JP3610917B2 - Plastic molded product - Google Patents

Plastic molded product Download PDF

Info

Publication number
JP3610917B2
JP3610917B2 JP2001090597A JP2001090597A JP3610917B2 JP 3610917 B2 JP3610917 B2 JP 3610917B2 JP 2001090597 A JP2001090597 A JP 2001090597A JP 2001090597 A JP2001090597 A JP 2001090597A JP 3610917 B2 JP3610917 B2 JP 3610917B2
Authority
JP
Japan
Prior art keywords
resin material
laser light
absorbent
transparent
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001090597A
Other languages
Japanese (ja)
Other versions
JP2002284895A (en
Inventor
秀生 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001090597A priority Critical patent/JP3610917B2/en
Publication of JP2002284895A publication Critical patent/JP2002284895A/en
Application granted granted Critical
Publication of JP3610917B2 publication Critical patent/JP3610917B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • B29C65/1638Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding focusing the laser beam on the interface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/124Tongue and groove joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/24Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight
    • B29C66/242Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours
    • B29C66/2424Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours being a closed polygonal chain
    • B29C66/24243Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours being a closed polygonal chain forming a quadrilateral
    • B29C66/24244Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours being a closed polygonal chain forming a quadrilateral forming a rectangle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5346Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat
    • B29C66/53461Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat joining substantially flat covers and/or substantially flat bottoms to open ends of container bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • B29C66/542Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles joining hollow covers or hollow bottoms to open ends of container bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • B29C66/712General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined the composition of one of the parts to be joined being different from the composition of the other part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7212Fibre-reinforced materials characterised by the composition of the fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/836Moving relative to and tangentially to the parts to be joined, e.g. transversely to the displacement of the parts to be joined, e.g. using a X-Y table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/959Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 characterised by specific values or ranges of said specific variables
    • B29C66/9592Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 characterised by specific values or ranges of said specific variables in explicit relation to another variable, e.g. X-Y diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1609Visible light radiation, e.g. by visible light lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/939Measuring or controlling the joining process by measuring or controlling the speed characterised by specific speed values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3481Housings or casings incorporating or embedding electric or electronic elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/748Machines or parts thereof not otherwise provided for
    • B29L2031/749Motors
    • B29L2031/7492Intake manifold

Abstract

PROBLEM TO BE SOLVED: To enhance bonding strength by laser welding by permitting more laser light to reach and to be absorbed by the abutting surface of an absorbing resin material even when resin materials less compatible with each other are included in the resin materials constituting a transmitting resin material and an absorbing resin material. SOLUTION: In the resin molded article comprising a transmitting resin material 1 transmitting a laser light as a heat source and an absorbing resin material 2 absorbing the laser light, where the abutting end parts of the transmitting resin material 1 and the absorbing material 2 are bonded by welding by laser light irradiation from the transmitting resin material side, the absorbing resin material 2 is composed of an alloy material comprising a first resin material constituting the transmitting resin material 1 and a second resin material less compatible with the first resin material.

Description

【0001】
【発明の属する技術分野】
本発明は樹脂成形品に関し、詳しくは、レーザ光に対して透過性のある透過性樹脂材と、該レーザ光に対して吸収性のある吸収性樹脂材とをレーザ溶着により一体的に接合した樹脂成形品に関する。
【0002】
【従来の技術】
近年、軽量化及び低コスト化等の観点より、自動車部品等、各種分野の部品を樹脂化して樹脂成形品とすることが頻繁に行われている。また、樹脂成形品の高生産性化等の観点より、樹脂成形品を予め複数に分割して成形し、これらの分割成形品を互いに接合する手段が採られることが多い。
【0003】
ここに、樹脂材同士の接合方法として、従来よりレーザ溶着方法が利用されている。例えば、特開昭60−214931号公報には、レーザ光に対して透過性のある透過性樹脂材と、該レーザ光に対して吸収性のある吸収性樹脂材とを重ね合わせた後、該透過性樹脂材側からレーザ光を照射することにより、透過性樹脂材と吸収性樹脂材との当接面同士を加熱溶融させて両者を一体的に接合するレーザ溶着方法が開示されている。
【0004】
このレーザ溶着方法では、透過性樹脂材内を透過したレーザ光が吸収性樹脂材の当接面に到達して吸収され、この当接面に吸収されたレーザ光がエネルギーとして蓄積される。その結果、吸収性樹脂材の当接面が加熱溶融されるとともに、この吸収性樹脂材の当接面からの熱伝達により透過性樹脂材の当接面が加熱溶融される。この状態で、透過性樹脂材及び吸収性樹脂材の当接面同士を圧着させれば、両者を一体的に接合することができる。
【0005】
【発明が解決しようとする課題】
ところで、上記したようなレーザ溶着では、透過性樹脂材及び吸収性樹脂材の当接面同士を確実に溶着させて十分な接合強度を得るためには、吸収性樹脂材の当接面にレーザ光のエネルギーが十分に吸収される必要があることから、透過性樹脂材やレーザ光の種類等、具体的には透過性樹脂材のレーザ光透過率や加熱源として用いるレーザ光の波長等を適切に設定することにより、吸収性樹脂材の当接面に十分な量のレーザ光を到達、吸収させることが重要となる。
【0006】
一方、上記レーザ溶着による樹脂成形品の接合方法は、互いに相溶性のある樹脂材同士を接合するものである。したがって、上記従来のレーザ溶着によっては、互いに相溶性の小さい樹脂材料よりなる樹脂材同士を良好に接合することができなかった。
【0007】
そこで、本発明者は、互いに相溶性の小さい第1樹脂材料及び第2樹脂材料よりなる樹脂材同士をレーザ溶着する際の工夫として、一方の樹脂材を第1樹脂材料で構成するとともに、他方の樹脂材を第1樹脂材料と第2樹脂材料とからなるアロイ材により構成するという新たな手法に想到した。
【0008】
しかし、レーザ光に対して透過性のある透過性樹脂材側にアロイ材を採用すると、吸収性樹脂材の当接面に十分な量のレーザ光を到達、吸収させることができず、レーザ溶着による十分な接合強度を得ることができないという、新たな問題のあることが判った。これは、アロイ材の構造によるものと考えられる。すなわち、アロイ材は、一方の樹脂材料が島成分になるとともに他方の樹脂材料が海成分となる海島構造をなし、島成分がミクロ(1μm以下)に微細分布することで強度や特性を維持しているが、この島成分の微細分布がレーザ光の乱反射を招き、レーザ光透過率を低下させているものと考えられる。
【0009】
本発明は上記実情に鑑みてなされたものであり、透過性樹脂材及び吸収性樹脂材を構成する樹脂材料の中に互いに相溶性の小さい樹脂材料同士が含まれていても、各樹脂材における樹脂材料の構成の仕方やその配合割合を工夫することにより、吸収性樹脂材の当接面により多くのレーザ光を到達、吸収させてレーザ溶着による接合強度を向上させるのに有利となる樹脂成形品を提供することを解決すべき技術課題とするものである。
【0010】
【課題を解決するための手段】
(1)請求項1記載の樹脂成形品は、加熱源としてのレーザ光に対して透過性のある透過性樹脂材と、該レーザ光に対して吸収性のある吸収性樹脂材とからなり、該透過性樹脂材及び該吸収性樹脂材の当接端部同士が該透過性樹脂材側からの該レーザ光の照射により溶着されて接合された樹脂成形品において、上記透過性樹脂材が第1樹脂材料により構成され、上記吸収性樹脂材が、上記透過性樹脂材を構成する第1樹脂材料と、該第1樹脂材料とは異種材料であってかつ該第1樹脂材料と相溶性の小さい第2樹脂材料とからなるアロイ材により構成されていることを特徴とするものである。
【0011】
(2)請求項2記載の樹脂成形品は、加熱源としてのレーザ光に対して透過性のある透過性樹脂材と、該レーザ光に対して吸収性のある吸収性樹脂材とからなり、該透過性樹脂材及び該吸収性樹脂材の当接端部同士が該透過性樹脂材側からの該レーザ光の照射により溶着されて接合された樹脂成形品において、上記透過性樹脂材は、第1樹脂材料と、上記吸収性樹脂材を構成し、該第1樹脂材料と相溶性の小さい第2樹脂材料とからなるアロイ材により構成されるとともに、該第1樹脂材料と該第2樹脂材料との配合割合が、該透過性樹脂材における上記レーザ光の透過率を26%以上に確保しうるように設定されていることを特徴とするものである。
【0012】
【発明の実施の形態】
本発明の樹脂成形品は、加熱源としてのレーザ光に対して透過性のある透過性樹脂材と、該レーザ光に対して吸収性のある吸収性樹脂材とからなり、該透過性樹脂材及び該吸収性樹脂材の当接端部同士がレーザ溶着により一体的に接合されている。このレーザ溶着は、透過性樹脂材及び吸収性樹脂材の当接端部同士を当接させた状態で、透過性樹脂材側からレーザ光を照射することにより行われる。透過性樹脂材側から照射されたレーザ光は該透過性樹脂材内を透過して吸収性樹脂材の当接面に到達し、吸収される。この吸収性樹脂材の当接面に吸収されたレーザ光がエネルギーとして蓄積される結果、吸収性樹脂材の当接面が加熱溶融されるとともに、この吸収性樹脂材の当接面からの熱伝達により透過性樹脂材の当接面が加熱溶融される。この状態で、透過性樹脂材及び吸収性樹脂材の当接面同士を圧着させれば、両者を一体的に接合することができる。
【0013】
こうして得られた接合部では、接合面同士が溶融されて接合されており、該接合面同士の間では両成形部材を構成する両樹脂が溶融して互いに入り込み絡まった状態が形成されているため、強固な接合状態を構成して高い接合強度及び耐圧強度を有している。
【0014】
ここに、請求項1記載の樹脂成形品では、吸収性樹脂材が、透過性樹脂材を構成する第1樹脂材料と、該第1樹脂材料とは異種材料であってかつ該第1樹脂材料と相溶性の小さい第2樹脂材料とからなるアロイ材により構成されている。
【0015】
このため、レーザ光照射により、透過性樹脂材及び吸収性樹脂材の当接面同士が加熱溶融されれば、吸収性樹脂材を構成するアロイ材中の第1樹脂材料と透過性樹脂材中の第1樹脂材料とが、すなわち同一樹脂材料同士が溶着する。
【0016】
また、第1樹脂材料及び第2樹脂材料からなるアロイ材には、互いに相溶性の小さい樹脂材同士を化学的に結合させる相溶化剤が両樹脂の界面に含まれている。このため、アロイ材により構成された吸収性樹脂材の当接面が加熱溶融されれば、アロイ材中に含まれる相溶化剤の相溶作用により、透過性樹脂材中の第1樹脂材料及び吸収性樹脂材を構成するアロイ材中の第1樹脂材料と吸収性樹脂材を構成するアロイ材中の第2樹脂材料とが、すなわち異種材料同士が溶着する。
【0017】
そして、請求項1記載の樹脂成形品では、吸収性樹脂材をアロイ材としており、レーザ光を透過させる透過性樹脂材を第1樹脂材料により構成してアロイ材としていないため、前述したようなアロイ材の光散乱特性によるレーザ光透過率の低下の問題が発生しない。したがって、透過性樹脂材及び吸収性樹脂材を構成する樹脂材料の中に互いに相溶性の小さい樹脂材料同士が含まれていても、吸収性樹脂材の当接面により多くのレーザ光を到達、吸収させてレーザ溶着による接合強度を向上させるのに有利となり、十分な接合強度をもった良好なレーザ溶着が可能となる。
【0018】
上記透過性樹脂材を構成する第1樹脂材料の種類としては、熱可塑性を有し、加熱源としてのレーザ光を所定の透過率以上(好適には26%以上)で透過させうるものであれば特に限定されない。例えば、ナイロン6(PA6)やナイロン66(PA66)等のポリアミド(PA)、ポリエチレン(PE)、ポリプロピレン(PP)、スチレン−アクリロニトリル共重合体、ポリエチレンテレフタレート(PET)、ポリスチレン、ABS、アクリル(PMMA)、ポリカーボネート(PC)、ポリブチレンテレフタレート(PBT)、ポリアセタール(POM)等を挙げることができる。なお、この透過性樹脂材には、必要に応じて、カーボンブラック、染料や顔料等の所定の着色材を添加したり、あるいはガラス繊維、カーボン繊維等の補強繊維を添加したりしてもよい。
【0019】
上記吸収性樹脂材を構成するアロイ材は、上記透過性樹脂材を構成する第1樹脂材料と、熱可塑性を有し、この第1樹脂材料とは異種材料であってかつ該第1樹脂材料と相溶性の小さい第2樹脂材料とからなる。
【0020】
例えば、上記透過性樹脂材を構成する第1樹脂材料として、PA6やPA66等のPAを採用した場合は、この第1樹脂材料とともにアロイ材を構成する第2樹脂材料として、PP、PE、PPS、PBTやABS等を採用することができる。
【0021】
また、上記透過性樹脂材を構成する第1樹脂材料として、PPを採用した場合は、この第1樹脂材料とともにアロイ材を構成する第2樹脂材料として、PA6やPA66等のPA、PE、PPS、PBTやABS等を採用することができる。
【0022】
また、上記透過性樹脂材を構成する第1樹脂材料として、PEを採用した場合は、この第1樹脂材料とともにアロイ材を構成する第2樹脂材料として、PA6やPA66等のPA、PP、PPS、PBTやABS等を採用することができる。
【0023】
また、上記透過性樹脂材を構成する第1樹脂材料として、PCを採用した場合は、この第1樹脂材料とともにアロイ材を構成する第2樹脂材料として、PA6やPA66等のPA、PP、PBT、ABSやPET等を採用することができる。
【0024】
また、上記透過性樹脂材を構成する第1樹脂材料として、PMMAを採用した場合は、この第1樹脂材料とともにアロイ材を構成する第2樹脂材料として、PC、ABSやPET等を採用することができる。
【0025】
また、上記透過性樹脂材を構成する第1樹脂材料として、ABSを採用した場合は、この第1樹脂材料とともにアロイ材を構成する第2樹脂材料として、PA6やPA66等のPA、PP、PBT、PE、PPSやPET等を採用することができる。
【0026】
上記吸収性樹脂材を構成するアロイ材における第1樹脂材料と第2樹脂材料との配合割合は、レーザ光に対する吸収性や透過性樹脂材との溶着強度に影響を与えるため、透過性樹脂材との必要な溶着強度を確保しうる範囲内で適宜設定可能である。具体的には、第1樹脂材料と第2樹脂材料との配合割合は、10:90〜90:10程度の範囲内で適宜設定可能であり、25:75〜75:25程度とすることが好ましい。
【0027】
なお、アロイ材は、相溶化剤等又は架橋材を添加したり、あるいは相溶化剤及び架橋材を添加したりすることにより製造することができる。
【0028】
そして、上記吸収性樹脂材には、レーザ光に対して所定の吸収性を発揮しうるように、必要に応じて、カーボンブラック、染料や顔料等の所定の着色材を添加される。また、この吸収性樹脂材には、必要に応じて、ガラス繊維、カーボン繊維等の補強繊維を添加してもよい。
【0029】
一方、請求項2記載の樹脂成形品は、上記透過性樹脂材が、第1樹脂材料と、上記吸収性樹脂材を構成し、該第1樹脂材料と相溶性の小さい第2樹脂材料とからなるアロイ材により構成されるとともに、該第1樹脂材料と該第2樹脂材料との配合割合が、該透過性樹脂材における上記レーザ光の透過率を26%以上に確保しうるように設定されている。
【0030】
このように透過性樹脂材をアロイ材により構成する場合は、上記したようにアロイ材の光散乱特性によるレーザ光透過率の低下の問題が発生しうる。ここで、アロイ材の光散乱特性は、アロイ材における第1樹脂材料と第2樹脂材料との配合割合の影響を受けることが本発明者の実験により明らかとなっている。すなわち、この配合割合が特定の範囲にあれば、アロイ材であっても所定以上のレーザ光透過率を維持することが可能となる。
【0031】
そこで、請求項2記載の樹脂成形品では、透過性樹脂材を構成するアロイ材において、該透過性樹脂材におけるレーザ光透過率を26%以上に確保しうるように、第1樹脂材料と第2樹脂材料との配合割合を設定している。これにより、透過性樹脂材にアロイ材を採用しつつ、透過性樹脂材におけるレーザ光透過率を26%以上に維持して、透過性樹脂材を透過する間におけるレーザ光のエネルギーロスを抑えることができる。したがって、吸収性樹脂材の当接面により多くのレーザ光を到達、吸収させることができ、透過性樹脂材及び吸収性樹脂材の当接面同士を十分に加熱溶融させてレーザ溶着による接合強度を向上させることが可能となる。
【0032】
なお、レーザ光透過率とは、透過性樹脂材を透過したレーザ光のエネルギーの入射光のエネルギーに対する百分率をいう。また、レーザ光透過率は、レーザ光が透過性樹脂材内を透過する透過長が長くなるほど低下し、またレーザ光の波長や樹脂成形品の吸収スペクトルの影響も受ける。このため、レーザ光に対する樹脂成形品の透過率が所定範囲となるように、透過性樹脂材における透過長及び吸収スペクトル、並びにレーザ光の波長を適宜設定する必要がある。
【0033】
上記吸収性樹脂材を構成する第2樹脂材料の種類としては、熱可塑性樹脂のうち、例えば、ナイロン6(PA6)やナイロン66(PA66)等のポリアミド(PA)、ポリエチレン(PE)、ポリプロピレン(PP)、スチレン−アクリロニトリル共重合体、ポリエチレンテレフタレート(PET)、ポリスチレン、ABS、アクリル(PMMA)、ポリカーボネート(PC)、ポリブチレンテレフタレート(PBT)、PPS等を挙げることができる。
【0034】
そして、この吸収性樹脂材には、レーザ光に対して所定の吸収性を発揮しうるように、必要に応じて、カーボンブラック、染料や顔料等の所定の着色材が添加される。また、この吸収性樹脂材には、必要に応じて、ガラス繊維、カーボン繊維等の補強繊維を添加してもよい。
【0035】
上記透過性樹脂材を構成するアロイ材は、上記吸収性樹脂材を構成する第2樹脂材料と、熱可塑性を有し、この第2樹脂材料と相溶性の小さい第1樹脂材料とからなり、しかも該透過性樹脂材におけるレーザ光透過率を26%以上に確保しうるように、第1樹脂材料と第2樹脂材料との配合割合が設定されている。なお、透過性樹脂材におけるレーザ光透過率は、上述のとおり、レーザ光が透過性樹脂材内を透過する透過長、レーザ光の波長の影響も受ける。このため、透過性樹脂材におけるレーザ光透過率が26%以上となるように、透過長やレーザ光の波長を適宜設定する必要がある。また、この透過性樹脂材には、必要に応じて、カーボンブラック、染料や顔料等の所定の着色材を添加したり、あるいはガラス繊維、カーボン繊維等の補強繊維を添加したりしてもよい。
【0036】
例えば、上記吸収性樹脂材を構成する第2樹脂材料として、PA6やPA66等のPAを採用した場合は、この第2樹脂材料とともにアロイ材を構成する第1樹脂材料として、PP、PE、ABSやPOM等を採用することができる。そして、PAとPPとの組合せの場合は、PAとPPとの配合割合をPA:PP=20:80〜80:20とすることができ、PAとPEとの組合せの場合は、PAとPEとの配合割合をPA:PE=20:80〜80:20とすることができる。
【0037】
また、上記吸収性樹脂材を構成する第2樹脂材料として、PBTを採用した場合は、この第2樹脂材料とともにアロイ材を構成する第1樹脂材料として、PC、ABS、PMMAやPP等を採用することができる。そして、PBTとABSの組合せの場合は、PBTとABSとの配合割合をPBT:ABS=90:10〜10:90とすることができ、PBTとPPとの組合せの場合は、PBTとPPとの配合割合をPBT:PP=90:10〜10:90とすることができる。
【0038】
なお、請求項1又は2記載の発明において、加熱源として用いるレーザ光の種類としては、レーザ光を透過させる透過性樹脂材の吸収スペクトルや板厚(透過長)等との関係で、透過性樹脂材内での透過率が所定値以上となるような波長を有するものが適宜選定される。例えば、YAG:Nd3+レーザ(レーザ光の波長:1060nm)や半導体レーザ(レーザ光の波長:500〜1000nm)を用いることができる。
【0039】
また、レーザの出力、照射密度や加工速度(移動速度)等の照射条件は、樹脂の種類等に応じて適宜設定可能である。
【0040】
【実施例】
以下、実施例により本発明を具体的に説明する。
【0041】
(実施例1)
本実施例は、請求項1記載の発明を具現化したもので、透過性樹脂材及び吸収性樹脂材を構成する樹脂材料の中に互いに相溶性の小さい樹脂材料同士が含まれており、吸収性樹脂材側にアロイ材を採用したものである。
【0042】
図1は自動車用の電子制御装置(ECU)の斜視図であり、図2はこの電子制御装置の断面図である。
【0043】
この電子制御装置は、加熱源としてのレーザ光に対して透過性のある透過性樹脂材1と、該レーザ光に対して吸収性のある吸収性樹脂材2とから外郭が構成された中空体である。なお、透過性樹脂材1が蓋を構成し、吸収性樹脂材2がハウジングを構成する。この透過性樹脂材1の下面の周縁部には環状凸部10が設けられ、吸収性樹脂材2の側壁21の上端面21aには該環状凸部10と互いに整合して嵌合し合う環状凹部20が設けられている。そして、この環状凸部10及び環状凹部20同士が嵌合し合った状態で、吸収性樹脂材2の側壁21の上端面21a及びこの上端面21aと当接し合う透過性樹脂材1の周縁部の下面同士と、環状凸部10の外面及び環状凹部20の内面同士とがレーザ溶着により一体的に接合されている。
【0044】
なお、上記吸収性樹脂材2の側壁21には、低コスト化の観点よりコネクタ22が一体に形成されており(図1参照)、また吸収性樹脂材2内にはこのコネクタ22に接続された電気回路23が配設されている(図2参照)。
【0045】
そして、透過性樹脂材1は、第1樹脂材料としてのPA6により構成されている。
【0046】
一方、吸収性樹脂材2は、透過性樹脂材1を構成する第1樹脂材料としてのPA6と、該第1樹脂材料と相溶性の小さい第2樹脂材料としてのPBTとからなるアロイ材により構成されている。また、この吸収性樹脂材2を構成するアロイ材における第1樹脂材料と第2樹脂材料との配合割合は、PA6:PBT=50:50とされている。さらに、この吸収性樹脂材2には、加熱源としてのレーザ光に対して所定の吸収性を発揮しうるように、着色材としてのカーボンブラックが適宜量添加されている。なお、上記第2樹脂材料としてのPBTは、結晶構造により材料固有値としての光透過性が低いことから、透過性樹脂材として用いることは不適である。
【0047】
上記構成を有する本実施例の樹脂成形品は、以下のようにして製造した。まず、透過性樹脂材1及び吸収性樹脂材2を射出成形によりそれぞれ所定形状に形成した後、吸収性樹脂材2の内面に電気回路23を配設した。そして、透過性樹脂材1の当接端部と吸収性樹脂材2の当接端部とを当接させるとともに、透過性樹脂材1の環状凸部10と吸収性樹脂材2の環状凹部20とを嵌合した。この状態で、透過樹脂材1側から吸収性樹脂材2の環状凹部20に向けてレーザ光を照射した。なお、レーザ光としてはYAG−ネオジウムレーザ光(波長1060nm)を用いた。照射条件は、出力:200〜400W、加工速度:5m/minとした。
【0048】
このレーザ光照射により、透過性樹脂材1及び吸収性樹脂材2の当接面同士を加熱溶融して溶着し、透過性樹脂材1の周縁部の下面及び吸収性樹脂材2の側壁21の上端面21a同士と、環状凸部10の外面及び環状凹部20の内面同士とを一体的に接合した。
【0049】
このように、本実施例に係る樹脂成形品では、吸収性樹脂材2をアロイ材としており、レーザ光を透過させる透過性樹脂材1を第1樹脂材料としてのPA6により構成してアロイ材としていないため、レーザ照射時にアロイ材の光散乱特性によりレーザ光透過率低下の問題が発生することはない。したがって、透過性樹脂材1及び吸収性樹脂材2を構成する樹脂材料の中に互いに相溶性の小さい樹脂材料同士が含まれていても、吸収性樹脂材2の当接面により多くのレーザ光を到達、吸収させてレーザ溶着による接合強度を向上させるのに有利となり、十分な接合強度をもった良好なレーザ溶着が可能となる。
【0050】
また、本実施例によれば、以下に示す作用効果も期待できる。
【0051】
自動車用の電子制御装置においては、装置内への水の侵入を防ぐべく密封性が求められる。このため、従来、ハウジングと蓋との接合は、熱硬化性接着剤により接着したり、あるいは高価なフッ素ゴム系のOリングを介してボルト及び埋め込みナットで締結したりすることにより行われている。しかし、熱硬化性接着剤を利用する場合は、炉内でのバッジ加熱処理時に電気回路23のはんだ接合部等に熱影響が発生し易く、また生産性も悪い。また、Oリングを介するボルト及び埋め込みナットの締結手段を利用する場合は、部品点数の増加と工程増加で高コストにある。この点、レーザ溶着を利用する本実施例によれば、熱影響により電気回路23に悪影響が発生したり、部品点数が増加したりすることがないことから、上記従来の問題を解消することができる。
【0052】
また、自動車用の電子制御装置におけるコネクタ22には吸水に対する寸法安定性が求められる。このため、コネクタ22の材料として、一般的には耐吸水性に優れるPBTが採用されている。そして、本実施例のように低コスト化を図るべくコネクタ22をハウジングとしての吸収性樹脂材2と一体成形しようとすると、吸収性樹脂材2の樹脂材料も当然にPBTとなる。ところが、上述のとおりPBTは材料固有値としての光透過性が低く、吸収性樹脂材としてしか用いることができない。そして、このPBTと相溶性があり、かつ、レーザ光に対して透過性のある適当な樹脂材料は、一般的には見あたらない。このため、ハウジングの樹脂材料にPBTを採用した場合、従来のレーザ溶着によっては、蓋部材を接合することができない。この点、本実施例によれば、透過性樹脂材1を構成するレーザ透過性に優れた第1樹脂材料としてのPA6と、吸水に対する寸法安定性に優れた第2樹脂材料としてのPBTとからなるアロイ材によりハウジングとしての吸収性樹脂材料2を構成していることから、蓋としての透過性樹脂材1とハウジングとしての吸収性樹脂材2とのレーザ溶着が可能となる。したがって、ハウジングとしての吸収性樹脂材料2とコネクタ22とを一体成形して低コスト化を図りつつ、コネクタ22における吸水に対する寸法安定性を向上させることが可能となる。
【0053】
なお、この実施例において、蓋としての透過性樹脂材1を構成する第1樹脂材料をPAよりも安価なポリプロピレン(PP)として、より低コスト化を図ることも可能である。
【0054】
(実施例2)
本実施例は、請求項2記載の発明を具現化したもので、透過性樹脂材及び吸収性樹脂材を構成する樹脂材料の中に互いに相溶性の小さい樹脂材料同士が含まれており、透過性樹脂材側にアロイ材を採用したものである。
【0055】
射出成形法により、所定のアロイ材により構成された板厚が3mmの透過性樹脂材3を準備した。この透過性樹脂材3を構成するアロイ材は、第1樹脂材料としてのPPと、後述する吸収性樹脂材4を構成する第2樹脂材料としてのPA6とからなる。なお、第1樹脂材料としてのPPと第2樹脂材料としてのPA6とは互いに相溶性の小さい樹脂である。また、この透過性樹脂材1には、補強繊維としてのガラス繊維(GF)が30mass%添加されている。
【0056】
そして、この透過性樹脂材3を構成するアロイ材における第1樹脂材料と第2樹脂材料との配合割合は、PP:PA6=30:70とされている。これにより、該透過性樹脂材3における加熱源としてのレーザ光の透過率が26%以上に確保されている。
【0057】
また、射出成形法により、第2樹脂材料としてのPA6により構成された板厚が3mmの吸収性樹脂材4を準備した。そして、この吸収性樹脂材4には、加熱源としてのレーザ光に対して所定の吸収性を発揮しうるように、着色材としてのカーボンブラックが適宜量添加されている。また、この吸収性樹脂材には、補強繊維としてのガラス繊維(GF)が30mass%添加されている。
【0058】
一方、波長が1.06μmのYAG:Nd3+レーザ光を発するレーザトーチ5を準備した。
【0059】
そして、図3に示すように、吸収性樹脂材4の上に透過性樹脂材3を重ね合わせるように両者を当接させるとともに、透過性樹脂材3及び吸収性樹脂材4を図示しないクランプ手段でクランプした。この状態で、レーザトーチ5を透過性樹脂材3側から照射して、透過性樹脂材3と吸収性樹脂材4とをレーザ溶着により一体的に接合した。
【0060】
本実施例では、透過性樹脂材3をアロイ材により構成しているが、このアロイ材における第1樹脂材料と第2樹脂材料との配合割合の好適化又は最適化により、アロイ材の光散乱特性によるレーザ光透過率の低下の問題を解消することができる。すなわち、透過性樹脂材3を構成するアロイ材において、該透過性樹脂材3におけるレーザ光透過率を26%以上に確保しうるように、第1樹脂材料と第2樹脂材料との配合割合が設定されている。これにより、透過性樹脂材3にアロイ材を採用しつつ、透過性樹脂材3におけるレーザ光透過率を26%以上に維持して、透過性樹脂材3を透過する間におけるレーザ光のエネルギーロスを抑えることができる。したがって、吸収性樹脂材4の当接面により多くのレーザ光を到達、吸収させることができ、透過性樹脂材3及び吸収性樹脂材4の当接面同士を十分に加熱溶融させてレーザ溶着による接合強度を向上させることが可能となる。
【0061】
なお、本実施例では、板材よりなる透過性樹脂材3及び吸収性樹脂材4からなる樹脂成形品を示したが、具体的な製品(例えばインテークマニホールド、キャニスター、エアークリーナーやダクト)に適用することは勿論可能である。
【0062】
(レーザ光透過率と溶着強度との関係)
ガラス繊維が30wt%添加されて強化されたナイロン6からなる板厚3mmの透過性樹脂材と、カーボンブラックが所定量添加されたナイロン6からなる板厚3mmの吸収性樹脂材とを重ね合わせ、YAG:Nd3+レーザ(波長:1060nm)を透過性樹脂材側から照射して、レーザ溶着により一体的に接合した。なお、レーザの出力は400W、加工速度は4m/minとした。
【0063】
そして、透過性樹脂材に着色剤としての染料を添加し、その添加量を種々変更することにより、透過性樹脂材におけるレーザ光透過率を種々変更して、透過性樹脂材におけるレーザ光透過率と溶着強度との関係を調べた。その結果を図4に示す。
【0064】
図4から明らかなように、透過性樹脂材におけるレーザ光透過率が26%以上あれば、溶着強度が45MPa以上となり、十分な溶着強度を達成できることがわかる。
【0065】
なお、レーザ光透過率は、入射エネルギーをワーク有無で算出することにより測定し、溶着強度は、溶着部を引張り破断することにより測定した。
【0066】
(樹脂のアロイ化とレーザ光透過率との関係)
樹脂のアロイ化とレーザ光透過率との関係を調べた。その結果を図5に示す。なお、レーザ光には、YAG:Nd3+レーザ(波長:1060nm)を用い、出力は400Wとした。
【0067】
図5から明らかなように、PC、PA6、ABS又はPPは、単独では何れもレーザ光透過率が26%以上あるのに対し、PA6とPPとからなるアロイ材(PA6:PP=60:40)やPCとABSとからなるアロイ材(PC:ABS=60:40)では、レーザ光透過率が極端に低下し、板厚によってはレーザ光透過率が26%未満になる場合があった。
【0068】
【発明の効果】
以上詳述したように、本発明の樹脂成形品によれば、透過性樹脂材及び吸収性樹脂材を構成する樹脂材料の中に互いに相溶性の小さい樹脂材料同士が含まれていても、吸収性樹脂材の当接面により多くのレーザ光を到達、吸収させてレーザ溶着による接合強度を向上させるのに有利となり、十分な接合強度をもった良好なレーザ溶着が可能となる。
【図面の簡単な説明】
【図1】本発明の実施例1に係る樹脂成形品の斜視図である。
【図2】上記実施例1に係る樹脂成形品の断面図である。
【図3】本発明の実施例2に係る樹脂成形品の断面図である。
【図4】透過性樹脂材におけるレーザ光透過率と溶着強度との関係を示す線図である。
【図5】樹脂のアロイ化とレーザ光透過率との関係を示す線図である。
【符号の説明】
1、3…透過性樹脂材
2、4…吸収性樹脂材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a resin molded product, and more specifically, a transparent resin material that is transparent to laser light and an absorbent resin material that is absorbable to the laser light are integrally joined by laser welding. It relates to resin molded products.
[0002]
[Prior art]
In recent years, from the viewpoints of weight reduction and cost reduction, it has been frequently performed to resin parts of various fields such as automobile parts to form resin molded products. Further, from the viewpoint of increasing the productivity of resin molded products, it is often the case that a resin molded product is divided into a plurality of parts and molded, and these divided molded products are joined together.
[0003]
Here, as a method for joining resin materials, a laser welding method has been conventionally used. For example, in JP-A-60-214931, a transparent resin material that is transmissive to laser light and an absorbent resin material that is absorbent to the laser light are overlapped, A laser welding method is disclosed in which laser light is irradiated from the transmissive resin material side to heat and melt the contact surfaces of the transmissive resin material and the absorbent resin material, thereby integrally bonding the two.
[0004]
In this laser welding method, the laser light transmitted through the transmissive resin material reaches the contact surface of the absorbent resin material and is absorbed, and the laser light absorbed on the contact surface is accumulated as energy. As a result, the contact surface of the absorbent resin material is heated and melted, and the contact surface of the permeable resin material is heated and melted by heat transfer from the contact surface of the absorbent resin material. In this state, if the contact surfaces of the permeable resin material and the absorbent resin material are pressure-bonded together, they can be joined together.
[0005]
[Problems to be solved by the invention]
By the way, in laser welding as described above, in order to obtain a sufficient bonding strength by reliably welding the contact surfaces of the transparent resin material and the absorbent resin material, a laser is applied to the contact surface of the absorbent resin material. Since the energy of the light needs to be sufficiently absorbed, the type of transmissive resin material and laser light, such as the laser light transmittance of the transmissive resin material and the wavelength of the laser light used as a heating source, etc. By setting appropriately, it is important to reach and absorb a sufficient amount of laser light on the contact surface of the absorbent resin material.
[0006]
On the other hand, the method for joining resin molded products by laser welding is to join resin materials having compatibility with each other. Therefore, resin materials made of resin materials having low compatibility with each other cannot be satisfactorily bonded to each other by the conventional laser welding.
[0007]
Therefore, the present inventor made one resin material with the first resin material as a device for laser welding the resin materials made of the first resin material and the second resin material having low compatibility with each other, and the other The inventors have come up with a new technique in which the resin material is composed of an alloy material composed of a first resin material and a second resin material.
[0008]
However, if an alloy material is used on the side of the transparent resin material that is transparent to laser light, a sufficient amount of laser light cannot reach and be absorbed by the abutting surface of the absorbent resin material, and laser welding is performed. It has been found that there is a new problem that sufficient bonding strength cannot be obtained. This is considered to be due to the structure of the alloy material. In other words, the alloy material has a sea-island structure in which one resin material is an island component and the other resin material is a sea component, and the island component is finely distributed micro (1 μm or less) to maintain strength and characteristics. However, it is considered that the fine distribution of the island component causes irregular reflection of the laser beam and lowers the laser beam transmittance.
[0009]
The present invention has been made in view of the above-described circumstances, and even if resin materials constituting the permeable resin material and the absorbent resin material include resin materials having low compatibility with each other, Resin molding that is advantageous in improving the bonding strength by laser welding by reaching and absorbing more laser light on the abutting surface of the absorbent resin material by devising the way of composition of the resin material and its blending ratio Providing products is a technical problem to be solved.
[0010]
[Means for Solving the Problems]
(1) The resin molded product according to claim 1 is composed of a transparent resin material that is transparent to laser light as a heating source, and an absorbent resin material that is absorbent to the laser light, In the resin molded product in which the contact end portions of the transparent resin material and the absorbent resin material are welded and joined by irradiation of the laser light from the transparent resin material side, The permeable resin material is composed of a first resin material, The absorbent resin material is a first resin material constituting the transparent resin material; The first resin material is a different material and It is characterized by comprising an alloy material comprising a second resin material having a low compatibility with the first resin material.
[0011]
(2) The resin molded product according to claim 2 is composed of a transparent resin material that is transmissive to laser light as a heating source, and an absorbent resin material that is absorbent to the laser light, In the resin molded product in which the contact end portions of the transparent resin material and the absorbent resin material are welded and joined by irradiation of the laser light from the transparent resin material side, the transparent resin material is: The first resin material and the absorptive resin material are constituted by an alloy material composed of a second resin material having a low compatibility with the first resin material, and the first resin material and the second resin. The blending ratio with the material is set so that the transmittance of the laser light in the transparent resin material can be secured to 26% or more.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The resin molded product of the present invention comprises a transparent resin material that is transparent to laser light as a heating source, and an absorbent resin material that is absorbent to the laser light, and the transparent resin material The abutting ends of the absorbent resin material are integrally joined by laser welding. This laser welding is performed by irradiating laser light from the transparent resin material side in a state where the contact end portions of the transparent resin material and the absorbent resin material are in contact with each other. The laser light irradiated from the transparent resin material side passes through the transparent resin material, reaches the contact surface of the absorbent resin material, and is absorbed. As a result of the laser light absorbed on the contact surface of the absorbent resin material being accumulated as energy, the contact surface of the absorbent resin material is heated and melted, and heat from the contact surface of the absorbent resin material is also obtained. The contact surface of the permeable resin material is heated and melted by transmission. In this state, if the contact surfaces of the permeable resin material and the absorbent resin material are pressure-bonded together, they can be joined together.
[0013]
In the joint part obtained in this way, the joint surfaces are melted and joined, and between the joint surfaces, both resins constituting both molded members are melted and are intertwined with each other. It has a strong bonding state and a high pressure strength by constituting a strong bonding state.
[0014]
Here, in the resin molded product according to claim 1, the absorbent resin material includes a first resin material constituting the permeable resin material, The first resin material is a different material and It is comprised with the alloy material which consists of this 1st resin material and 2nd resin material with little compatibility.
[0015]
For this reason, if the contact surfaces of the transparent resin material and the absorbent resin material are heated and melted by laser light irradiation, the first resin material and the transparent resin material in the alloy material constituting the absorbent resin material The first resin material, that is, the same resin material is welded to each other.
[0016]
Further, the alloy material made of the first resin material and the second resin material contains a compatibilizing agent for chemically bonding resin materials having low compatibility with each other at the interface between the two resins. For this reason, if the contact surface of the absorbent resin material comprised by the alloy material is heated and melted, the first resin material in the permeable resin material and the compatibilizing action of the compatibilizer contained in the alloy material and The first resin material in the alloy material constituting the absorbent resin material and the second resin material in the alloy material constituting the absorbent resin material, that is, different materials are welded together.
[0017]
In the resin molded product according to claim 1, the absorptive resin material is an alloy material, and the transparent resin material that transmits laser light is used. Consists of the first resin material Since it is not an alloy material, the problem of a decrease in laser light transmittance due to the light scattering characteristics of the alloy material as described above does not occur. Therefore, even if the resin materials constituting the permeable resin material and the absorbent resin material include resin materials having low compatibility with each other, more laser light reaches the contact surface of the absorbent resin material, It is advantageous for absorbing and improving the bonding strength by laser welding, and good laser welding with sufficient bonding strength becomes possible.
[0018]
The first resin material constituting the transparent resin material has thermoplasticity and can transmit a laser beam as a heating source at a predetermined transmittance or higher (preferably 26% or higher). If it does not specifically limit. For example, polyamide (PA) such as nylon 6 (PA6) and nylon 66 (PA66), polyethylene (PE), polypropylene (PP), styrene-acrylonitrile copolymer, polyethylene terephthalate (PET), polystyrene, ABS, acrylic (PMMA) ), Polycarbonate (PC), polybutylene terephthalate (PBT), polyacetal (POM), and the like. In addition, a predetermined colorant such as carbon black, a dye or a pigment, or a reinforcing fiber such as glass fiber or carbon fiber may be added to the permeable resin material as necessary. .
[0019]
The alloy material constituting the absorbent resin material has a first resin material constituting the permeable resin material and thermoplasticity, and the first resin material and Are different materials and the first resin material It consists of a 2nd resin material with small compatibility.
[0020]
For example, when PA such as PA6 or PA66 is adopted as the first resin material constituting the permeable resin material, PP, PE, PPS as the second resin material constituting the alloy material together with the first resin material. PBT, ABS, etc. can be employed.
[0021]
Further, when PP is adopted as the first resin material constituting the permeable resin material, PA, PE, PPS such as PA6 and PA66 are used as the second resin material constituting the alloy material together with the first resin material. PBT, ABS, etc. can be employed.
[0022]
Further, when PE is adopted as the first resin material constituting the permeable resin material, PA, PP, PPS such as PA6 and PA66 are used as the second resin material constituting the alloy material together with the first resin material. PBT, ABS, etc. can be employed.
[0023]
When PC is adopted as the first resin material constituting the permeable resin material, PA, PP, PBT such as PA6 and PA66 are used as the second resin material constituting the alloy material together with the first resin material. ABS, PET, or the like can be used.
[0024]
Moreover, when PMMA is adopted as the first resin material constituting the permeable resin material, PC, ABS, PET, or the like is adopted as the second resin material constituting the alloy material together with the first resin material. Can do.
[0025]
When ABS is adopted as the first resin material constituting the permeable resin material, PA, PP, PBT such as PA6 and PA66 are used as the second resin material constituting the alloy material together with the first resin material. PE, PPS, PET, or the like can be used.
[0026]
Since the mixing ratio of the first resin material and the second resin material in the alloy material constituting the absorbent resin material affects the absorbability with respect to the laser beam and the welding strength with the transparent resin material, the transparent resin material And can be set as appropriate within a range in which the necessary welding strength can be secured. Specifically, the blending ratio of the first resin material and the second resin material can be appropriately set within the range of about 10:90 to 90:10, and should be about 25:75 to 75:25. preferable.
[0027]
The alloy material can be produced by adding a compatibilizer or the like or a cross-linking material, or adding a compatibilizing agent and a cross-linking material.
[0028]
And the said absorptive resin material is added with predetermined coloring materials, such as carbon black, dye, and pigment, as needed so that predetermined | prescribed absorptivity with respect to a laser beam can be exhibited. Moreover, you may add reinforcing fibers, such as glass fiber and carbon fiber, to this absorptive resin material as needed.
[0029]
On the other hand, in the resin molded product according to claim 2, the permeable resin material comprises the first resin material and the absorbent resin material, and the second resin material having a low compatibility with the first resin material. And the blending ratio of the first resin material and the second resin material is set so that the transmittance of the laser light in the transparent resin material can be secured to 26% or more. ing.
[0030]
When the transparent resin material is constituted of an alloy material as described above, there is a problem that the laser light transmittance is lowered due to the light scattering characteristics of the alloy material as described above. Here, it has been clarified by experiments of the present inventors that the light scattering characteristics of the alloy material are affected by the blending ratio of the first resin material and the second resin material in the alloy material. That is, if this blending ratio is within a specific range, it is possible to maintain a laser light transmittance of a predetermined level or higher even with an alloy material.
[0031]
Therefore, in the resin molded product according to claim 2, in the alloy material constituting the transparent resin material, the first resin material and the first resin material can be used so that the laser light transmittance in the transparent resin material can be secured to 26% or more. The blending ratio with 2 resin materials is set. As a result, while adopting an alloy material for the transparent resin material, the laser light transmittance in the transparent resin material is maintained at 26% or more, and the energy loss of the laser light during the transmission through the transparent resin material is suppressed. Can do. Therefore, more laser light can reach and be absorbed by the contact surface of the absorbent resin material, and the contact surface of the transparent resin material and the absorbent resin material is sufficiently heated and melted to bond strength by laser welding. Can be improved.
[0032]
The laser beam transmittance is a percentage of the energy of the laser beam that has passed through the transparent resin material with respect to the energy of the incident light. Further, the laser beam transmittance decreases as the transmission length of the laser beam passing through the transmissive resin material increases, and is also affected by the wavelength of the laser beam and the absorption spectrum of the resin molded product. For this reason, it is necessary to appropriately set the transmission length and absorption spectrum of the transparent resin material and the wavelength of the laser beam so that the transmittance of the resin molded product with respect to the laser beam falls within a predetermined range.
[0033]
As a kind of 2nd resin material which comprises the said absorptive resin material, among thermoplastic resins, polyamide (PA), such as nylon 6 (PA6) and nylon 66 (PA66), polyethylene (PE), polypropylene ( PP), styrene-acrylonitrile copolymer, polyethylene terephthalate (PET), polystyrene, ABS, acrylic (PMMA), polycarbonate (PC), polybutylene terephthalate (PBT), PPS, and the like.
[0034]
In addition, a predetermined colorant such as carbon black, a dye, or a pigment is added to the absorptive resin material as necessary so as to exhibit a predetermined absorptivity with respect to laser light. Moreover, you may add reinforcing fibers, such as glass fiber and carbon fiber, to this absorptive resin material as needed.
[0035]
The alloy material constituting the permeable resin material is composed of a second resin material constituting the absorbent resin material and a first resin material having thermoplasticity and low compatibility with the second resin material, Moreover, the blending ratio of the first resin material and the second resin material is set so that the laser light transmittance in the transparent resin material can be ensured to 26% or more. Note that, as described above, the laser light transmittance in the transparent resin material is also affected by the transmission length through which the laser light passes through the transparent resin material and the wavelength of the laser light. For this reason, it is necessary to appropriately set the transmission length and the wavelength of the laser beam so that the laser beam transmittance in the transparent resin material is 26% or more. In addition, a predetermined colorant such as carbon black, a dye or a pigment, or a reinforcing fiber such as glass fiber or carbon fiber may be added to the transparent resin material as necessary. .
[0036]
For example, when PA such as PA6 or PA66 is adopted as the second resin material constituting the absorbent resin material, PP, PE, ABS are used as the first resin material constituting the alloy material together with the second resin material. Or POM can be employed. In the case of a combination of PA and PP, the blending ratio of PA and PP can be PA: PP = 20: 80 to 80:20. In the case of a combination of PA and PE, PA and PE The blending ratio can be PA: PE = 20: 80 to 80:20.
[0037]
When PBT is adopted as the second resin material constituting the absorbent resin material, PC, ABS, PMMA, PP, etc. are adopted as the first resin material constituting the alloy material together with the second resin material. can do. In the case of a combination of PBT and ABS, the blending ratio of PBT and ABS can be PBT: ABS = 90: 10 to 10:90. In the case of a combination of PBT and PP, PBT and PP The blending ratio of PBT: PP = 90: 10 to 10:90 can be set.
[0038]
In the first or second aspect of the invention, the type of the laser beam used as the heating source may be a transmittance in relation to an absorption spectrum or a plate thickness (transmission length) of the transmissive resin material that transmits the laser beam. Those having a wavelength such that the transmittance in the resin material is equal to or greater than a predetermined value are appropriately selected. For example, YAG: Nd 3+ A laser (wavelength of laser light: 1060 nm) or a semiconductor laser (wavelength of laser light: 500 to 1000 nm) can be used.
[0039]
Further, irradiation conditions such as laser output, irradiation density, and processing speed (moving speed) can be appropriately set according to the type of resin.
[0040]
【Example】
Hereinafter, the present invention will be described specifically by way of examples.
[0041]
Example 1
This embodiment embodies the invention according to claim 1, and resin materials constituting the permeable resin material and the absorbent resin material include resin materials having low compatibility with each other, and absorption Alloy material is used on the conductive resin material side.
[0042]
FIG. 1 is a perspective view of an electronic control unit (ECU) for an automobile, and FIG. 2 is a cross-sectional view of the electronic control unit.
[0043]
This electronic control device includes a hollow body having an outer shell composed of a transparent resin material 1 that is transmissive to laser light as a heating source and an absorbent resin material 2 that is absorbent to the laser light. It is. The permeable resin material 1 constitutes a lid, and the absorbent resin material 2 constitutes a housing. An annular convex portion 10 is provided on the peripheral edge of the lower surface of the permeable resin material 1, and an annular shape in which the annular convex portion 10 is aligned and fitted to the upper end surface 21 a of the side wall 21 of the absorbent resin material 2. A recess 20 is provided. And in the state which this cyclic | annular convex part 10 and cyclic | annular recessed part 20 fitted each other, the peripheral part of the transparent resin material 1 which contact | abuts to the upper end surface 21a of the side wall 21 of the absorptive resin material 2, and this upper end surface 21a The lower surfaces of the ring-shaped projection 10 and the outer surface of the annular convex portion 10 and the inner surfaces of the annular concave portion 20 are integrally joined by laser welding.
[0044]
A connector 22 is integrally formed on the side wall 21 of the absorbent resin material 2 from the viewpoint of cost reduction (see FIG. 1), and is connected to the connector 22 in the absorbent resin material 2. An electric circuit 23 is disposed (see FIG. 2).
[0045]
And the permeable resin material 1 is comprised by PA6 as a 1st resin material.
[0046]
On the other hand, the absorptive resin material 2 is composed of an alloy material composed of PA 6 as the first resin material constituting the permeable resin material 1 and PBT as the second resin material having low compatibility with the first resin material. Has been. The blending ratio of the first resin material and the second resin material in the alloy material constituting the absorbent resin material 2 is PA6: PBT = 50: 50. Furthermore, an appropriate amount of carbon black as a coloring material is added to the absorptive resin material 2 so as to exhibit a predetermined absorptivity with respect to laser light as a heating source. Note that PBT as the second resin material is not suitable for use as a transparent resin material because of its low light transmission as a material intrinsic value due to its crystal structure.
[0047]
The resin molded product of the present example having the above-described configuration was manufactured as follows. First, the permeable resin material 1 and the absorbent resin material 2 were each formed into a predetermined shape by injection molding, and then the electric circuit 23 was disposed on the inner surface of the absorbent resin material 2. And while making the contact edge part of the permeable resin material 1 and the contact edge part of the absorptive resin material 2 contact, the cyclic | annular convex part 10 of the permeable resin material 1, and the cyclic | annular recessed part 20 of the absorbent resin material 2 are contacted. And fitted. In this state, laser light was irradiated from the transparent resin material 1 side toward the annular recess 20 of the absorbent resin material 2. Note that a YAG-neodymium laser beam (wavelength 1060 nm) was used as the laser beam. Irradiation conditions were: output: 200 to 400 W, processing speed: 5 m / min.
[0048]
By this laser light irradiation, the contact surfaces of the transparent resin material 1 and the absorbent resin material 2 are heated and melted to be welded, and the lower surface of the peripheral edge of the transparent resin material 1 and the side wall 21 of the absorbent resin material 2 The upper end surfaces 21a and the outer surface of the annular convex portion 10 and the inner surfaces of the annular concave portion 20 were integrally joined.
[0049]
Thus, in the resin molded product according to the present embodiment, the absorptive resin material 2 is an alloy material, and the transparent resin material 1 that transmits laser light is used. Consists of PA6 as the first resin material Since it is not an alloy material, there is no problem of a decrease in laser light transmittance due to the light scattering characteristics of the alloy material during laser irradiation. Therefore, even if the resin materials constituting the transmissive resin material 1 and the absorptive resin material 2 include resin materials having low compatibility with each other, more laser light is applied to the contact surface of the absorptive resin material 2. It is advantageous to improve the bonding strength by laser welding by reaching and absorbing the laser beam, and good laser welding with sufficient bonding strength becomes possible.
[0050]
Moreover, according to the present Example, the effect shown below can also be anticipated.
[0051]
In an electronic control device for automobiles, sealing performance is required to prevent water from entering the device. For this reason, conventionally, the housing and the lid are joined by thermosetting adhesive or by fastening with bolts and embedded nuts through an expensive fluororubber O-ring. . However, when a thermosetting adhesive is used, a thermal effect is likely to occur on the solder joints of the electric circuit 23 during the badge heating process in the furnace, and the productivity is poor. Moreover, when using the fastening means of the volt | bolt and embedded nut through an O-ring, it is high-cost by the increase in a number of parts and an increase in a process. In this respect, according to the present embodiment using laser welding, the electric circuit 23 is not adversely affected or the number of parts is not increased due to the heat effect. it can.
[0052]
Further, the connector 22 in the electronic control device for automobiles is required to have dimensional stability against water absorption. For this reason, as a material for the connector 22, generally, PBT having excellent water absorption resistance is adopted. When the connector 22 is formed integrally with the absorbent resin material 2 as a housing in order to reduce the cost as in this embodiment, the resin material of the absorbent resin material 2 naturally becomes PBT. However, as described above, PBT has low light transmittance as a material intrinsic value, and can only be used as an absorbent resin material. In general, no suitable resin material that is compatible with the PBT and is transmissive to the laser beam is found. For this reason, when PBT is adopted as the resin material of the housing, the lid member cannot be joined by conventional laser welding. In this regard, according to the present embodiment, PA 6 as the first resin material excellent in laser transmittance constituting the transparent resin material 1, Water absorption Since the absorptive resin material 2 as a housing is composed of an alloy material made of PBT as a second resin material having excellent dimensional stability against the above, the absorptive resin material 1 as a lid and the absorptivity as a housing Laser welding with the resin material 2 is possible. Therefore, as a housing absorption It is possible to improve the dimensional stability against water absorption in the connector 22 while reducing the cost by integrally molding the conductive resin material 2 and the connector 22.
[0053]
In this embodiment, the first resin material constituting the permeable resin material 1 as the lid can be made of polypropylene (PP) that is cheaper than PA, so that the cost can be further reduced.
[0054]
(Example 2)
The present embodiment embodies the invention according to claim 2, wherein the resin materials constituting the permeable resin material and the absorbent resin material include resin materials having low compatibility with each other. Alloy material is used on the conductive resin material side.
[0055]
A transparent resin material 3 having a thickness of 3 mm made of a predetermined alloy material was prepared by an injection molding method. The alloy material constituting the permeable resin material 3 is composed of PP as the first resin material and PA 6 as the second resin material constituting the absorbent resin material 4 described later. Note that PP as the first resin material and PA6 as the second resin material are resins having low compatibility with each other. Further, 30% by mass of glass fiber (GF) as a reinforcing fiber is added to the transparent resin material 1.
[0056]
And the compounding ratio of the 1st resin material and the 2nd resin material in the alloy material which comprises this permeable resin material 3 is PP: PA6 = 30: 70. Thereby, the transmittance of the laser beam as a heating source in the transparent resin material 3 is ensured to be 26% or more.
[0057]
Moreover, the absorptive resin material 4 with a plate thickness of 3 mm made of PA6 as the second resin material was prepared by injection molding. An appropriate amount of carbon black as a coloring material is added to the absorbent resin material 4 so as to exhibit a predetermined absorptivity with respect to laser light as a heating source. Moreover, 30 mass% of glass fibers (GF) as reinforcing fibers are added to the absorbent resin material.
[0058]
On the other hand, YAG: Nd having a wavelength of 1.06 μm 3+ A laser torch 5 that emits laser light was prepared.
[0059]
Then, as shown in FIG. 3, both the abutment resin material 3 and the absorptive resin material 4 are brought into contact with each other so as to overlap the absorptive resin material 4. Clamped with. In this state, the laser torch 5 was irradiated from the transparent resin material 3 side, and the transparent resin material 3 and the absorbent resin material 4 were integrally joined by laser welding.
[0060]
In this embodiment, the permeable resin material 3 is composed of an alloy material. However, by optimizing or optimizing the blending ratio of the first resin material and the second resin material in the alloy material, the light scattering of the alloy material is achieved. The problem of a decrease in laser light transmittance due to characteristics can be solved. That is, in the alloy material constituting the transmissive resin material 3, the blending ratio of the first resin material and the second resin material is such that the laser light transmittance in the transmissive resin material 3 can be secured to 26% or more. Is set. Thereby, while adopting an alloy material for the transmissive resin material 3, the laser light transmittance in the transmissive resin material 3 is maintained at 26% or more, and the energy loss of the laser light while passing through the transmissive resin material 3. Can be suppressed. Accordingly, more laser light can reach and be absorbed by the contact surface of the absorbent resin material 4, and the contact surfaces of the transparent resin material 3 and the absorbent resin material 4 are sufficiently heated and melted to perform laser welding. It becomes possible to improve the joining strength by.
[0061]
In the present embodiment, a resin molded product made of a permeable resin material 3 and an absorptive resin material 4 made of a plate material is shown, but it is applied to a specific product (for example, an intake manifold, a canister, an air cleaner or a duct). Of course it is possible.
[0062]
(Relationship between laser light transmittance and welding strength)
A 3 mm thick transparent resin material made of nylon 6 reinforced by adding 30 wt% of glass fiber and an absorbent resin material of 3 mm thickness made of nylon 6 to which a predetermined amount of carbon black was added were superposed, YAG: Nd 3+ Laser (wavelength: 1060 nm) was irradiated from the transparent resin material side, and was integrally bonded by laser welding. The laser output was 400 W and the processing speed was 4 m / min.
[0063]
Then, by adding a dye as a colorant to the transparent resin material and changing the addition amount in various ways, the laser light transmittance in the transparent resin material is changed variously, and the laser light transmittance in the transparent resin material The relationship between welding strength and welding strength was investigated. The result is shown in FIG.
[0064]
As can be seen from FIG. 4, when the laser light transmittance in the transmissive resin material is 26% or more, the welding strength is 45 MPa or more, and a sufficient welding strength can be achieved.
[0065]
The laser light transmittance was measured by calculating the incident energy based on the presence or absence of a workpiece, and the welding strength was measured by pulling and breaking the welded portion.
[0066]
(Relationship between resin alloying and laser light transmittance)
The relationship between resin alloying and laser light transmittance was investigated. The result is shown in FIG. For laser light, YAG: Nd 3+ A laser (wavelength: 1060 nm) was used, and the output was 400 W.
[0067]
As apparent from FIG. 5, PC, PA6, ABS, or PP alone has a laser light transmittance of 26% or more, whereas an alloy material composed of PA6 and PP (PA6: PP = 60: 40). ) And an alloy material composed of PC and ABS (PC: ABS = 60: 40), the laser light transmittance is extremely lowered, and the laser light transmittance may be less than 26% depending on the plate thickness.
[0068]
【The invention's effect】
As described above in detail, according to the resin molded product of the present invention, the resin material constituting the permeable resin material and the absorptive resin material is absorbed even if resin materials having low compatibility with each other are contained. It is advantageous to improve the bonding strength by laser welding by reaching and absorbing a large amount of laser light on the contact surface of the conductive resin material, and good laser welding with sufficient bonding strength becomes possible.
[Brief description of the drawings]
FIG. 1 is a perspective view of a resin molded product according to Embodiment 1 of the present invention.
FIG. 2 is a cross-sectional view of a resin molded product according to Example 1 described above.
FIG. 3 is a cross-sectional view of a resin molded product according to Example 2 of the present invention.
FIG. 4 is a diagram showing a relationship between laser beam transmittance and welding strength in a transmissive resin material.
FIG. 5 is a diagram showing the relationship between resin alloying and laser light transmittance.
[Explanation of symbols]
1, 3 ... Transparent resin material
2, 4 ... Absorbent resin material

Claims (2)

加熱源としてのレーザ光に対して透過性のある透過性樹脂材と、該レーザ光に対して吸収性のある吸収性樹脂材とからなり、該透過性樹脂材及び該吸収性樹脂材の当接端部同士が該透過性樹脂材側からの該レーザ光の照射により溶着されて接合された樹脂成形品において、
上記透過性樹脂材が第1樹脂材料により構成され、上記吸収性樹脂材が、上記透過性樹脂材を構成する第1樹脂材料と、該第1樹脂材料とは異種材料であってかつ該第1樹脂材料と相溶性の小さい第2樹脂材料とからなるアロイ材により構成されていることを特徴とする樹脂成形品。
A transparent resin material that is transmissive to the laser beam as a heating source and an absorbent resin material that is absorptive to the laser beam. The transmissive resin material and the absorbent resin material In the resin molded product in which the contact ends are welded and joined by irradiation of the laser light from the transparent resin material side,
The permeable resin material is composed of a first resin material, and the absorbent resin material is a different material from the first resin material constituting the permeable resin material and the first resin material . 1. A resin molded product comprising an alloy material made of a first resin material and a second resin material having a low compatibility.
加熱源としてのレーザ光に対して透過性のある透過性樹脂材と、該レーザ光に対して吸収性のある吸収性樹脂材とからなり、該透過性樹脂材及び該吸収性樹脂材の当接端部同士が該透過性樹脂材側からの該レーザ光の照射により溶着されて接合された樹脂成形品において、
上記透過性樹脂材は、第1樹脂材料と、上記吸収性樹脂材を構成し、該第1樹脂材料と相溶性の小さい第2樹脂材料とからなるアロイ材により構成されるとともに、該第1樹脂材料と該第2樹脂材料との配合割合が、該透過性樹脂材における上記レーザ光の透過率を26%以上に確保しうるように設定されていることを特徴とする樹脂成形品。
A transparent resin material that is transmissive to the laser beam as a heating source and an absorbent resin material that is absorptive to the laser beam. The transmissive resin material and the absorbent resin material In the resin molded product in which the contact ends are welded and joined by irradiation of the laser light from the transparent resin material side,
The permeable resin material is composed of an alloy material composed of a first resin material, the absorbent resin material, and a second resin material having low compatibility with the first resin material, and the first resin material. A resin molded product, wherein a blending ratio of the resin material and the second resin material is set so that the transmittance of the laser light in the transparent resin material can be secured to 26% or more.
JP2001090597A 2001-03-27 2001-03-27 Plastic molded product Expired - Lifetime JP3610917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001090597A JP3610917B2 (en) 2001-03-27 2001-03-27 Plastic molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001090597A JP3610917B2 (en) 2001-03-27 2001-03-27 Plastic molded product

Publications (2)

Publication Number Publication Date
JP2002284895A JP2002284895A (en) 2002-10-03
JP3610917B2 true JP3610917B2 (en) 2005-01-19

Family

ID=18945360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001090597A Expired - Lifetime JP3610917B2 (en) 2001-03-27 2001-03-27 Plastic molded product

Country Status (1)

Country Link
JP (1) JP3610917B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004195829A (en) * 2002-12-19 2004-07-15 Sumitomo Heavy Ind Ltd Laser welding method and member to be welded
JP4017994B2 (en) 2003-02-04 2007-12-05 テクノポリマー株式会社 Laser welding molding materials and molded products
JP4026007B2 (en) * 2003-06-24 2007-12-26 株式会社デンソー Laser light transmitting member manufacturing method, resin molding apparatus, and composite resin product manufacturing method
JP2006312303A (en) * 2004-10-01 2006-11-16 Daicel Polymer Ltd Laser beam welding resin composition and composite molding
JP4600745B2 (en) * 2004-10-26 2010-12-15 Dic株式会社 Polycarbonate resin molded product
JP2006188553A (en) * 2004-12-28 2006-07-20 Daicel Polymer Ltd Laser welding resin composition and molded product
JP2007008974A (en) * 2005-06-28 2007-01-18 Nippon A & L Kk Thermoplastic resin composition for laser welding
JP2006257441A (en) * 2006-05-30 2006-09-28 Techno Polymer Co Ltd Molding material for laser fusion and molded article
JP2008279730A (en) 2007-05-14 2008-11-20 Denso Corp Molding resin product and its manufacturing method
JP5078774B2 (en) * 2008-06-26 2012-11-21 曙ブレーキ工業株式会社 Laser light welding method and apparatus
EP3156210A1 (en) * 2015-10-16 2017-04-19 Henkel AG & Co. KGaA Method for welding two different plastic materials
JP6500757B2 (en) * 2015-11-26 2019-04-17 オムロン株式会社 Bonding structure

Also Published As

Publication number Publication date
JP2002284895A (en) 2002-10-03

Similar Documents

Publication Publication Date Title
JP3610917B2 (en) Plastic molded product
JP3630298B2 (en) Bonding method of resin molded products
JP4771371B2 (en) Dissimilar member joining method and dissimilar member joined product
US7785687B2 (en) Molded resin product
WO2007046536A1 (en) Material for laser fusion bonding
KR20170116249A (en) Welding method and weld
JP4731040B2 (en) Laser welding method
WO2007047789A1 (en) Process for laser welding three polymeric layers and article produced by the process
JP2002283457A (en) Laser fusing method for resin parts
EP1658170B1 (en) Methods for laser welding articles molded from polyolefins to those molded from other thermoplastic resins, and welded articles prepared therefrom
EP1396334B1 (en) Laser welding material and laser welding method
JP4009432B2 (en) Laser welding method for vehicular lamp
Kagan Innovations in laser welding of thermoplastics: This advanced technology is ready to be commercialized
JP3674479B2 (en) Plastic molded product
JP2004209916A (en) Resin bonding method and resin component
EP1669186A1 (en) Material for laser welding and method for laser welding
US10343340B2 (en) Medical packaging material, in particular pharmaceutical packaging material as well as methods of joining plastic components of medical packaging materials
JP5825758B2 (en) 3-layer adhesive
JP2004188802A (en) Laser welding method of resin member
JP2006026974A (en) Joining method for different kinds of resin members
JP4329683B2 (en) Molded resin products
JP3596456B2 (en) Method for manufacturing resin molded products
JP4010757B2 (en) Resin molded product and manufacturing method thereof
JP2003251699A (en) Welding method of resin component by laser
JP5256931B2 (en) Laser light irradiation condition setting method, laser welding processing method, and polyamide resin member welded body manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041011

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3610917

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 9

EXPY Cancellation because of completion of term