydrochloric acid to dissolve and remove the magnesium oxide, followed by washing with water and drying. The powder was pure niobium powder, and the BET specific surface area was measured, and the average particle size and the amount of oxygen contained were measured. The BET was 2.0 m 2 / g, the average particle size was 0.5 μm, and the oxygen content was 5700 ppm. The magnesium content was 130 ppm.
[0037]
Example 3
A cylindrical niobium reaction vessel 2 is placed in a vertical electric furnace 1 shown in FIG. 1, a niobium bucket 4 for reducing metal 3 is placed at the bottom of the reaction vessel 2, and the bucket 4 is sufficiently above it. Then, a niobium tray 6 for the raw material oxide 5 was placed.
[0038]
500 g of tantalum pentoxide powder (average particle size 2.4 μm) is inserted into the raw material, and magnesium (Ube Industries, bulk, purity 99.97% or more) is used as the reduced metal 3 with respect to the oxide powder. 0.0 molar equivalent was used.
[0039]
A niobium reaction vessel 2 is covered with a lid 2a, and argon gas is supplied at a rate of 100 ml / min from a gas supply hole provided in the lid 2a, while the inside of the reaction vessel 2 is heated to 1000 ° C. by a heating element 1a of the electric furnace 1. The reaction was continued for 6 hours. After cooling, the lower oxide powder in the tray 6 was taken out and immersed in 1N hydrochloric acid to dissolve and remove the magnesium oxide, followed by washing with water and drying. The obtained lower oxide powder had a composition of TaO 0.2 and was 392 g.
[0040]
The lower oxide powder was directly inserted into the reaction vessel 2 made of niobium, and 0.8 mol equivalent of magnesium (manufactured by Kanto Chemical Co., Inc., cut piece, purity 99% or more) was added to and mixed with the lower oxide powder.
[0041]
A niobium reaction vessel 2 is covered with a lid 2a, and argon gas is supplied at a rate of 100 ml / min from a gas supply hole provided in the lid 2a, while the inside of the reaction vessel 2 is heated to 800 ° C. by a heating element 1a of the electric furnace 1. The melt reaction was continued for 2 hours. After cooling, the powder in the tray 6 was taken out and immersed in 1N hydrochloric acid to dissolve and remove the magnesium oxide, followed by washing with water and drying. The powder was pure tantalum powder, and its BET specific surface area was measured, and the average particle size and the amount of oxygen contained were measured. BET 3.2 m 2 / g, average particle size 0.4 μm, oxygen content 3000 ppm The magnesium content was 110 ppm.
[0042]
Example 4
A cylindrical niobium reaction vessel 2 is placed in a vertical electric furnace 1 shown in FIG. 1, a niobium bucket 4 for reducing metal 3 is placed at the bottom of the reaction vessel 2, and the bucket 4 is placed above the bucket 4. A niobium tray 6 for the raw material oxide 5 was placed at a sufficient distance.
[0043]
Raw material is a niobium pentoxide powder (average particle size 3.5 [mu] m) and 500g inserted, the reduced metal 3, magnesium (Ube Industries Ltd., bulk, purity 99.97% or higher) with respect to the oxide powder 1 0.0 molar equivalent was used.
[0044]
A niobium reaction vessel 2 is covered with a lid 2a, and argon gas is supplied at a rate of 100 ml / min from a gas supply hole provided in the lid 2a, while the inside of the reaction vessel 2 is heated to 1000 ° C. by a heating element 1a of the electric furnace 1. The reaction was continued for 4 hours. After cooling, the lower oxide powder in the tray 6 was taken out and immersed in 1N hydrochloric acid to dissolve and remove the magnesium oxide, followed by washing with water and drying. The obtained lower oxide powder had a composition of TaO 0.15 and was 355 g.
[0045]
The lower oxide powder was inserted as it was into the niobium tray 6, and 0.9 molar equivalent of magnesium (manufactured by Kanto Chemical Co., Inc., cut piece, purity 99% or more) was added and mixed with the lower oxide powder.
[0046]
A niobium reaction vessel 2 is covered with a lid 2a, and argon gas is supplied at a rate of 100 ml / min from a gas supply hole provided in the lid 2a, while the inside of the reaction vessel 2 is heated to 800 ° C. by a heating element 1a of the electric furnace 1. The reaction was continued for 2 hours. After cooling, the powder in the tray 6 was taken out and immersed in 1N hydrochloric acid to dissolve and remove the magnesium oxide, followed by washing with water and drying. The powder was pure niobium powder, and its BET specific surface area was measured, and the average particle size and the amount of oxygen contained were measured. BET 1.9 m 2 / g, average particle size 0.5 μm, oxygen content 4300 ppm The magnesium content was 130 ppm.
[0047]
(Example 5)
A cylindrical niobium reaction vessel 2 is placed in a vertical electric furnace 1 shown in FIG. 1, a niobium bucket 4 for reducing metal 3 is placed at the bottom of the reaction vessel 2, and the bucket 4 is placed above the bucket 4. A niobium tray 6 for the raw material oxide 5 was placed at a sufficient distance.
[0048]
500 g of tantalum pentoxide powder (average particle size 2.4 μm) is inserted into the raw material, and sodium (manufactured by Kanto Chemical Co., Inc., bulk, purity 99% or more) is added to the reduced metal 3 at 1.0 Molar equivalents were used.
[0049]
A niobium reaction vessel 2 is covered with a lid 2a, and argon gas is supplied at a rate of 100 ml / min from a gas supply hole provided in the lid 2a, while the inside of the reaction vessel 2 is heated to 800 ° C. by a heating element 1a of the electric furnace 1. The reaction was continued for 6 hours. After cooling, the lower oxide powder in the tray 6 was taken out and immersed in 1 N hydrochloric acid to dissolve and remove the sodium oxide, followed by washing with water and drying. The obtained lower oxide powder had a composition of TaO 0.2 and was 392 g.
[0050]
The lower oxide powder was directly inserted into the tray 6 made of niobium, and sodium (manufactured by Kanto Chemical Co., Inc., granular, purity of 98% or more) was added and mixed at 0.8 molar equivalent to the lower oxide powder.
[0051]
A niobium reaction vessel 2 is covered with a lid 2a, and argon gas is supplied at a rate of 100 ml / min from a gas supply hole provided in the lid 2a, while the inside of the reaction vessel 2 is heated to 400 ° C. by a heating element 1a of the electric furnace 1. The melt reaction was continued for 2 hours. After cooling, the powder in the tray 6 was taken out and immersed in 1N hydrochloric acid to dissolve and remove the sodium oxide, followed by washing with water and drying. The powder was pure tantalum powder, and its BET specific surface area was measured, and the average particle diameter and the amount of oxygen contained were measured. BET 1.0 m 2 / g, average particle diameter 0.6 μm, oxygen content 3000 ppm The amount of sodium was 48 ppm.
[0052]
(Comparative Example 1)
In Example 1, the magnesium equivalent in the second stage reduction process was set to 1.7, and reduction was performed at 1050 ° C. for 4 hours. The obtained reduced product was immersed in 1N hydrochloric acid to leach magnesium oxide, and further washed with water and dried. The powder was pure metal niobium and weighed 340 g. The BET was 2.1 m 2 / g, the average particle size was 0.8 μm, the oxygen content was 5100 ppm, and the magnesium content was 370 ppm.
[0053]
(Comparative Example 2)
In Example 1, the magnesium equivalent was set to 0.85 in the first stage reduction step, and reduction was performed at 1050 ° C. for 4 hours. The obtained reduced product was immersed in 1N hydrochloric acid to leach magnesium oxide, and further washed with water and dried. The composition of the powder was NbO 0.4 , which was 370 g. In the second stage reduction step, 0.9 equivalent of magnesium was added and mixed, and the mixture was reacted at 800 ° C. for 2 hours. The BET was 0.6 m 2 / g, the average particle size was 2.3 μm, the oxygen content was 7300 ppm, and the magnesium content was 570 ppm. It is considered that the powder has a large calorific value during the second stage reduction, the particles become coarse, and magnesium is mixed in the powder due to local heat generation.
[0054]
(Comparative Example 3)
In Example 1, the magnesium equivalent in the first reduction process was 0.95, and reduction was performed at 1050 ° C. for 4 hours. The obtained reduced product was immersed in 1N hydrochloric acid to leach magnesium oxide, and further washed with water and dried. The composition of the powder was NbO 0.25 and 355 g. In the second stage reduction step, 0.3 equivalent of magnesium was added to and mixed with the lower oxide and reacted at 800 ° C. for 2 hours. The BET was 1.8 m 2 / g, the average particle size was 0.5 μm, the oxygen content was 29000 ppm, and the magnesium content was 67 ppm.
[0055]
(Comparative Example 4)
In Example 1, the magnesium equivalent in the first reduction process was 0.95, and reduction was performed at 1050 ° C. for 4 hours. The obtained reduced product was immersed in 1N hydrochloric acid to leach magnesium oxide, and further washed with water and dried. The composition of the powder was NbO 0.25 and 355 g. In the second reduction step, 2.0 equivalents of magnesium was added to the lower oxide and mixed, and reacted at 800 ° C. for 2 hours. The BET was 1.6 m 2 / g, the average particle size was 0.6 μm, the oxygen content was 5300 ppm, and the magnesium content was 370 ppm.
[0056]
[Table 1]
Figure 0003610942
[0057]
【The invention's effect】
The present invention relates to a niobium suitable for an electrolytic capacitor having a small residual amount of oxygen and reduced metal by controlling the amount of a reducing agent in a method of reducing an oxide of niobium or tantalum with an alkali metal or an alkaline earth metal. And a fine powder of tantalum can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a specific example of an apparatus for carrying out the production method of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electric furnace 1a Heating element 2 Niobium reaction container 3 Reduction metal 4 Niobium bucket 5 Oxide powder 6 Niobium tray

Claims (3)

次の各工程からなるニオブおよび/またはタンタルの粉末の製造法
(1)ニオブおよび/またはタンタルの酸化物をアルカリ金属およびアルカリ土類金属からなる群から選ばれた1種以上で還元して、(NbTa)O、但し式中x=0.06〜0.35、で表される低級酸化物粉末を得る第1段階還元工程、
(2)第1段階還元工程で生成したアルカリ金属および/またはアルカリ土類金属の酸化物を除去する工程、
(3)第1段階還元工程で得られた低級酸化物粉末をアルカリ金属およびアルカリ土類金属からなる群から選ばれた1種以上の融液を用いて400〜1200℃の温度範囲で還元して、ニオブおよび/またはタンタルの粉末を得る第2段階還元工程。
A method for producing niobium and / or tantalum powder comprising the following steps ;
(1) An oxide of niobium and / or tantalum is reduced with one or more selected from the group consisting of alkali metals and alkaline earth metals, and (Nb , Ta) O x , where x = 0.06 A first stage reduction step to obtain a lower oxide powder represented by ˜0.35,
(2) a step of removing the alkali metal and / or alkaline earth metal oxide produced in the first stage reduction step;
(3) The lower oxide powder obtained in the first stage reduction step is reduced in a temperature range of 400 to 1200 ° C. using one or more melts selected from the group consisting of alkali metals and alkaline earth metals. A second stage reduction process to obtain niobium and / or tantalum powder.
第1段階還元工程で得られた低級酸化物粉末をアルカリ金属およびアルカリ土類金属からなる群から選ばれた1種以上で還元する際、アルカリ金属およびアルカリ土類金属からなる群から選ばれた1種以上の混合量を、低級酸化物粉末の中の残留酸素除去に必要な化学量論に対して0.5〜1.5当量に調整して、アルカリ金属およびアルカリ土類金属からなる群から選ばれた1種以上の残留量を200ppm以下にする請求項1に記載のニオブおよび/またはタンタルの粉末の製造法。When the lower oxide powder obtained in the first stage reduction process is reduced with at least one selected from the group consisting of alkali metals and alkaline earth metals, it was selected from the group consisting of alkali metals and alkaline earth metals A group consisting of an alkali metal and an alkaline earth metal by adjusting the mixing amount of one or more kinds to 0.5 to 1.5 equivalents relative to the stoichiometry necessary for removing residual oxygen in the lower oxide powder. The method for producing a niobium and / or tantalum powder according to claim 1, wherein the residual amount of one or more selected from the group is 200 ppm or less. 請求項1または2に記載の製造法で得られ、1次粒子が0.1〜1.0μmの粒子径で均一に分布し、ppmで表した酸素量とm/gで表したBET比表面積との比が3100以下であるニオブおよび/またはタンタルの粉末。Obtained by the production method according to claim 1 or 2, the primary particles are uniformly distributed with a particle size of 0.1 to 1.0 µm, the oxygen amount expressed in ppm and the BET ratio expressed in m 2 / g Niobium and / or tantalum powder having a surface area ratio of 3100 or less .
JP2001315470A 2001-10-12 2001-10-12 Method for producing niobium and / or tantalum powder Expired - Lifetime JP3610942B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2001315470A JP3610942B2 (en) 2001-10-12 2001-10-12 Method for producing niobium and / or tantalum powder
KR1020020061528A KR100609715B1 (en) 2001-10-12 2002-10-09 Method of manufacturing Niobium and Tantalum powder
CA002406932A CA2406932A1 (en) 2001-10-12 2002-10-09 Method of manufacturing niobium and/or tantalum powder
TW091123262A TW570852B (en) 2001-10-12 2002-10-09 Method of manufacturing niobium and/or tantalum powder
DE60208287T DE60208287T2 (en) 2001-10-12 2002-10-10 Process for the preparation of niobium and / or tantalum powder
US10/268,615 US6855185B2 (en) 2001-10-12 2002-10-10 Method of manufacturing niobium and/or tantalum powder
IL15222602A IL152226A0 (en) 2001-10-12 2002-10-10 Method of manufacturing niobium and/or tantalum powder
EP02257048A EP1302263B1 (en) 2001-10-12 2002-10-10 Method of manufacturing niobium and/or tantalum powder
HU0203436A HUP0203436A2 (en) 2001-10-12 2002-10-11 Method of manufacturing niobium and/or tantalum powder
CNB021515980A CN1223424C (en) 2001-10-12 2002-10-11 Process for preparing niobic powder and/or tantalum powder
US11/030,384 US7351271B2 (en) 2001-10-12 2005-01-06 Method of manufacturing niobium and/or tantalum powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001315470A JP3610942B2 (en) 2001-10-12 2001-10-12 Method for producing niobium and / or tantalum powder

Publications (3)

Publication Number Publication Date
JP2003119506A JP2003119506A (en) 2003-04-23
JP2003119506A5 JP2003119506A5 (en) 2004-12-02
JP3610942B2 true JP3610942B2 (en) 2005-01-19

Family

ID=19133630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001315470A Expired - Lifetime JP3610942B2 (en) 2001-10-12 2001-10-12 Method for producing niobium and / or tantalum powder

Country Status (10)

Country Link
US (2) US6855185B2 (en)
EP (1) EP1302263B1 (en)
JP (1) JP3610942B2 (en)
KR (1) KR100609715B1 (en)
CN (1) CN1223424C (en)
CA (1) CA2406932A1 (en)
DE (1) DE60208287T2 (en)
HU (1) HUP0203436A2 (en)
IL (1) IL152226A0 (en)
TW (1) TW570852B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101711033B1 (en) * 2016-05-30 2017-02-28 에이치알엠알(주) Tantalum powder and method for manufacturing the same

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1169643C (en) * 2001-09-29 2004-10-06 宁夏东方钽业股份有限公司 Preparation method of high specific surface area tantalum powder and/or niobium powder
US20030099198A1 (en) * 2001-11-27 2003-05-29 Amplify.Net, Inc. Multicast service delivery in a hierarchical network
DE10332033A1 (en) * 2003-07-15 2005-02-03 Chemetall Gmbh Process for the preparation of metal powders or of metal hydride powders of the elements Ti, Zr, Hf, V, Nb, Ta and Cr
WO2005046912A1 (en) * 2003-11-12 2005-05-26 Cabotsupermetals K.K. Method for producing metallic tantalum or niobium
DE102004020052B4 (en) 2004-04-23 2008-03-06 H.C. Starck Gmbh Process for the preparation of niobium and tantalum powders
US20080011124A1 (en) * 2004-09-08 2008-01-17 H.C. Starck Gmbh & Co. Kg Deoxidation of Valve Metal Powders
DE102004049039B4 (en) * 2004-10-08 2009-05-07 H.C. Starck Gmbh Process for the preparation of finely divided valve metal powder
CN100339172C (en) * 2005-09-29 2007-09-26 宁夏东方钽业股份有限公司 Method for spheroidizing and pelletizing to coagulate metal powder, metal powder and electrolytic capacitor anode
US20070295609A1 (en) * 2006-06-23 2007-12-27 Korea Atomic Energy Research Institute Method for preparing tantalum or niobium powders used for manufacturing capacitors
CN100577574C (en) * 2007-08-25 2010-01-06 宁夏东方钽业股份有限公司 Method for preparing low chemical valence niobium oxide or niobium powder
CN101574741B (en) * 2009-06-25 2011-05-18 宁夏东方钽业股份有限公司 Preparation method of tantalum powder for capacitor
US7947125B1 (en) * 2009-10-30 2011-05-24 Canon Kabushiki Kaisha Fine particle dispersion liquid containing tantalum oxide fine particles, tantalum oxide fine particle-resin composite, and method of producing fine particle dispersion liquid
CN102965525B (en) * 2012-12-05 2013-11-27 江门富祥电子材料有限公司 Device and method for carrying out magnesium reduction and deoxidization on tantalum powder
US9994929B2 (en) * 2013-03-15 2018-06-12 Ati Properties Llc Processes for producing tantalum alloys and niobium alloys
CN105916616B (en) * 2014-11-03 2018-09-14 宁夏东方钽业股份有限公司 Tantalum powder and its manufacturing method and the sintered anode being made from it
US10966889B2 (en) 2016-12-29 2021-04-06 Hill-Rom Services, Inc. Support apparatuses comprising cooling elements
JPWO2021161550A1 (en) * 2020-02-14 2021-08-19
KR102444771B1 (en) * 2020-09-02 2022-09-20 한국재료연구원 Preparation method of niobium metal or niobium alloy using the magnesium vapor
CN114192791B (en) 2021-12-15 2023-10-24 宁夏东方钽业股份有限公司 Method for producing tantalum powder for capacitor by adopting alkaline earth metal to reduce tantalum oxide

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE327556B (en) * 1968-08-23 1970-08-24 Nordstjernan Rederi Ab
DE3130392C2 (en) * 1981-07-31 1985-10-17 Hermann C. Starck Berlin, 1000 Berlin Process for the production of pure agglomerated valve metal powder for electrolytic capacitors, their use and process for the production of sintered anodes
US4508563A (en) * 1984-03-19 1985-04-02 Sprague Electric Company Reducing the oxygen content of tantalum
US5242481A (en) * 1989-06-26 1993-09-07 Cabot Corporation Method of making powders and products of tantalum and niobium
US5234491A (en) * 1990-05-17 1993-08-10 Cabot Corporation Method of producing high surface area, low metal impurity
DE4214722C2 (en) * 1992-05-04 1994-08-25 Starck H C Gmbh Co Kg Finely divided metal powder
CZ301097B6 (en) * 1997-02-19 2009-11-04 H.C. Starck Gmbh Powder tantalum consisting of agglomerates, method for preparing thereof and sintered anodes obtained therefrom
CN1088761C (en) * 1997-02-19 2002-08-07 H.C.施塔克公司 Tantalum powder, method for producing same powder and sintered anodes obtained from it
WO2000067936A1 (en) 1998-05-06 2000-11-16 H.C. Starck, Inc. Metal powders produced by the reduction of the oxides with gaseous magnesium
US6171363B1 (en) * 1998-05-06 2001-01-09 H. C. Starck, Inc. Method for producing tantallum/niobium metal powders by the reduction of their oxides with gaseous magnesium
DE19847012A1 (en) * 1998-10-13 2000-04-20 Starck H C Gmbh Co Kg Niobium powder and process for its manufacture
US6432161B1 (en) * 2000-02-08 2002-08-13 Cabot Supermetals K.K. Nitrogen-containing metal powder, production process thereof, and porous sintered body and solid electrolytic capacitor using the metal powder
JP3718412B2 (en) * 2000-06-01 2005-11-24 キャボットスーパーメタル株式会社 Niobium or tantalum powder and method for producing the same
US6849104B2 (en) * 2000-10-10 2005-02-01 H. C. Starck Inc. Metalothermic reduction of refractory metal oxides
JP2003013115A (en) * 2001-06-28 2003-01-15 Sumitomo Metal Mining Co Ltd Method for manufacturing niobium and/or tantalum powder
CN1169643C (en) * 2001-09-29 2004-10-06 宁夏东方钽业股份有限公司 Preparation method of high specific surface area tantalum powder and/or niobium powder
JP3633543B2 (en) * 2001-10-23 2005-03-30 住友金属鉱山株式会社 Method for producing niobium and / or tantalum powder
BR0204587A (en) * 2002-11-04 2004-06-29 Cbmm Sa High Surface Area Niobium and / or Tantalum Powder Production Process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101711033B1 (en) * 2016-05-30 2017-02-28 에이치알엠알(주) Tantalum powder and method for manufacturing the same

Also Published As

Publication number Publication date
HU0203436D0 (en) 2002-12-28
US20050145069A1 (en) 2005-07-07
HUP0203436A2 (en) 2004-04-28
KR20030030927A (en) 2003-04-18
EP1302263B1 (en) 2005-12-28
JP2003119506A (en) 2003-04-23
KR100609715B1 (en) 2006-08-09
DE60208287T2 (en) 2006-09-21
CN1223424C (en) 2005-10-19
TW570852B (en) 2004-01-11
EP1302263A2 (en) 2003-04-16
CN1425524A (en) 2003-06-25
DE60208287D1 (en) 2006-02-02
EP1302263A3 (en) 2003-06-04
IL152226A0 (en) 2003-05-29
US20030070509A1 (en) 2003-04-17
US7351271B2 (en) 2008-04-01
CA2406932A1 (en) 2003-04-12
US6855185B2 (en) 2005-02-15

Similar Documents

Publication Publication Date Title
JP3610942B2 (en) Method for producing niobium and / or tantalum powder
JP5502995B2 (en) Method for producing tantalum powder for capacitors
JP3794713B2 (en) Tantalum powder, its production method and sintered anode obtained therefrom
JP4381401B2 (en) Method for producing niobium powder
CA1174083A (en) Process for the preparation of alloy powders which can be sintered and which are based on titanium
EP1291100B2 (en) Niobium or tantalum powder and method for production thereof
JP4187953B2 (en) Method for producing nitrogen-containing metal powder
US6788525B2 (en) Powdered tantalum, niobium, production process thereof and porous sintered body and solid electrolytic capacitor using the powdered tantalum or niobium
JP4049964B2 (en) Nitrogen-containing metal powder, production method thereof, porous sintered body and solid electrolytic capacitor using the same
IL131248A (en) Tantalum powder, method for producing it and sintered anodes obtained from it
JP3633543B2 (en) Method for producing niobium and / or tantalum powder
US20060096418A1 (en) Process for the production of niobium and/or tantalum powder with large surface area
JP2003013115A (en) Method for manufacturing niobium and/or tantalum powder
US7481864B2 (en) Conversion of Ta2O5 to Ta metal
JP2004360043A (en) Method for producing niobium and/or tantalum powder
JPH04329808A (en) Production of tantalum powder
JP2008095200A (en) Nitrogen-containing metal powder, its manufacturing method, and porous sintered compact and solid electrolytic capacitor using the metal powder
JP2009275289A (en) Method for producing nitrogen-containing metal powder
JP2009007675A (en) Nitrogen-containing metal powder, porous sintered compact and solid electrolytic capacitor using metal powder
JPH07500146A (en) Niobium metal recovery
WO2005046912A1 (en) Method for producing metallic tantalum or niobium
JP2016166422A (en) Method for producing nitrogen-containing metal powder
JP2005123245A (en) Niobium powder for electrolytic capacitor and its manufacturing method
JP2014218748A (en) Method of producing nitrogen-containing metal powder
JP2013136841A (en) Method for producing nitrogen-containing metal powder

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041011

R150 Certificate of patent or registration of utility model

Ref document number: 3610942

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 9