JP3610487B2 - Food preservation method and apparatus - Google Patents
Food preservation method and apparatus Download PDFInfo
- Publication number
- JP3610487B2 JP3610487B2 JP2001319222A JP2001319222A JP3610487B2 JP 3610487 B2 JP3610487 B2 JP 3610487B2 JP 2001319222 A JP2001319222 A JP 2001319222A JP 2001319222 A JP2001319222 A JP 2001319222A JP 3610487 B2 JP3610487 B2 JP 3610487B2
- Authority
- JP
- Japan
- Prior art keywords
- food
- ozone
- container
- storage
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Storage Of Fruits Or Vegetables (AREA)
Description
【0001】
【発明の属する技術分野】
この発明は、野菜・果実・魚介類等の生鮮食材の長期鮮度維持を目的とした食品保存方法とその装置、特に、鮮度・品質劣化速度の速い桃・枇杷・苺などの軟弱果実やグリーンアスパラ等の植物性生鮮食品およびウニ・太刀魚・甘えび等の動物性生鮮食品を、衛生的かつ新鮮に保存する食品保存方法とその装置に関する。
【0002】
【従来の技術】
食材の鮮度を維持する方法として、冷蔵状態の保存が一般的である。特に鮮度低下の激しい青果類は、呼吸作用を抑制する目的で冷蔵状態保存が一般的である。また、収穫直後に冷水シャワー等による予冷処理を行い、保管から輸送まで、3℃程度での冷蔵保存を実施している。しかし、長時間の冷蔵保存は果実等の水分を奪い、品質の低下を招く。水分の蒸散を抑えるために、密閉容器( ラッピング等)に入れると、カビの発生が生ずることになる。
【0003】
魚介類は、植物と異なり脂肪やタンパク質を多く含むため、鮮度が落ちやすい。脂肪は酸化しやすく、タンパク質は細菌や自己分解酵素により分解されやすい。特に、太刀魚は短期間で鮮度が落ちるため、刺身として食べることが困難とされている。保存方法は、冷蔵保存か水槽での活魚飼育である。
【0004】
魚は、活き締め後氷付けにして保存する方法が一般的であるが、冷蔵保存でも自己分解酵素によるタンパク質の分解が起こり激しく鮮度が低下する。タンパク質を豊富に含む青魚( サバ、イワシ、サンマ等) は特に鮮度が落ちやすい。
【0005】
しかし、魚の種類によっては、死後硬直具合が異なるため、食べ頃となるまでの時間が全く違うことも事実である。
【0006】
最近では、活魚輸送や販売店での飼育が多く行われている。しかし、活きたままの保存で品質が保てるとの考えは必ずしも正しくは無く、水槽の場合は活きていても味が低下する。理由は、良い餌に恵まれず、やせ細ることと、明かりが燈っている時間が不適当で睡眠不足となる点であると考えられている。また狭い容積に閉じ込められたことで、魚からの排泄物等により、水も汚れ不衛生である。従って、活き締め後に氷に付ける保存方法が、数段良いとの意見もある。
【0007】
次に、青果物の保存に関する現状について記載する。農家による果実収穫後の保存状態は、即冷蔵保存する例は少なく、半日程度は常温保管状態が一般的である。
【0008】
桃の場合は、7月から8月が収穫時期であるため、常温状態は30℃以上であり、熟度進行が急速に進む。また桃は同一品種の収穫期間が1〜2週間程度であり、別の品種への収穫へシフトしていくため、同一品種を短期間にすべて収穫し、即出荷販売する必要があった。
【0009】
また、イチゴや桃は鮮度維持期間が非常に短く、数日で傷み始めるため、長期保存をするためには、ジャムや缶詰等の方法が取られてきた。したがって、桃やイチゴ等の傷みが激しい果実は、収穫後にそのままの状態で長期間保存することが困難であるため、数日の短期間に販売をして、数日で消費することが一般的であった。
【0010】
【発明が解決しようとする課題】
上記のように、従来、腐敗菌増殖の抑制や、収穫後も生きている青果等は呼吸作用や追熟進行の抑制を目的とし、また魚介類は腐敗菌の増殖抑制のため低温保存により、鮮度保持を実施してきた。
【0011】
生鮮食品は、凍結しない範囲で、温度は低いほど鮮度維持効果が高い。しかし、冷蔵保存は、腐敗菌増殖の抑制効果はあるが、水分含有量の高い青果物や甘エビ,ウニなどは、内水分の蒸散により、表面の張りを失いシナシナの状態となったり、表面が乾燥した状態となったりすることにより、商品価値を短期間で失う。
【0012】
また、細胞を破壊しないマイナス60度程度への急速冷凍法は、マグロなどの保存として利用されている技術である。しかし、低温障害を起こす生鮮食品は多く存在するため、冷凍保存に適さない食材保存技術が必要である。
【0013】
さらに、生鮮食品に対して顕著な品質劣化を起こさせるカビは、好気性であり、生育圏は温度0〜35℃(20℃を超えると急速に活気づくが、逆に10℃以下では育成が抑えられる)、湿度60%以上、酸素濃度数%以上である。このため、みずみずしさを保つため、保湿を講じると、カビの発生に対する危険性が高くなる。
【0014】
このため、カビの発生を完全に排除した状態で、動植物性生鮮食品の水分量を保つ手段が必要となる。
【0015】
カビ等の微生物の増殖を抑えるためには、オゾンによる殺菌技術適用例の報告がある。オゾンは殺菌力が強く、カビ発生抑制に効果的であるが、酸化効果も高いため、食品が酸化による品質劣化が起こっている。このため、生鮮食品の品質を落とすこと無く、殺菌効果のみを引き出す方法が必要となる。
【0016】
この発明は、上記に鑑みてなされたもので、この発明の課題は、生鮮食材、特に、鮮度・品質劣化速度の速い食品が、変色・変質かつ美味を損なうことなく、従来の保存方法に比べて収穫後長期間、新鮮な状態に保持可能な食品保存方法とその装置を提供することにある。
【0017】
【課題を解決するための手段】
前述の課題を解決するため、この発明においては、食品収納容器内を低温高湿の冷霧状態に保持して、桃・枇杷・苺などの軟弱果実やグリーンアスパラ等の植物性生鮮食品およびウニ・太刀魚・甘えび等の動物性生鮮食品を保存する食品の保存方法において、前記食品収納容器内は、その容器内空気中の酸素を実質的に排出して窒素ガス等の不活性ガスで置換し、さらにこの雰囲気の温度は1℃〜10℃の範囲とし、相対湿度は90%以上とする(請求項1の発明)。
【0018】
上記により、低温による菌増殖防止と補湿による鮮度保持効果と、酸素が実質的に排出されることによる酸敗防止効果の向上が図られ、食品との熱交換のための媒体として熱伝導率の高い霧状態とした上記低温高湿の冷霧を用いることにより、品質劣化が抑制されて長期間の鮮度保持が図れる。なお、前記のような食材は、凍ることにより美味が低下する場合が多いので、雰囲気の温度は少なくとも1℃を保つこととする。
【0019】
前記請求項1の発明の実施態様としては、下記請求項2ないし6の発明が好適である。即ち、請求項1に記載の食品保存方法において、容器内空気中の酸素は体積比で1%未満とする(請求項2の発明)。
【0020】
また、請求項1または2に記載の食品保存方法において、前記生鮮食品の保存開始時および、保存期間中に食品収納容器内から食品を取出すことなどにより外気が食品収納容器内に侵入した場合に、食品収納容器内にオゾンガスを添加する(請求項3の発明)。さらに、請求項3に記載の食品保存方法において、前記添加オゾンガスは、前記雰囲気ベースの体積比で1ppm以下とする(請求項4の発明)。
【0021】
上記請求項3または4の発明によれば、食材が添加オゾンガスにより殺菌され、さらに長期保存が可能となる。オゾンガスの添加量は、省エネルギの観点と、人体への影響を防止する観点から、必要最小限が望ましく、1ppm以下が好適である。
【0022】
なお、オゾンガスは主として、食材表面の殺菌を行なうが、さらに二酸化炭素を添加することにより、これが所謂キャリアー的な機能を果たして、食材内部の殺菌を行なうことができる。この観点から、下記請求項5の発明が好ましい。即ち、請求項3または4に記載の食品保存方法において、前記オゾンガスに加えて、さらに二酸化炭素を添加する。このように、少量のオゾンガスに加えて、さらに少量の二酸化炭素を添加することにより、混合ガス相乗効果を考慮した食品の殺菌が可能となる。この場合、前記二酸化炭素は、オゾンガスの添加量と同程度で十分であり、雰囲気に空気が侵入する場合、空気中の二酸化炭素はその機能を果すが、発明者の一人が発明した食関連物のガス殺菌方法においては、オゾンガスと炭酸ガスとの混合比が1対2から2対1の場合に最良の殺菌効果が得られた。
【0023】
また、請求項3または4に記載の食品保存方法において、前記オゾンガスは、オゾン含有水を噴霧することにより添加する(請求項6の発明)。これにより、オゾンガスの添加と雰囲気の加湿が同時にでき、操作が簡便となる。
【0024】
次に、前記方法を実施するための食品保存用冷蔵装置については、下記請求項7ないし14の発明が好ましい。即ち、請求項1に記載の食品保存方法を実施するための装置であって、密閉可能な食品収納容器と、容器内空気中の酸素を実質的に排出して窒素ガスで置換するための窒素ガス供給手段と、容器内湿度調節用の加湿手段と、温度調節手段とを備えるものとする(請求項7の発明)。
【0025】
また、請求項7に記載の装置において、前記食品収納容器内にオゾンガスを添加するためのオゾンガス供給手段を備えるものとする(請求項8の発明)。
【0026】
さらに、請求項8に記載の装置において、前記オゾンガス供給手段は、オゾナイザと、オゾン水発生器と、オゾン水発生器において生成したオゾン含有水を直接食品収納容器内に噴霧する手段もしくは前記加湿手段に供給してオゾン含有水を噴霧する手段とを備えるものとする(請求項9の発明)。
【0027】
また、請求項7または8に記載の装置において、前記食品収納容器内に二酸化炭素ガスを添加するための二酸化炭素ガス供給手段を備えるものとする(請求項10の発明)。さらに、請求項10に記載の装置において、前記二酸化炭素ガス供給手段は、ドライアイスにより供給する手段とする(請求項11の発明)。
【0028】
さらに、請求項8に記載の装置において、前記食品収納容器は容器開閉用の扉を有し、前記オゾンガス供給手段は、前記扉の開閉に伴い間歇的にオゾンガスを供給するものとし、少なくとも、扉を開から閉とした後の所定時間、オゾンガスを供給するものとする(請求項12の発明)。
【0029】
前記請求項7ないし12の発明に関わる作用効果に関し、方法の発明において述べた事項と同等の効果については記載を省略する。前記請求項11の発明によれば、保存雰囲気への二酸化炭素の供給と、低温に維持する雰囲気の冷却とを兼ねることができ、低温状態維持用の冷凍機の省エネルギ効果が得られる。また、前記請求項12の発明によれば、必要最小限のオゾン添加を可能とし、かつ人体への影響を抑制する効果が向上する。
【0030】
次に、種類の異なる食材や収穫日の異なる食材を個別に、1台の冷蔵装置に保存するためには、下記請求項13の発明が好ましい。即ち、前記請求項7ないし12のいずれかに記載の装置において、前記食品収納容器は複数個の食品収納用の保存箱を備え、前記窒素ガス供給手段、加湿手段ないしオゾンガス供給手段は、配管を介して前記保存箱とそれぞれ接続されてなるものとする。
【0031】
また、食材を保存状態から顧客に輸送する場合に、輸送コンテナが使用されるが、この場合の食品保存用冷蔵装置としては、できる限り望ましい保存状態をキープしつつ搬送を容易にする観点から、下記請求項14の発明が好ましい。即ち、請求項13に記載の装置において、前記食品収納容器は輸送用コンテナとし、少なくとも前記オゾンガス供給手段におけるオゾナイザは着脱可能にしてなるものとする。
【0032】
【発明の実施の形態】
図1ないし図4に基づき、本発明に係る食品保存方法と食品保存用冷蔵装置の実施の形態について以下にのべる。図1ないし図4は、この発明に関わる実施例を示す食品保存用冷蔵装置の概念的模式図で、図1ないし図4に示す装置において、同一機能を有する部材には同一番号を付してある。
【0033】
図1に示す食品保存用冷蔵装置は、扉付き保存庫1であり、内部に配置されているファン2により、内部のガスの流れ3が循環している。上部には、加湿器4が配置されており、保存庫内の湿度を90%以上に保つため、水道水を霧状にし、定期的に噴霧をしている。また、温度を5℃程度に保つため、冷凍機24を搭載している。
【0034】
保存庫1内部は、空気中に存在している酸素を窒素置換により追い出すため、窒素ボンベ21を使用する。
【0035】
保存庫1内部にオゾンガスを添加するため、オゾナイザ7が搭載されており、発生したオゾンガスをガス混合器28で窒素ガスと混合して1ppm以下に希釈し保存庫1内部に注入する。オゾンガスの注入は、保存庫1内の動植物性食品の出し入れ等により、保存庫1の正面扉9を開閉した時、ドアスイッチ10が動作して、正面扉9を閉めた直後より開始し、数分間行う間歇方式である。この動作中には、オゾン添加中であることが分かる表示をドア部分にする。この警告表示は、内部オゾン濃度が人体に影響の無いレベルである0.05ppm以下に低下するまで持続して表示する。
【0036】
数日間動植物性食品の出し入れ等の作業が無く、保存庫1内部が窒素置換された状態である場合においても、数日に1回は殺菌と衛生面からオゾン添加を実施することが望ましい。上記した通り、動植物性食品の出し入れ等の作業により、保存庫1内部に外気が侵入して、その後オゾンガスを添加する場合は、空気中に存在する300ppmの二酸化炭素ガスにより、オゾンと二酸化炭素による混合ガスの相乗効果が得られる。しかし、外気進入が無い状態でオゾン添加を実施する場合は、雰囲気内に二酸化炭素が存在しないため、オゾンと二酸化炭素の混合ガスによる相乗効果が期待できない。そこで、オゾン添加前に保存庫1内部へ外気を意図的に注入するか、図1の実施例に示す通り、ガス混合器28に二酸化炭素ボンベ22からのガス注入ラインを接続し、保存庫1内部へオゾンガスと二酸化炭素の混合ガスを注入する構造とする。
【0037】
オゾンを含むガスは、活性炭等によりオゾンを吸着処理できる排オゾン処理機20を通して、庫外へ排出する。オゾナイザ7は電源投入から出力安定まで数分の時間を要するため、オゾン濃度が安定するまで、オゾンガスをガス混合器28には送らず、直接排オゾン処理機20に送り、処理する。
【0038】
電磁バルブ29は、ガスや水の注入・遮断を行い、必要な保存環境の制御を行なう。
保存庫1内に動植物性食品を配置するためには、金属やプラスチックの網状となった棚25を使用し、ガスや霧をシャワー効果で全体に行き渡る構造としている。
【0039】
図2は、図1とは異なる実施例を示す食品保存庫である。
【0040】
図1との違いは、オゾンガスの代わりにオゾン水を噴霧する方式例であることにある。オゾン水の発生は、オゾナイザ7から発生させたオゾンガスを、オゾン水発生器8にて、オゾン水に変え、加湿器4よりオゾン霧を噴霧可能な構造としている。
【0041】
オゾン水は、加湿器4に注入せず、別設置する噴霧ノズルにて直接動植物性食品に噴霧する方式も可能である。
【0042】
また、図1は二酸化炭素源に二酸化炭素ボンベ22を用いる構造であったが、保存庫1内にドライアイス手段5を配置する方法の実施例も示した。
【0043】
図3は、さらに異なる実施例を示す食品保存庫である。
【0044】
本図は、図1の装置に対し、種類の異なる動植物性食品や、収穫・捕獲日の異なる動植物性食品の保存を、1台の冷蔵装置で可能とする場合の保存庫例である。
【0045】
冷蔵庫32内には、動植物性食品を配置保存するための保存箱27を複数個配置する。保存箱27は気密性があり、オゾンガスや窒素ガスの注入と排出系配管が接続されている。また、加湿器4で発生した霧を加湿ライン30を通して送り込み、加湿を行なう機能を備えている。加湿器4には、給水ライン31により、水道水が補充される。保存箱27は、正面側が気密性と開閉機能を兼ね備えた構造となっており、動植物性食品を配置した保存箱27の大きさに合わせた専用トレイ等を用いることで、保存箱27への動植物性食品の挿入や取り出しが容易に行なえる。また、保存箱27内部状態を監視できる窓38も必要に応じて取り付ける。
【0046】
図4は、さらに異なる実施例であって、輸送コンテナへの応用例である。
【0047】
鮮度保持コンテナ34は、内部に図3に示した装置がコンパクトに集約されて入っている。加湿器4は、給水を水道から直接行なうことができないため、給水タンク33を配置している。
【0048】
輸送用の鮮度保持コンテナ34においては、動植物性食品を保存コンテナ内に挿入後、初期に1時間程度のオゾンガス注入または数分間のオゾン水噴霧を実施すれば、その後のオゾン注入は必要ない。このため、オゾナイザ7はコンテナ内に搭載する必要は無い。
【0049】
また、鮮度保持コンテナ34は、運搬には保冷車内に配置して使用し、保管時には保冷庫内に置くことができるため、冷凍機の搭載は必要ない。
【0050】
(保存試験例)
発明者は、桃とイチゴの鮮度保存試験を実施し、本発明の方式で高い鮮度保存効果が得られることを確認した。以下に保存試験結果について記載する。
1)桃の保存試験結果
(1)保存環境
下記表1に示すように、保存箱内は、約6℃の冷蔵状態で、超音波加湿器により、湿度が90%以上に保たれるように定期的に加湿を行なった。
【0051】
また、保存箱内のガス雰囲気は、窒素ガスにより置換をした。
【0052】
【表1】
(2)オゾン添加
保存庫内から桃を毎日必要数取り出すことを模擬して、ほぼ毎日外気(空気)を注入した。その後オゾンガスを1時間添加した。
【0053】
また、オゾンガスは窒素により希釈し、保存箱内の濃度が0.5ppmになるようにした。
(3)保存結果
保存試験は、本発明の方式と合わせて、常温保存と冷蔵庫保存について、比較を行なった。
【0054】
結果を表2に示す。鮮度は、外観や内部に傷みの発生や張りの低下が起こった状態であるかにより、判断した。また、熟度の進行程度を把握するため、糖度を測定し、桃の水分蒸散程度を把握するため、重さの減少程度を測定した。
【0055】
【表2】
平均温度23℃の常温保存では、収穫3日後で表面の一部分に茶変色が確認され始めた。また、冷蔵保存においては、収穫6日後までは状態変化が見られなかったが、収穫9日後には軟らかくなった桃や、張りが無くなり表面が少しシワシワになり始めた。
【0056】
これに対し、本発明方式である、温度6℃で湿度97%の低温高湿度の冷霧状態で、窒素置換による脱酸素雰囲気とし、毎日外気注入後に0.5ppmオゾンガスを1時間添加した保存法は、収穫から27日が経過しても、桃に張りがあり外観状態の変化はなかった。桃の断面を観察すると、内部が多少熟し始めたと思われる状態の桃が収穫14日後には5%、27日後には50%確認されたが、鮮度は全数維持されていた。
【0057】
糖度に関しては、常温保存や冷蔵保存では、桃の初期状態に比べて50%以上高くなったが、本発明の保存方法においては、糖度の上昇が抑えられ、収穫27日後においても10%程度の上昇であった。従って、長期間の保存においても、収穫当初の甘味を維持できた。保存後は、常温に置くことで追熟を促進させて、糖度を上昇させることが可能である。
【0058】
桃の重量変化においては、鮮度低下の激しい常温保存ほど軽くなり、本発明の保存方法は、収穫27日後でも8%程度軽くなった程度であり、十分に内部水分量が保持されたことを意味していた。
【0059】
以上の実験結果より、桃の保存においては、本発明の保存法により1ヶ月以上の鮮度保持効果が得られた。
2)イチゴの保存試験結果
(1)保存環境とオゾン添加法
保存環境やオゾン添加法は、上記の桃試験とほぼ同一である。異なる点は、桃の試験に対し、オゾン濃度を1/10(0.05ppm)としたことのみである。
(2)保存結果
結果を表3に示す。
【0060】
【表3】
イチゴの鮮度指標は、表面の光沢が失われないことである。今回の試験では、鮮度を光沢維持状態で評価した。
【0061】
常温保存においては、収穫の翌日には12%のイチゴに鮮度低下が確認された。また、保存4日後には、全数のイチゴ表面の光沢が無くなり、鮮度が低下した。また、カビの発生は、保存5日後から始まり、保存10日後には60%以上のイチゴにカビの発生が確認された。
【0062】
冷蔵保存では収穫後1日間は鮮度が維持されたが、2日後には2.5%のイチゴが光沢を失い始めた。収穫後1週間においては、90%のイチゴが光沢を失い、8日後には全てイチゴが光沢を失った。カビに関しては、今回の冷蔵保存において、カビの発生は確認されなかった。
【0063】
冷蔵・加湿による冷霧状態で、窒素置換により保存庫内を脱酸素状態とした雰囲気での保存(窒素置換冷霧保存)においては、収穫2日後に2.5%のイチゴが光沢を失い始め、収穫6日には、30%のイチゴが光沢を失った。収穫14日後においては、高鮮度保持がされたイチゴは、全体の33%であった。カビの発生については、収穫13日間までは確認されなかったが、14日保存後に2.5%のイチゴにカビが極わずか発生した。
【0064】
これに対し、本発明の保存方式においては、イチゴ全数の鮮度が保存された期間は、冷蔵保存の2.5倍であった。また、保存1週間においては、鮮度が保持されたイチゴの数が冷蔵保存の9倍にもなった。さらに、オゾンの間欠添加を行なう本発明方式は、オゾンの間欠添加のみを行なわない方法(窒素置換冷霧保存)に対し、保存1週間において、鮮度が保持されたイチゴの数が1.4倍に増加した。
【0065】
以上より、窒素置換により、酸素を保存庫内より追い出し、温度5℃で湿度96%の冷霧保存方法においても、イチゴの鮮度保存に効果があるが、低濃度オゾンを間欠的に添加することで、更に鮮度保持効果が上がることを確認した。
【0066】
【発明の効果】
上記のとおり、本発明による保存方法で、桃とイチゴの鮮度保存試験を実施し、高い保存効果が得られることを確認した。
【0067】
動植物性食品の鮮度保存技術の向上は、傷みの早い種類であっても長期間保存が可能となるため、流通ルートを遠地まで伸ばすことの効果と、スーパー等での販売調整が可能となり、売れ残り廃棄ロスの低減にもつながる。また、青果物の場合、農家において即日出荷販売せずに、出荷調整の実施が可能となり、また出荷前に傷みによる廃棄量が大幅に低減できる。
【0068】
例えば、桃の場合は、同一品種の収穫期間が1〜2週間程度であり、別の品種にシフトしていくため、同一品種を短期間にすべて収穫されるが、保存技術の向上により、多品種の桃を必要な時に販売することが可能となる。
【0069】
イチゴは、本来5〜6月が収穫シーズンである。しかし、イチゴの消費は、クリスマス時期がピークであるため、ハウス栽培等の発達により最近では冬の果物となってしまった。クリスマス時期には、イチゴの需要が一気に集中するため、アメリカ・中国・韓国・ニュージーランドから輸入も多くされている。これらのイチゴに輸入用コンテナを採用することで、輸送中の傷みの抑制が可能となる。また農家における収穫も、保存日数が延びたことで、クリスマスに合わせた収穫の日数を長く確保でき、新鮮なイチゴを需要の集中に対して対応できるようになる。
【0070】
また、グリーンアスパラなどの植物性食品及びウニ・太刀魚・甘えびなどの動物性食品においても、桃やイチゴのように鮮度、品質劣化の速度の速い食材であり、本発明による鮮度保存は、今まで保存が難しかった食料を衛生的に美味しく食べるための技術である。
【0071】
従来から実施されている冷凍保存では、食材の風味(Flavor)、歯・舌ざわり(Texture)を長期的に維持できないが、発明者の一人が発明したCapsule Packed Freezing 法と本発明はこれらの課題を解決した。
【0072】
オゾンは、食品添加物質として既存添加物扱いとなっており、どのような食品にも制約無く使用できる。また、自然に消滅して残留しないため、殺菌後の食品洗浄等に必要が無く、人体に毒性の無い低濃度で十分な殺菌効果が得られる。したがって、低濃度オゾンによる殺菌は、従来の薬品殺菌材とことなり、人体に安全であり、衛生的で、かつカビの発生も無くすことが可能となる。さらに、オゾンを間歇的に添加することで、オゾンガスによる過剰な酸化作用による食品の変質・変色を防止し、十分な殺菌による保存への効果を得ることが可能となる。
【0073】
以上のように、この発明の食品の保存方法とその装置によれば、生鮮食材、特に、鮮度・品質劣化速度の速い食品が、変色・変質かつ美味を損なうことなく、従来の保存方法に比べて収穫後長期間、新鮮な状態に保持可能となる。
【図面の簡単な説明】
【図1】この発明の実施例に関わる食品保存用冷蔵装置の概念的模式図
【図2】この発明の異なる実施例に関わる食品保存用冷蔵装置の概念的模式図
【図3】この発明のさらに異なる実施例に関わる食品保存用冷蔵装置の概念的模式図
【図4】この発明の輸送用コンテナの実施例に関わる食品保存用冷蔵装置の概念的模式図
【符号の説明】
1:保存庫、2:ファン、4:加湿器、5:ドライアイス手段、7:オゾナイザ、8:オゾン水発生器、9:正面扉、10:ドアスイッチ、19:ガス注入ライン、20:排オゾン処理機、21:窒素ボンベ、22:二酸化炭素ボンベ、24:冷凍機、27:保存箱、28:ガス混合器、30:加湿ライン、31:給水ライン、32:冷蔵庫、33:給水タンク、34:鮮度保持コンテナ、38:窓。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a food storage method and apparatus for maintaining long-term freshness of fresh ingredients such as vegetables, fruits and seafood, and in particular, soft fruits such as peaches, strawberries, and strawberries that have a high freshness and quality deterioration rate, and green asparagus. It is related with the food preservation method and its apparatus which preserve | saved hygienically and freshly fresh vegetable foods, such as animal fresh foods, such as sea urchin, a sword fish, and a sweet shrimp.
[0002]
[Prior art]
As a method for maintaining the freshness of foodstuffs, storage in a refrigerated state is common. In particular, fruits and vegetables with a sharp decline in freshness are generally stored in a refrigerated state for the purpose of suppressing respiratory action. In addition, a pre-cooling process such as a cold water shower is performed immediately after harvesting, and refrigerated storage at about 3 ° C. is carried out from storage to transportation. However, refrigerated storage for a long time deprives moisture of fruits and the like, resulting in deterioration of quality. Mold generation occurs when placed in an airtight container (wrapping, etc.) to suppress transpiration of moisture.
[0003]
Unlike seafood, fish and shellfish contain a lot of fat and protein, so the freshness tends to drop. Fat is easy to oxidize and proteins are easily broken down by bacteria and autolytic enzymes. In particular, swordfish is considered to be difficult to eat as sashimi because its freshness drops in a short period of time. The storage method is refrigerated storage or live fish breeding in an aquarium.
[0004]
In general, fish are stored by freezing after chilling, but even in refrigerated storage, protein degradation occurs due to self-degrading enzymes, and the freshness of the fish decreases dramatically. Blue fish (mackerel, sardines, saury, etc.) rich in protein are particularly prone to decline.
[0005]
However, depending on the type of fish, the degree of stiffness after death is different, so it is also true that the time until eating is completely different.
[0006]
Recently, live fish transport and breeding at retail stores are often performed. However, the idea that the quality can be maintained by keeping it alive is not always correct. In the case of a water tank, the taste is lowered even if it is alive. The reason is thought to be that they are not blessed with good food, are thin and thin, and the time when the light is lit is inappropriate and sleep deprivation. Moreover, since it is confined in a narrow volume, the water is also unsanitary due to excrement from fish. Therefore, there is an opinion that the preservation method to put on ice after squeezing is several steps better.
[0007]
Next, the current situation regarding the preservation of fruits and vegetables will be described. As for the storage state after harvesting fruits by farmers, there are few examples of immediate refrigeration storage, and normal temperature storage state is common for about half a day.
[0008]
In the case of peaches, since July to August is the harvest time, the normal temperature is 30 ° C. or higher, and the maturity progresses rapidly. In addition, since the harvest period of the same varieties is about 1 to 2 weeks, and the peaches are shifted to harvesting to different varieties, it is necessary to harvest all the same varieties in a short period of time and immediately ship and sell them.
[0009]
Strawberries and peaches have a very short freshness maintenance period and begin to be damaged in a few days, so methods such as jamming and canning have been taken for long-term storage. Therefore, fruits that are severely damaged, such as peaches and strawberries, are difficult to store for a long period of time after harvesting, so they are generally sold within a short period of days and consumed within a few days. Met.
[0010]
[Problems to be solved by the invention]
As described above, conventionally, the growth of spoilage bacteria, fruits and vegetables that are alive after harvesting are aimed at suppressing the respiratory action and ripening progress, and seafood is stored at low temperature to suppress the growth of spoilage bacteria, We have been keeping freshness.
[0011]
Fresh food has a higher freshness maintenance effect as the temperature is lower, as long as it is not frozen. However, refrigerated storage has the effect of inhibiting the growth of spoilage bacteria, but fruits and vegetables, sweet shrimp, and sea urchins with high water content lose their surface tension due to the transpiration of the internal water, resulting in a crisp state or surface. Loss of commercial value in a short period of time by becoming dry.
[0012]
Moreover, the quick freezing method to about minus 60 degree | times which does not destroy a cell is a technique utilized as preservation | save of tuna etc. However, since there are many fresh foods that cause low temperature damage, food storage technology that is not suitable for frozen storage is required.
[0013]
Furthermore, mold that causes significant quality degradation to fresh food is aerobic, and the growth zone becomes active at a temperature of 0 to 35 ° C (over 20 ° C, but conversely, growth is suppressed at 10 ° C or below. The humidity is 60% or more and the oxygen concentration is several% or more. For this reason, if moisture is taken in order to keep freshness, the danger with respect to generation | occurrence | production of mold | fungi will become high.
[0014]
For this reason, a means for keeping the moisture content of the animal and plant fresh foods in a state in which the generation of mold is completely eliminated is required.
[0015]
In order to suppress the growth of microorganisms such as mold, there are reports of application examples of sterilization technology using ozone. Ozone has a strong sterilizing power and is effective in suppressing the generation of mold, but since the oxidation effect is also high, the quality of food is deteriorated due to oxidation. For this reason, the method of extracting only a bactericidal effect is needed, without reducing the quality of fresh food.
[0016]
The present invention has been made in view of the above, and the problem of the present invention is that fresh foods, especially foods with a high freshness / quality degradation rate, can be discolored / denatured and do not impair the taste, compared to conventional storage methods. Another object of the present invention is to provide a food storage method and apparatus that can be kept fresh for a long time after harvesting.
[0017]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, in the present invention, the food storage container is kept in a low-temperature, high-humidity cold fog state, so that soft fruits such as peaches, strawberries and strawberries, vegetable fresh foods such as green asparagus, and sea urchins. -In the food preservation method for preserving animal fresh foods such as sword fish and sweet shrimp, the food storage container substantially discharges oxygen in the air and replaces it with an inert gas such as nitrogen gas Furthermore, the temperature of this atmosphere is set in the range of 1 ° C. to 10 ° C., and the relative humidity is set to 90% or more (invention of claim 1).
[0018]
As a result, the effect of preventing bacterial growth due to low temperature and the effect of maintaining freshness due to moisture supplementation, and the effect of preventing rancidity due to the substantial discharge of oxygen are achieved, and the thermal conductivity as a medium for heat exchange with food is improved. By using the low-temperature, high-humidity cold mist in a high fog state, quality deterioration is suppressed and long-term freshness can be maintained. In addition, since foods such as those described above often have a poor taste when frozen, the temperature of the atmosphere is kept at least 1 ° C.
[0019]
As an embodiment of the invention of claim 1, the inventions of claims 2 to 6 below are suitable. That is, in the food preservation method according to claim 1, oxygen in the air in the container is less than 1% by volume (invention of claim 2).
[0020]
Further, in the food storage method according to claim 1 or 2, when the outside air has entered the food storage container at the start of storage of the fresh food and by removing the food from the food storage container during the storage period. Then, ozone gas is added into the food container (invention of claim 3). Furthermore, in the food preservation method according to claim 3, the additive ozone gas is 1 ppm or less in volume ratio of the atmosphere base (invention of claim 4).
[0021]
According to the third or fourth aspect of the present invention, the foodstuff is sterilized by the added ozone gas and can be stored for a long time. The amount of ozone gas added is preferably the minimum necessary from the viewpoint of energy saving and the effect on the human body, and is preferably 1 ppm or less.
[0022]
Note that ozone gas mainly sterilizes the surface of the food material, but by further adding carbon dioxide, it can perform a so-called carrier function and sterilize the inside of the food material. From this viewpoint, the invention of claim 5 below is preferable. That is, in the food preservation method according to claim 3 or 4, carbon dioxide is further added in addition to the ozone gas. Thus, by adding a small amount of carbon dioxide in addition to a small amount of ozone gas, it is possible to sterilize the food considering the synergistic effect of the mixed gas. In this case, the carbon dioxide is sufficient as the amount of ozone gas added, and when air enters the atmosphere, the carbon dioxide in the air performs its function. In the gas sterilization method, the best sterilization effect was obtained when the mixing ratio of ozone gas and carbon dioxide gas was 1 to 2 to 2 to 1.
[0023]
Further, in the food preservation method according to claim 3 or 4, the ozone gas is added by spraying ozone-containing water (invention of claim 6). Thereby, addition of ozone gas and humidification of the atmosphere can be performed simultaneously, and the operation becomes simple.
[0024]
Next, regarding the food storage refrigeration apparatus for carrying out the method, the inventions of the following claims 7 to 14 are preferable. That is, an apparatus for carrying out the method for preserving food according to claim 1, comprising a food storage container capable of being sealed, and nitrogen for substantially discharging oxygen in the container air and replacing it with nitrogen gas A gas supply means, a humidifying means for adjusting the humidity in the container, and a temperature adjusting means are provided (invention of claim 7).
[0025]
Moreover, the apparatus of Claim 7 is provided with the ozone gas supply means for adding ozone gas in the said food storage container (Invention of Claim 8).
[0026]
9. The apparatus according to claim 8, wherein the ozone gas supply means includes an ozonizer, an ozone water generator, a means for directly spraying ozone-containing water generated in the ozone water generator into a food storage container, or the humidifying means. And a means for spraying ozone-containing water. (Invention of Claim 9)
[0027]
Moreover, the apparatus of Claim 7 or 8 shall provide the carbon dioxide gas supply means for adding a carbon dioxide gas in the said food storage container (invention of Claim 10). Furthermore, in the apparatus according to claim 10, the carbon dioxide gas supply means is means for supplying by dry ice (invention of claim 11).
[0028]
Furthermore, the apparatus of Claim 8 WHEREIN: The said food storage container has a door for container opening and closing, The said ozone gas supply means shall supply ozone gas intermittently with opening and closing of the said door, At least a door It is assumed that ozone gas is supplied for a predetermined time after opening is closed from opening (invention of claim 12).
[0029]
Regarding the operational effects related to the inventions of the seventh to twelfth aspects, description of effects equivalent to the matters described in the method invention is omitted. According to the eleventh aspect of the present invention, the supply of carbon dioxide to the preservation atmosphere and the cooling of the atmosphere maintained at a low temperature can be performed, and the energy saving effect of the refrigerator for maintaining the low temperature state can be obtained. According to the twelfth aspect of the present invention, the minimum necessary ozone addition is possible and the effect of suppressing the influence on the human body is improved.
[0030]
Next, in order to individually store different kinds of foods and foods with different harvest dates in one refrigeration apparatus, the invention of claim 13 below is preferable. That is, in the apparatus according to any one of claims 7 to 12, the food storage container includes a plurality of storage boxes for storing food, and the nitrogen gas supply means, the humidification means, or the ozone gas supply means include pipes. It is assumed that each of the storage boxes is connected to the storage box.
[0031]
In addition, when transporting ingredients from the storage state to the customer, a transport container is used, but as a refrigeration device for food storage in this case, from the viewpoint of facilitating transport while keeping the desired storage state as much as possible, The invention of claim 14 below is preferred. That is, in the apparatus according to claim 13, the food container is a transport container, and at least the ozonizer in the ozone gas supply means is detachable.
[0032]
DETAILED DESCRIPTION OF THE INVENTION
Based on FIGS. 1 to 4, an embodiment of a food storage method and a food storage refrigeration apparatus according to the present invention will be described below. 1 to 4 are conceptual schematic diagrams of a food storage refrigeration apparatus showing an embodiment according to the present invention. In the apparatus shown in FIGS. 1 to 4, members having the same functions are denoted by the same reference numerals. is there.
[0033]
The food storage refrigeration apparatus shown in FIG. 1 is a storage 1 with a door, and an internal gas flow 3 is circulated by a fan 2 arranged inside. The humidifier 4 is arranged on the upper part, and in order to keep the humidity in the storage at 90% or more, the tap water is made into a mist and sprayed regularly. Moreover, in order to keep temperature at about 5 degreeC, the refrigerator 24 is mounted.
[0034]
The inside of the storage 1 uses a nitrogen cylinder 21 in order to drive out oxygen present in the air by nitrogen replacement.
[0035]
In order to add ozone gas inside the storage 1, an ozonizer 7 is mounted. The generated ozone gas is mixed with nitrogen gas by a gas mixer 28 to be diluted to 1 ppm or less and injected into the storage 1. The injection of ozone gas starts immediately after the door switch 10 is operated and the front door 9 is closed when the front door 9 of the storage 1 is opened or closed by taking in or out of animal or vegetable food in the storage 1 or the like. This is an intermittent method for minutes. During this operation, an indication that ozone is being added is displayed on the door portion. This warning display is continuously displayed until the internal ozone concentration is lowered to 0.05 ppm or less, which is a level that does not affect the human body.
[0036]
Even when there is no work such as taking in and out of animal and vegetable foods for several days and the inside of the storage 1 is in a state of being replaced with nitrogen, it is desirable to perform ozone addition once every few days from the viewpoint of sterilization and hygiene. As described above, when the outside air enters the storage 1 by operations such as taking in and out of animal and vegetable foods, and then adding ozone gas, the ozone and carbon dioxide are generated by 300 ppm carbon dioxide gas present in the air. A synergistic effect of the mixed gas can be obtained. However, when ozone is added in a state where no outside air enters, since no carbon dioxide is present in the atmosphere, a synergistic effect due to a mixed gas of ozone and carbon dioxide cannot be expected. Therefore, outside air is intentionally injected into the storage 1 before adding ozone, or a gas injection line from the carbon dioxide cylinder 22 is connected to the gas mixer 28 as shown in the embodiment of FIG. A structure in which a mixed gas of ozone gas and carbon dioxide is injected inside.
[0037]
The gas containing ozone is discharged out of the warehouse through an exhaust ozone treatment machine 20 that can adsorb ozone by activated carbon or the like. Since the ozonizer 7 takes several minutes from the power-on to the output stabilization, the ozone gas is not sent to the gas mixer 28 but directly sent to the exhaust ozone processor 20 until the ozone concentration is stabilized.
[0038]
The electromagnetic valve 29 injects and shuts off gas and water and controls the necessary storage environment.
In order to arrange animal and vegetable foods in the storage 1, a metal or plastic net 25 is used, and gas and mist are spread throughout the shower with a shower effect.
[0039]
FIG. 2 is a food storage container showing an embodiment different from FIG.
[0040]
The difference from FIG. 1 is that it is an example of spraying ozone water instead of ozone gas. Ozone water is generated by changing the ozone gas generated from the ozonizer 7 into ozone water by the ozone water generator 8 and spraying ozone mist from the humidifier 4.
[0041]
Ozone water can be directly sprayed onto animal and vegetable foods by a separate spray nozzle without being injected into the humidifier 4.
[0042]
FIG. 1 shows a structure in which a carbon dioxide cylinder 22 is used as a carbon dioxide source, but an example of a method for arranging the dry ice means 5 in the storage 1 is also shown.
[0043]
FIG. 3 is a food storage container showing still another embodiment.
[0044]
This figure is an example of a storage in the case where a single refrigeration apparatus can store different types of animal and vegetable foods and different animal and vegetable foods with different harvest / capture dates from the apparatus of FIG.
[0045]
In the refrigerator 32, a plurality of storage boxes 27 for arranging and storing animal and vegetable foods are arranged. The storage box 27 is airtight, and is connected with ozone gas and nitrogen gas injection and discharge piping. Moreover, it has a function of sending the mist generated by the humidifier 4 through the humidification line 30 and performing humidification. The humidifier 4 is supplemented with tap water by a water supply line 31. The storage box 27 has a structure in which the front side has both airtightness and an opening / closing function. By using a dedicated tray or the like that matches the size of the storage box 27 in which animal and vegetable foods are arranged, the animal and plant to the storage box 27 is used. Easy insertion and removal of sex food. Further, a
[0046]
FIG. 4 shows a further different embodiment, which is an application example to a shipping container.
[0047]
The freshness-keeping container 34 contains the apparatus shown in FIG. Since the humidifier 4 cannot supply water directly from the water supply, a water supply tank 33 is disposed.
[0048]
In the transport freshness-keeping container 34, if the animal or vegetable food is inserted into the storage container and then initially injected with ozone gas for about 1 hour or sprayed with ozone water for several minutes, subsequent ozone injection is not necessary. For this reason, the ozonizer 7 does not need to be mounted in the container.
[0049]
Moreover, since the freshness-keeping container 34 is used by being placed in a cold car for transportation and can be placed in a cold box during storage, it is not necessary to mount a refrigerator.
[0050]
(Example of preservation test)
The inventor conducted a freshness preservation test of peaches and strawberries, and confirmed that a high freshness preservation effect was obtained by the method of the present invention. The storage test results are described below.
1) Results of peach storage test (1) Storage environment As shown in Table 1 below, the storage box is refrigerated at about 6 ° C so that the humidity is maintained at 90% or higher with an ultrasonic humidifier. Humidification was performed periodically.
[0051]
The gas atmosphere in the storage box was replaced with nitrogen gas.
[0052]
[Table 1]
(2) Outside air (air) was injected almost every day, simulating taking out the required number of peaches from the ozone-added storage room every day. Thereafter, ozone gas was added for 1 hour.
[0053]
The ozone gas was diluted with nitrogen so that the concentration in the storage box was 0.5 ppm.
(3) Storage result The storage test was conducted for comparison between room temperature storage and refrigerator storage in combination with the method of the present invention.
[0054]
The results are shown in Table 2. The freshness was judged based on the appearance and whether the inside was damaged or the tension was lowered. In addition, the sugar content was measured in order to grasp the progress of the maturity, and the degree of weight reduction was measured in order to grasp the moisture transpiration of the peach.
[0055]
[Table 2]
In normal temperature storage at an average temperature of 23 ° C., brown discoloration began to be confirmed on a part of the surface 3 days after harvest. In refrigerated storage, the state did not change until 6 days after harvesting, but after 9 days of harvesting, the softened peaches and the surface became slightly wrinkled due to the absence of tension.
[0056]
On the other hand, the preservation method according to the present invention, which is a low-temperature and high-humidity cold fog state at a temperature of 6 ° C. and a humidity of 97%, is deoxygenated by nitrogen substitution, and 0.5 ppm ozone gas is added for 1 hour after injecting outside air every day. Even after 27 days from harvest, the peach was stretched and the appearance did not change. When the cross section of the peach was observed, peaches that seemed to have started to ripen to some extent were found to be 5% after 14 days of harvest and 50% after 27 days, but all the freshness was maintained.
[0057]
With regard to sugar content, storage at room temperature or refrigerated storage was 50% or more higher than the initial state of peach, but in the storage method of the present invention, the increase in sugar content was suppressed and about 10% even after 27 days after harvest. It was an increase. Therefore, the sweetness at the beginning of harvest could be maintained even during long-term storage. After storage, ripening can be promoted by increasing the sugar content at room temperature.
[0058]
In the change in weight of peaches, the storage at room temperature with a drastic decrease in freshness was lighter, and the storage method of the present invention was about 8% lighter even after 27 days of harvest, meaning that the internal moisture content was sufficiently retained. Was.
[0059]
From the above experimental results, in the preservation of peaches, a freshness maintaining effect of one month or more was obtained by the preservation method of the present invention.
2) Strawberry storage test results (1) Storage environment and ozone addition method The storage environment and ozone addition method are almost the same as the peach test described above. The only difference is that the ozone concentration was 1/10 (0.05 ppm) for the peach test.
(2) The results of storage are shown in Table 3.
[0060]
[Table 3]
The freshness index for strawberries is that the surface gloss is not lost. In this test, freshness was evaluated in a glossy state.
[0061]
In normal temperature storage, the freshness of 12% of strawberries was confirmed to decrease on the day after harvesting. In addition, after 4 days of storage, the gloss of all strawberry surfaces disappeared and the freshness decreased. In addition, the occurrence of mold started 5 days after the storage, and the generation of mold was confirmed in 60% or more of the strawberries 10 days after the storage.
[0062]
In refrigerated storage, freshness was maintained for 1 day after harvesting, but 2.5% of strawberries began to lose luster after 2 days. One week after harvesting, 90% of the strawberries lost their gloss, and after 8 days they all lost their luster. As for mold, generation of mold was not confirmed in this refrigerated storage.
[0063]
In a cold mist state with refrigeration and humidification, and storage in an atmosphere in which the storage chamber is deoxygenated by nitrogen replacement (nitrogen replacement cold mist storage), 2.5% of strawberries begin to lose their luster after 2 days of harvest. On the 6th day of harvest, 30% of the strawberries lost their luster. After 14 days of harvest, 33% of the strawberries were kept fresh. The occurrence of mold was not confirmed until 13 days after harvesting, but very little mold appeared on 2.5% of strawberries after 14 days of storage.
[0064]
On the other hand, in the preservation | save system of this invention, the period when the freshness of all the strawberries was preserve | saved was 2.5 times of the refrigeration preservation | save. In addition, in the one week of storage, the number of strawberries with freshness maintained was nine times that of refrigerated storage. Furthermore, the method of the present invention in which ozone is intermittently added is 1.4 times the number of strawberries whose freshness is maintained in one week of storage, compared to a method in which only ozone is not intermittently added (preservation with nitrogen-substituted cold fog). Increased to.
[0065]
As described above, nitrogen replacement purges oxygen from the storage and is effective in preserving freshness of strawberries even in a cold fog storage method at a temperature of 5 ° C. and a humidity of 96%, but intermittently adding low-concentration ozone. It was confirmed that the effect of maintaining freshness was further improved.
[0066]
【The invention's effect】
As described above, a peach and strawberry freshness preservation test was conducted by the preservation method according to the present invention, and it was confirmed that a high preservation effect was obtained.
[0067]
Improved freshness preservation technology for animal and vegetable foods can be stored for a long period of time even if it is an early-damaged type, so the effect of extending the distribution route to a distant place and sales adjustments at supermarkets etc. are possible, leaving unsold It also leads to reduction of waste loss. In the case of fruits and vegetables, it is possible to carry out shipping adjustment without the same-day shipment and sale by farmers, and the amount of waste due to damage can be greatly reduced before shipping.
[0068]
For example, in the case of peaches, the harvest period of the same variety is about 1 to 2 weeks, and since it shifts to another variety, the same variety is harvested in a short time. It becomes possible to sell peaches of the variety when needed.
[0069]
Strawberries are originally harvested from May to June. However, since consumption of strawberries is at its peak during Christmas, it has recently become a winter fruit due to the development of house cultivation. During the Christmas season, demand for strawberries is concentrated all at once, so imports from the US, China, South Korea and New Zealand are also increasing. By adopting an import container for these strawberries, it becomes possible to suppress damage during transportation. In addition, since the number of days of storage for farms has been extended, it is possible to secure a longer number of days for harvesting in line with Christmas and to respond to the concentration of demand for fresh strawberries.
[0070]
In addition, vegetable foods such as green asparagus and animal foods such as sea urchin, sword fish, and sweet shrimp are also fresh ingredients such as peaches and strawberries, and have a fast rate of quality deterioration. It is a technique to eat food that was difficult to preserve until it was sanitary and delicious.
[0071]
In conventional frozen storage, the flavor and texture of foods cannot be maintained for a long time, but the Capsule Packed Freezing method invented by one of the inventors and the present invention address these problems. Settled.
[0072]
Ozone is treated as an existing additive as a food additive and can be used with no restrictions on any food. In addition, since it disappears naturally and does not remain, it is not necessary for food washing after sterilization, and a sufficient sterilization effect can be obtained at a low concentration that is not toxic to the human body. Therefore, sterilization with low-concentration ozone is different from conventional chemical sterilizers, and is safe to the human body, hygienic, and can eliminate mold. Furthermore, by intermittently adding ozone, it is possible to prevent the food from being altered or discolored due to excessive oxidation by ozone gas, and to obtain an effect of preservation by sufficient sterilization.
[0073]
As described above, according to the food preservation method and apparatus of the present invention, fresh foods, especially foods with a high freshness / quality degradation rate, can be discolored / denatured and do not impair the taste, compared to conventional preservation methods. It can be kept fresh for a long time after harvesting.
[Brief description of the drawings]
FIG. 1 is a conceptual schematic diagram of a refrigeration apparatus for food storage according to an embodiment of the present invention. FIG. 2 is a conceptual schematic diagram of a refrigeration apparatus for food storage according to a different embodiment of the present invention. Furthermore, a conceptual schematic diagram of a refrigeration apparatus for food storage according to another embodiment [FIG. 4] A conceptual schematic diagram of a refrigeration apparatus for food storage according to an embodiment of a transport container of the present invention [Explanation of symbols]
1: storage, 2: fan, 4: humidifier, 5: dry ice means, 7: ozonizer, 8: ozone water generator, 9: front door, 10: door switch, 19: gas injection line, 20: exhaust Ozone processor, 21: nitrogen cylinder, 22: carbon dioxide cylinder, 24: refrigerator, 27: storage box, 28: gas mixer, 30: humidification line, 31: water supply line, 32: refrigerator, 33: water tank, 34: Freshness holding container, 38: Window.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001319222A JP3610487B2 (en) | 2001-10-17 | 2001-10-17 | Food preservation method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001319222A JP3610487B2 (en) | 2001-10-17 | 2001-10-17 | Food preservation method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003116460A JP2003116460A (en) | 2003-04-22 |
JP3610487B2 true JP3610487B2 (en) | 2005-01-12 |
Family
ID=19136800
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001319222A Expired - Fee Related JP3610487B2 (en) | 2001-10-17 | 2001-10-17 | Food preservation method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3610487B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104990323A (en) * | 2015-07-23 | 2015-10-21 | 天津商业大学 | Jacket type liquid nitrogen spraying refrigerator |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101051397B1 (en) | 2003-12-17 | 2011-07-25 | 주식회사 대우일렉트로닉스 | Kimchi Refrigerator with Carbon Dioxide Generator |
CN104185429A (en) * | 2012-04-02 | 2014-12-03 | 中村正一 | Fresh product disinfection and storage device and method |
KR101634936B1 (en) * | 2014-06-26 | 2016-07-01 | 김종언 | Multipurpose Fruit Storage System |
KR101652686B1 (en) * | 2014-08-06 | 2016-09-01 | 한국식품연구원 | Berries pretreated by using millimeter wave and method for pretreatment thereof |
CN107467166B (en) * | 2017-07-07 | 2021-01-08 | 浙江省海洋水产研究所 | Shrimp fresh-keeping device |
CN108408248A (en) * | 2018-01-31 | 2018-08-17 | 上海市农业科学院 | A kind of fresh-keeping treating method of Peach fruits |
JP6660972B2 (en) | 2018-03-20 | 2020-03-11 | 株式会社メディパルホールディングス | Delivery unit and delivery system |
CN109737663A (en) * | 2019-01-22 | 2019-05-10 | 柳小菊 | A kind of controlled atmosphere cold storage case and its controlled atmosphere control method |
CN114403216B (en) * | 2022-01-14 | 2023-10-20 | 金健植物油有限公司 | Box-closed type camellia seed fresh-keeping storage method and equipment |
CN114194582B (en) * | 2022-02-21 | 2022-05-17 | 山东凯欣绿色农业发展股份有限公司 | Air conditioning storage device for fruits |
-
2001
- 2001-10-17 JP JP2001319222A patent/JP3610487B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104990323A (en) * | 2015-07-23 | 2015-10-21 | 天津商业大学 | Jacket type liquid nitrogen spraying refrigerator |
Also Published As
Publication number | Publication date |
---|---|
JP2003116460A (en) | 2003-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6661499B2 (en) | Integrated heating and cooling food processing system | |
CN101983570B (en) | Green production method of chilled fillets | |
CN101990930B (en) | Fence preservation method for prolonging shelf life of cold fresh poultry | |
CN102144662B (en) | Storage and fresh-keeping method for fresh water caltrop | |
JP3610487B2 (en) | Food preservation method and apparatus | |
ES2885473T3 (en) | Integrated heating and cooling food processing system | |
CN101496617A (en) | Ice temperature gas regulation fresh-keeping water-cooking minced fish octopus bolus ball | |
CN110074178B (en) | Modified atmosphere preservation method of instant pomegranate seeds | |
CN101473869B (en) | Method for controlling cold damage of peach and keeping edible quality | |
JP5087152B2 (en) | Freshness preservation method for fresh food | |
Bower | Postharvest handling, storage, and treatment of fresh market berries | |
JP2011115076A (en) | Method for processing and preserving fresh fish and shellfish | |
US7087257B1 (en) | Crustacean seafood process | |
CN108850133B (en) | Method for preserving green-peel walnuts | |
CN113424864B (en) | Method for killing microorganisms on surface of cold-chain food by using low-temperature carbon dioxide | |
CN103622078A (en) | Processing method for ready-to-eat squilla | |
KR20070048130A (en) | Physical process causing the effect of preserving fish or meat food throughout long periods of time, tens of months, thereby preserving the properties of a fresh product | |
CN109832574A (en) | A kind of preparation and fresh-keeping and cold storage method of peeled shrimp three delicacies fillings | |
KR20200117450A (en) | Refrigerating composition for fresh conservation of fishery products | |
JPH08116867A (en) | Low-temperature storage of vegetable, fruit, etc., with ethylene gas | |
KR20230107346A (en) | Preservation method and system for minimally processed fruits or vegetables | |
CN117322463A (en) | Method for prolonging cucumber fresh-keeping period | |
CN112167312A (en) | Salmon fresh-keeping method | |
TWI479996B (en) | Preservation of fresh meat with meat and meat | |
TW201127701A (en) | Fresh vegetables and freshness preservation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040914 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041006 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081029 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081029 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091029 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091029 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101029 Year of fee payment: 6 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101029 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101029 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111029 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111029 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121029 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121029 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131029 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |