JP3610205B2 - Method for producing solid activated carbon - Google Patents

Method for producing solid activated carbon Download PDF

Info

Publication number
JP3610205B2
JP3610205B2 JP29704997A JP29704997A JP3610205B2 JP 3610205 B2 JP3610205 B2 JP 3610205B2 JP 29704997 A JP29704997 A JP 29704997A JP 29704997 A JP29704997 A JP 29704997A JP 3610205 B2 JP3610205 B2 JP 3610205B2
Authority
JP
Japan
Prior art keywords
activated carbon
pva
parts
resin
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29704997A
Other languages
Japanese (ja)
Other versions
JPH11130416A (en
Inventor
雄一 堀
直朋 外城
真也 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP29704997A priority Critical patent/JP3610205B2/en
Publication of JPH11130416A publication Critical patent/JPH11130416A/en
Application granted granted Critical
Publication of JP3610205B2 publication Critical patent/JP3610205B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電気二重層コンデンサやリチウムイオン電池をはじめとする小型大容量のコンデンサや、バックアップ電源、車両用電源、補助電源等の各種電池に用いられる電極材料、あるいはガス吸着剤や上水用、食品精製用、排水浄化用の濾材等に用いられる多孔質の活性炭焼結体として一般に広く適用される固形状活性炭の製造方法に関するもので、静電容量が大きく、エネルギー密度が大きな電力用蓄電システムを実現可能とする固形状活性炭の製造方法に関するものである。
【0002】
【従来の技術】
近年、活性炭はその特性に着目した各種応用分野への適用が検討されているが、特に小型大容量のコンデンサや、各種電池の電極材料用の多孔質炭素材料として注目され、種々検討されている。
【0003】
とりわけ前記活性炭等の炭素質を主体とする分極性電極は、該分極性電極に電解質を含有させ、両者の界面で形成される電気二重層を利用した、従来のコンデンサに比較して単位体積当たり数千倍にも及ぶ静電容量を有する電気二重層コンデンサ用として多用され、かかる電気二重層コンデンサはコンデンサと電池の両方の機能を有することから、小型のメモリーバックアップ電源や大容量のモーター等の補助電源に適用される等、エレクトロニクス分野の発展と共に急速にその需要が伸びている。
【0004】
当初、前記電極材料としては、一般に広く適用される多孔質の固形状活性炭が用いられており、かかる固形状活性炭としては、例えば、活性炭やカーボンブラック等の炭素質と、四フッ化エチレン樹脂又は含フッ素重合体等の有機樹脂を混練してロール成形法や圧縮成形法等、公知の成形手段でシート状に成形したり、アクリル樹脂やポリカーボネート樹脂等を被覆した活性炭及び導電性カーボンとバインダー等を混練した後、前記同様にしてシート状に成形したりするもの等が用いられていた。
【0005】
ところが、前記コンデンサや電池の電極材料としては、とりわけ高い静電容量と低い内部抵抗という性能を満足し、かつ昨今の電子部品の小型化の要求を満足するために、所定容量に対する体積の極小化、及び電解液の含浸性を考慮した多孔体構造で亀裂や破損等を起こし難い等の他、一般の用途としても更に耐久性と機械的特性に優れたものであること等が要求されるようになっていた。
【0006】
そこで、前記諸要求を満足するために、活性炭微粒子、又はカーボン微粒子とカーボン繊維、又は活性炭粉末とメソフェーズ系カーボンを混合して加圧焼結したり、あるいは活性炭粉末とフェノール樹脂を有機溶剤に溶解させた混合物を基板状に成膜し、熱硬化後、非酸化性雰囲気中で熱処理した後、賦活処理する等、各種製造方法による固形状活性炭が提案されていた。
【0007】
しかしながら、かかる固形状活性炭は耐久性や機械的強度を損なわない範囲で比表面積を大きくした多孔質の活性炭と前記有機樹脂との混合物から製造されており、該活性炭の充填量は全細孔容積との関係から一定範囲に制約され、しかも成形性の良好な前記有機樹脂は活性炭の微細孔を塞いでしまう可能性が高く、前記活性炭の充填量とも相まって比表面積が更に減少していずれも前記静電容量に対する体積の極小化という点からは満足するものではなかった。
【0008】
一方、前記活性炭の微細孔を塞ぐことのない高粘度の有機樹脂を用いた場合には成形性が悪く、炭化熱処理後の機械的強度も低いという欠点があった。
【0009】
かかる問題を解消するために、活性炭基材に炭素化合物から成るアルカン類やアルケン類、アルコール等の有機溶剤を含浸させてから、有機樹脂から成るバインダーを添加混合して活性炭電極を製造する方法が提案されている(特開平8−138979号公報参照)。
【0010】
【発明が解決しようとする課題】
しかしながら、前記バインダーとして大気中のエージング処理で活性炭中の水酸基と反応して架橋反応で網目構造となり、少ない量でその強度を高くすることが可能なPVAや該PVAから誘導される樹脂を前記活性炭基材のバインダーとして用いた場合、該バインダーは前記アルカン類やアルケン類等の有機溶剤では可塑化しないために造粒体が硬く、取り扱いの容易な成形体が得られないばかりか、所望の形状を自由に得ることができないという課題があった。
【0011】
【発明の目的】
本発明は、前記課題を解決せんとしてなされたもので、その目的は、バインダーとして用いる有機樹脂から多孔質の活性炭が有する微細孔を保護して活性炭の比表面積を高く維持すると共に、前記ロール成形法等で得られるフレキシブルなシート状の成形体を自由に得ることができる良好な成形性を有し、機械的強度の大きい耐久性に優れ、特に分極性電極として用いた場合に実用的な静電容量を有する固形状活性炭の製造方法を提供することにある。
【0012】
【課題を解決するための手段】
本発明者等は前記課題に対して鋭意研究の結果、各種活性炭材料にバインダーとして混合する有機樹脂を可塑化させる効果を有し、室温で液体であるフタル酸系又はリン酸系、脂肪酸系のエステルを活性炭の微細孔保護材として含浸させておくことにより、PVA又はPVAより誘導される樹脂をバインダーとして用いた成形体を熱処理して一体化させることにより、高い静電容量を有する各種形状の固形状活性炭が得られることを見いだし、本発明に至った。
【0015】
一方、本発明の固形状活性炭の製造方法としては、活性炭粉末及び/又は活性炭繊維100重量部に対してフタル酸系又はリン酸系、脂肪酸系のエステルのいずれか一種以上を50〜200重量部含浸させた後、前記活性炭粉末及び/又は活性炭繊維100重量部に対してポリビニルアルコール(PVA)又はポリビニルアルコール(PVA)より誘導される樹脂を20〜200重量部の割合で混合し、該混合物を成形した後、得られた成形体を大気中150〜300℃の温度でエージング処理を行ってから非酸化性雰囲気中600〜1200℃で炭化熱処理して前記活性炭粉末及び/又は活性炭繊維とポリビニルアルコール(PVA)又はポリビニルアルコール(PVA)より誘導される樹脂の炭化物とを焼成一体化した後、賦活処理して前記炭化物を活性化することを特徴とするものである。
【0016】
なかでも前記エステルは、室温で液体のDBPであることが、また、前記PVAより誘導される樹脂は、PVBであることが好適なものである。
【0017】
【作用】
本発明により得られる固形状活性炭は、フタル酸系又はリン酸系、脂肪酸系のエステルのいずれか一種以上を含浸した活性炭粉末及び/又は活性炭繊維と、PVA又はPVAより誘導される樹脂の熱処理による炭化物とから成り、その比表面積が700m2 /g以上であることから、前記エステルはその一部が活性炭粉末及び/又は活性炭繊維の微細孔に浸透すると共に、残余のエステルが活性炭粉末及び/又は活性炭繊維の表面を被覆することになる。
【0018】
従って、その後、PVA又はPVAより誘導される樹脂を添加しても前記微細孔は既にエステルで塞がれているために該樹脂は入り込めず、微細孔を塞ぐことはない。
【0019】
また、前記エステルはPVA又はPVAより誘導される樹脂を可塑化させる効果を有するため、表面を被覆している残余のエステルが前記樹脂を可塑化させ、潰れ易く可塑性を有する造粒体が得られ、該造粒体を用いて前記ロール成形法等により容易にフレキシブルなシート状の成形体を得ることができる。
【0020】
一方、前記成形体は150〜300℃の温度でエージングを行うことにより、前記微細孔に浸透しているエステルが分解されて微細孔が開口され、比表面積を高く保持できる。
【0021】
また、表面に被覆され前記樹脂を可塑化させていた残余のエステルも、前記エージングの際に同時に分解することから、該樹脂の可塑性が無くなって樹脂自体が有する強度が発現し、更にエージングを進めると該樹脂の架橋反応により強度が一層向上するようになる。
【0022】
その結果、静電容量が大きく機械的強度及び耐久性に優れた多目的の各種形状の固形状活性炭とすることができ、該固形状活性炭を電気二重層コンデンサの分極性電極とした場合、実用的な静電容量を有し、かつ電極の内部電気抵抗が低い、簡単な構造で効率の良い、耐久性に優れた小型の電気二重層コンデンサが得られる。
【0023】
また、本発明の固形状活性炭の製造方法は、バインダーのPVA又はPVAより誘導される樹脂を可塑化させるフタル酸系又はリン酸系、脂肪酸系のエステルのいずれか一種以上を活性炭粉末及び/又は活性炭繊維に含浸させることから、前記活性炭の微細孔保護材として機能すると同時に、該樹脂を可塑化して膨潤させ、分子間の結合力を弱めるため、室温で前記ロール成形法やプレス成形法等により容易に所望の形状の成形体を得ることが可能となる。
【0024】
【発明の実施の形態】
以下、本発明の固形状活性炭及びそれを用いた電気二重層コンデンサ並びにその製造方法について詳述する。
【0025】
本発明の固形状活性炭は、フタル酸系又はリン酸系、脂肪酸系のエステルのいずれか一種以上を含浸した活性炭粉末及び/又は活性炭繊維と、PVA又はPVAより誘導される樹脂を熱処理することにより得られる炭化物とから成り、その比表面積が700m/g以上を示すものである。
【0026】
本発明において、活性炭粉末及び/又は活性炭繊維に含浸させるフタル酸系又はリン酸系、脂肪酸系のエステルは、PVA又はPVAより誘導される樹脂を可塑化させる効果を有するものであればいずれでも良く、例えば、フタル酸ジブチル(DBP)やフタル酸ジオクチル(DOP)、リン酸トリブチル(TBP)、セバシン酸ブチル(DBS)等が挙げられるが、とりわけ乾式成形時の成形体の延び、強度の点からは室温で液体のDBPが最も望ましい。
【0027】
また、バインダーとしてのPVA又はPVAより誘導される樹脂は、予め低い温度でエージング処理すれば架橋して、引き続いて炭化熱処理を施しても残存して高い強度を保持するものであればいずれでも良く、例えば、PVAの他にPVBやポリビニルホルマール(PVFM)等のポリビニルアセタール、酢酸ビニル等が挙げられ、とりわけ乾式成形時の造粒体の潰れ易さ、成形体の柔軟性からはPVBが最も望ましい。
【0028】
更に、得られた固形状活性炭の比表面積は、出発原料の活性炭の比表面積によってその上限は規定されるが、比表面積が700m/g未満では電解液と電極との界面に生じる電気二重層が少なくなるため、静電容量が20F/cc未満となって実用的でない。
【0029】
尚、前記固形状活性炭の比表面積が2000m/gを越えると強度低下の傾向があり、800〜1500m/gであれば静電容量及び強度という点からはより望ましく、得られた固形状活性炭は製造工程中や電気二重層コンデンサの電極としての組み込み時に欠けや割れ等の破損を生じないためには、少なくとも300gf/mm以上の強度を有するものが望ましい。
【0030】
かかる固形状活性炭は、十分な静電容量が維持できると共に機械的強度も確保でき、とりわけ電気二重層コンデンサの分極性電極として最適なものである。
【0031】
また、本発明の固形状活性炭の製造方法は、活性炭粉末及び/又は活性炭繊維とPVA又はPVAより誘導される樹脂を可塑化させる効果を有する室温で液体であるフタル酸系、リン酸系、脂肪酸系のエステルを一種以上含浸させ、PVA又はPVAより誘導される樹脂を混合した成形用材料を周知の成形法で成形した後、大気中でエージング処理並びに非酸化性雰囲気中で炭化熱処理する工程から成るものである。
【0032】
本発明の固形状活性炭の製造方法において、用いる出発原料の活性炭粉末や活性炭繊維は特に限定される物ではなく、ヤシ殻系や石炭系、木質系のいずれでも良いが、コストと吸着能力の点ではヤシ殻系が最も望ましい。
【0033】
尚、前記出発原料の活性炭粉末や活性炭繊維は、目的とする静電容量によってその比表面積を選択すれば良く、得られた固形状活性炭を電気二重層コンデンサ用の分極性電極に用いる場合、活性炭粉末では比表面積が1500〜2500m/g程度であるものが好適であり、また活性炭繊維では繊維径が6〜18μmで比表面積が1000〜2500m/g程度であるものが好適であり、それらを適宜混合して用いることも可能である。
【0034】
また、かかる活性炭及び/又は活性炭繊維に含浸させる前記フタル酸系又はリン酸系、脂肪酸系のエステルのいずれか一種以上の量は、該活性炭及び/又は活性炭繊維100重量部に対して50重量部未満では、活性炭及び/又は活性炭繊維中の微細孔に含浸して、少なくとも電解液のイオン径より大きい5Å以上の微細孔をバインダーの樹脂が塞ぐのを防止するには量的に不足であり、微細孔保護の効果が充分に働かず得られた固形状活性炭の比表面積の低下が起こり、静電容量の低下につながる。
【0035】
一方、200重量部以上含浸させても、活性炭及び/又は活性炭繊維が持つ微細孔を塞ぐには過剰であるため、それ以上の効果が現れないばかりか可塑化し過ぎて成形時の離型性が急激に悪くなり、極端な場合には成形時に前記エステルが滲み出して成形自体ができなくなることもある。
【0036】
従って、含浸させる前記エステルの量は活性炭粉末及び/又は活性炭繊維100重量部に対して50〜200重量部に限定され、更にこの範囲内であれば、前記エステルはPVA又はPVAより誘導される樹脂を可塑化させる効果を有するため、他の可塑剤を一切添加する必要がなく、成形性に支障をきたすことなく、逆にフレキシブルで取り扱い易い成形体として、成形体強度が50gf/mm以上の成形体が得られる。
【0037】
他方、PVA又はPVAより誘導される樹脂の配合量が活性炭粉末及び/又は活性炭繊維100重量部に対して20重量部未満の場合には、得られた固形状活性炭の強度が極端に低下してしまい、200重量部を越えるとエージング処理中に成形体が大きく変形してしまうことから、前記配合量は20〜200重量部に限定される。
【0038】
次に、前記混合物から成る原料を用いて、ドクターブレード法やカレンダーロール法等によりシート状に成形して活性炭基板としたり、各種プレス成形法でブロック状に成形したり、あるいは押し出し成形法により棒状や筒状としたり、それらを組み合わせたりしてさまざまな形状に成形した成形体をエージング処理することにより、微細孔保護材のエステルを分解して活性炭の微細孔を開口すると共に、PVA又はPVAより誘導される樹脂が架橋反応により強度が向上し、比表面積が高く、機械的強度の高い炭化物を得ることができる。
【0039】
従って、前記エージング処理温度は150℃未満では、含浸させた微細孔保護材の分解が不十分で活性炭の微細孔を完全に開口させることができないだけでなく、バインダーのPVA又はPVAより誘導される樹脂の架橋反応が進行せず、強度の低下となり、また、300℃を越えると急激な架橋反応により成形体が変形すると同時にバインダーの分解が起こり始め、強度の低下を招き、実用性に欠ける。
【0040】
従って、前記エージング処理温度は150〜300℃の温度範囲に限定され、固形状活性炭の強度及び微細孔形成の観点からは180〜220℃がより望ましい。
【0041】
尚、前記シート状の成形体を複数積層した後、非酸化性雰囲気下で熱処理することも可能であり、複数のシート状成形体を積層し、熱圧着したり、あるいは密着液や接着剤等で接合することにより、互いの反り方向を相殺して熱処理時の反りの発生を低減することも可能となる。
【0042】
また、本発明における炭化熱処理温度はPVA又はPVAより誘導される樹脂の炭化を十分に進行させると共に、活性炭粉末や活性炭繊維のネック部の焼結を進行させて十分な強度を保持させるためには、非酸化性雰囲気中、600〜1200℃程度の温度が望ましく、特に800〜1000℃の温度が最適である。
【0043】
従って、前記炭化熱処理温度は温度を高くしたり、炭化時間を長くすれば強度は向上するものの、比表面積が減少してしまうため、用途に合わせて強度と静電容量との兼ね合いから、最適な細孔分布を有するように炭化熱処理条件を選択することが肝要である。
【0044】
そして、本発明の固形状活性炭の製造方法では、炭化熱処理後にPVA又はPVAより誘導される樹脂から成るバインダーの炭化物を活性化するためにも、再度、水蒸気雰囲気中、あるいはCO2 雰囲気中、あるいは大気中で熱処理して賦活処理をすることがより高い静電容量が得られることからも必要である。
【0045】
【実施例】
本発明の固形状活性炭及びそれを用いた電気二重層コンデンサ並びにその製造方法を以下のようにして評価した。
【0046】
先ず、BET値が2000m/gのヤシ殻活性炭粉末100重量部に対して、各種含浸剤を表1及び表2に示す割合で前記活性炭粉末に添加し、高速混合攪拌機を用いて含浸させる。
【0047】
その後、バインダーとして用いる有機樹脂を表1及び表2に示す割合で添加して高速混合撹拌機にて撹拌し、得られた粉体を40メッシュの篩いで篩別して成形用原料を作製した。
【0048】
尚、前記含浸剤及び有機樹脂の詳細は表3に示す通りである。
【0049】
次に、得られた成形用原料をプレス成形、あるいはロール成形して平板状の成形体を得た後、該成形体を大気中、表1及び表2に示す温度でエージング処理を行い含浸させたエステルを分解揮散させて活性炭原料の微細孔を開孔させ、次いで真空中、900℃で炭化熱処理を行い、バインダーとして添加したPVA又はPVAより誘導される樹脂を炭化させて活性炭とカーボンの複合体である縦70mm、横50mm、厚さ1mmの評価用の活性炭基板を作製した。
【0050】
更に、前記活性炭基板を大気中で酸化処理し、再度、賦活処理して添加したバインダーの炭化物を活性化処理した。
【0051】
【表1】

Figure 0003610205
【0052】
【表2】
Figure 0003610205
【0053】
【表3】
Figure 0003610205
【0054】
かくして得られた評価用の活性炭基板を用いて、BET法により窒素吸着より比表面積を求めた。
【0055】
次に、前記評価用の活性炭基板を電極とし、40%硫酸水溶液中で充電して電極単位体積当たりの静電容量(F/cc)を求めた。
【0056】
尚、前記電極の1kHzにおける等価直列抵抗を、厚さ1mm、縦・横10mmの2枚の基板を用いて評価用のコンデンサを組み立てて測定したところ、本発明ではいずれも5Ω以下であった。
【0057】
また、成形性の評価としては前記評価用の活性炭基板と同一材料を用いて厚さ3mm、幅5mm、長さ50mmの成形体をプレス成形した後、支点間距離を30mmとし、クロスヘッドスピードを10mm/minに設定して荷重を加え、前記成形体が破断した時の荷重より算出した成形体強度を求めると共に、造粒体の潰れ状態及び離型性について観察した。
【0058】
次に、評価用の活性炭基板の機械的強度を、前記同様にして厚さ1mm、幅4mm、長さ40mmの試験片を作成し、該試験片を用いて支点間距離を30mmとし、クロスヘッドスピードを0.5mm/minとして破断荷重から算出した。
【0059】
【表4】
Figure 0003610205
【0060】
【表5】
Figure 0003610205
【0061】
表4及び表5から明らかなように、比較例の試料番号53乃至56では造粒体が潰れず成形性が悪く、活性炭基板の比表面積が測定できず、機械的強度も52g/mm以下と低く、本発明の請求範囲外の試料は試料番号17のように比表面積が計測できたとしても700m/g未満であるか、あるいは比表面積等の物性の計測が不可能であり、他に試料番号1、6、7、17、22、23、37、52ではいずれも造粒体が潰れなかったり、離型性が悪い等、成形性が悪く、同じく試料番号13、16、29、32、38、41ではいずれも活性炭基板の機械的強度が81g/mm以下と低く、同じく試料番号12、28では成形性は良好なもののエージング処理で変形を生じる等、本発明の固形状活性炭としては実用性に欠けるものである。
【0062】
それに対して本発明ではいずれも比表面積が700m/g以上となり、その上、静電容量が20.8F/cc以上と実用範囲内にあり、活性炭基板の機械的強度も曲げ強度も315g/mm以上と高く、成形型への付着も認められず成形性も良好であり、得られた成形体強度も50gf/mm以上と固形状活性炭としての実用上の諸要求を満足するものであった。
【0063】
【発明の効果】
以上詳述したように、本発明の固形状活性炭及びそれを用いた電気二重層コンデンサ並びにその製造方法によれば、成形や熱処理の製造工程が容易に安定して実施でき、比表面積が大きいために大きな静電容量が得られると共に、機械的強度の大きい耐久性に優れた各種用途に適用可能な多目的の固形状活性炭が得られ、静電容量に対する体積の小型化が実現できる。
【0064】
従って、本発明の固形状活性炭を分極性電極として使用した場合には、電極として電解液に接する表面積が増大し、電荷の通過する電路も増加するため、実用的な静電容量を有する簡単な構造で効率の良い、優れた小型の電気二重層コンデンサを得ることができる他、機械的強度に優れた耐久性に富む補助電源用各種電池の電極材料等、各種用途に好適な多目的な固形状活性炭が得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention is a small-capacity capacitor such as an electric double layer capacitor or a lithium ion battery, an electrode material used for various batteries such as a backup power source, a vehicle power source, an auxiliary power source, a gas adsorbent or water supply. It relates to a method for producing solid activated carbon, which is generally widely used as a porous activated carbon sintered body used in filter media for food purification and wastewater purification, etc., and has a large capacitance and energy storage for electric power. The present invention relates to a method for producing solid activated carbon that can realize the system.
[0002]
[Prior art]
In recent years, application of activated carbon to various application fields focusing on its characteristics has been studied, but in particular, it has been attracting attention as a porous carbon material for small and large-capacity capacitors and electrode materials for various batteries, and has been studied in various ways. .
[0003]
In particular, a polarizable electrode mainly composed of carbon such as activated carbon contains an electrolyte in the polarizable electrode, and uses an electric double layer formed at the interface between the two, per unit volume compared to a conventional capacitor. It is often used for electric double layer capacitors with electrostatic capacity several thousand times, and such electric double layer capacitors have both the functions of a capacitor and a battery. The demand is growing rapidly with the development of the electronics field, such as being applied to auxiliary power supplies.
[0004]
Initially, as the electrode material, generally used is a porous solid activated carbon that is widely applied. Examples of the solid activated carbon include carbonaceous materials such as activated carbon and carbon black, and tetrafluoroethylene resin or Kneading an organic resin such as a fluoropolymer and molding it into a sheet by a known molding means such as a roll molding method or compression molding method, activated carbon coated with acrylic resin or polycarbonate resin, conductive carbon and binder, etc. After knead | mixing, what was shape | molded in the sheet form like the above was used.
[0005]
However, in order to satisfy the performance of high capacitance and low internal resistance, and to meet the recent demands for miniaturization of electronic components, the electrode material for capacitors and batteries has a minimum volume with respect to a predetermined capacity. In addition, it is difficult to cause cracks and breakage due to the porous structure considering the impregnation of the electrolytic solution, etc., and it is required to have further excellent durability and mechanical properties as a general application. It was.
[0006]
Therefore, in order to satisfy the above requirements, activated carbon fine particles, carbon fine particles and carbon fibers, or activated carbon powder and mesophase carbon are mixed and sintered under pressure, or activated carbon powder and phenol resin are dissolved in an organic solvent. Solid activated carbons by various manufacturing methods have been proposed, such as forming a film of the mixture into a substrate, heat-curing, heat-treating in a non-oxidizing atmosphere, and performing an activation treatment.
[0007]
However, such solid activated carbon is manufactured from a mixture of porous activated carbon having a large specific surface area within a range not impairing durability and mechanical strength and the organic resin, and the filling amount of the activated carbon is the total pore volume. The organic resin that is constrained to a certain range from the relationship with the above and has good moldability is likely to block the fine pores of the activated carbon, and the specific surface area is further reduced in combination with the filling amount of the activated carbon. It was not satisfactory in terms of minimizing the volume with respect to the capacitance.
[0008]
On the other hand, when a high-viscosity organic resin that does not block the fine pores of the activated carbon is used, the moldability is poor and the mechanical strength after the carbonization heat treatment is also low.
[0009]
In order to solve such a problem, there is a method in which an activated carbon substrate is impregnated with an organic solvent such as an alkane or alkene composed of a carbon compound or an alcohol, and then a binder composed of an organic resin is added and mixed to produce an activated carbon electrode. It has been proposed (see JP-A-8-138879).
[0010]
[Problems to be solved by the invention]
However, as the binder, PVA which can react with hydroxyl groups in the activated carbon by an aging treatment in the atmosphere to form a network structure by cross-linking reaction, and can increase the strength with a small amount, and a resin derived from the PVA are used as the activated carbon. When used as a binder for a substrate, the binder is not plasticized with organic solvents such as alkanes and alkenes, so the granulated body is hard and a molded product that is easy to handle cannot be obtained. There was a problem that could not be obtained freely.
[0011]
OBJECT OF THE INVENTION
The present invention has been made in order to solve the above problems, and its purpose is to protect the fine pores of the porous activated carbon from the organic resin used as the binder and maintain the specific surface area of the activated carbon high, and the roll molding The flexible sheet-like molded product obtained by the method can be freely obtained, has excellent moldability, has excellent mechanical strength, and is practically static when used as a polarizable electrode. An object of the present invention is to provide a method for producing solid activated carbon having electric capacity.
[0012]
[Means for Solving the Problems]
As a result of earnest research on the above problems, the present inventors have the effect of plasticizing an organic resin mixed as a binder with various activated carbon materials, and are phthalic acid-based or phosphoric acid-based, fatty acid-based liquids that are liquid at room temperature By impregnating the ester as a microporous protective material for activated carbon, by integrating the molded body using a resin derived from PVA or PVA as a binder and heat-treating, various shapes having high electrostatic capacity The inventors have found that solid activated carbon can be obtained and have reached the present invention.
[0015]
On the other hand, as a method for producing solid activated carbon of the present invention, 50 to 200 parts by weight of any one or more of phthalic acid-based, phosphoric acid-based, and fatty acid-based esters with respect to 100 parts by weight of activated carbon powder and / or activated carbon fiber. After impregnation, a resin derived from polyvinyl alcohol (PVA) or polyvinyl alcohol (PVA) is mixed at a ratio of 20 to 200 parts by weight with respect to 100 parts by weight of the activated carbon powder and / or activated carbon fiber, and the mixture is mixed. After molding, the obtained molded body is subjected to an aging treatment at a temperature of 150 to 300 ° C. in the air, and then subjected to carbonization heat treatment at 600 to 1200 ° C. in a non-oxidizing atmosphere, and the activated carbon powder and / or the activated carbon fiber and polyvinyl alcohol. (PVA) or after firing integrating the carbide of the resin derived from a polyvinyl alcohol (PVA), and activation treatment It is characterized in that to activate the serial carbides.
[0016]
In particular, the ester is preferably DBP that is liquid at room temperature, and the resin derived from PVA is preferably PVB.
[0017]
[Action]
Solid activated carbon obtained by the present invention is obtained by heat treatment of activated carbon powder and / or activated carbon fiber impregnated with one or more of phthalic acid, phosphoric acid, and fatty acid ester, and a resin derived from PVA or PVA. Since the specific surface area is 700 m 2 / g or more, the ester partially penetrates into the fine pores of the activated carbon powder and / or activated carbon fiber, and the remaining ester is activated carbon powder and / or The surface of the activated carbon fiber will be coated.
[0018]
Therefore, after that, even if a resin derived from PVA or PVA is added, the fine pores are already blocked with an ester, so that the resin cannot enter and the fine pores are not blocked.
[0019]
Further, since the ester has an effect of plasticizing PVA or a resin derived from PVA, the remaining ester covering the surface plasticizes the resin, and a granulated body that is easily crushed and has plasticity is obtained. A flexible sheet-like molded body can be easily obtained by the roll molding method or the like using the granulated body.
[0020]
On the other hand, when the molded body is aged at a temperature of 150 to 300 ° C., the ester permeating into the micropores is decomposed to open the micropores, and the specific surface area can be kept high.
[0021]
In addition, since the remaining ester that has been coated on the surface and plasticized the resin is simultaneously decomposed during the aging, the resin loses its plasticity and develops the strength of the resin itself and further promotes aging. And the strength is further improved by the crosslinking reaction of the resin.
[0022]
As a result, a multi-purpose solid activated carbon having a large capacitance and excellent mechanical strength and durability can be obtained. When the solid activated carbon is used as a polarizable electrode of an electric double layer capacitor, it is practical. It is possible to obtain a small electric double layer capacitor having a simple capacitance, having a low internal electric resistance, having a simple structure, high efficiency and excellent durability.
[0023]
Moreover, the method for producing solid activated carbon of the present invention is a method in which any one or more of phthalic acid-based, phosphoric acid-based, and fatty acid-based esters for plasticizing a resin derived from PVA or PVA as a binder is activated carbon powder and / or By impregnating the activated carbon fiber, it functions as a protective material for fine pores of the activated carbon, and at the same time, plasticizes and swells the resin and weakens the bonding force between molecules. It becomes possible to easily obtain a molded body having a desired shape.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the solid activated carbon of the present invention, the electric double layer capacitor using the same, and the production method thereof will be described in detail.
[0025]
The solid activated carbon of the present invention is obtained by heat-treating activated carbon powder and / or activated carbon fibers impregnated with one or more of phthalic acid-based, phosphoric acid-based, and fatty acid-based esters, and a resin derived from PVA or PVA. It consists of the resulting carbide and has a specific surface area of 700 m 2 / g or more.
[0026]
In the present invention, the phthalic acid-based or phosphoric acid-based or fatty acid-based ester impregnated into the activated carbon powder and / or the activated carbon fiber may be any as long as it has an effect of plasticizing a resin derived from PVA or PVA. For example, dibutyl phthalate (DBP), dioctyl phthalate (DOP), tributyl phosphate (TBP), butyl sebacate (DBS), etc., but particularly from the viewpoint of elongation and strength of the molded body during dry molding. Most preferably, DBP is liquid at room temperature.
[0027]
The PVA as a binder or a resin derived from PVA may be any resin as long as it can be crosslinked by aging treatment at a low temperature in advance and remain high even after subsequent carbonization heat treatment. For example, in addition to PVA, polyvinyl acetals such as PVB and polyvinyl formal (PVFM), vinyl acetate, and the like can be mentioned. In particular, PVB is most desirable from the viewpoint of the ease of crushing of the granulated product during dry molding and the flexibility of the molded product. .
[0028]
Furthermore, the upper limit of the specific surface area of the obtained solid activated carbon is defined by the specific surface area of the activated carbon as a starting material. If the specific surface area is less than 700 m 2 / g, an electric double layer generated at the interface between the electrolyte and the electrode Therefore, the capacitance is less than 20 F / cc, which is not practical.
[0029]
The specific surface area of the solid activated carbon tends to exceed the strength reduction of 2000 m 2 / g, more preferably from the viewpoint of electrostatic capacity and strength if 800~1500m 2 / g, the resulting solid The activated carbon preferably has a strength of at least 300 gf / mm 2 in order to prevent damage such as chipping or cracking during the manufacturing process or as an electrode of an electric double layer capacitor.
[0030]
Such solid activated carbon can maintain a sufficient electrostatic capacity and ensure mechanical strength, and is particularly suitable as a polarizable electrode for an electric double layer capacitor.
[0031]
In addition, the method for producing solid activated carbon of the present invention includes phthalic acid, phosphoric acid and fatty acid which are liquid at room temperature and have an effect of plasticizing activated carbon powder and / or activated carbon fiber and a resin derived from PVA or PVA. From the step of impregnating at least one ester of a system and molding a molding material mixed with PVA or a resin derived from PVA by a known molding method, followed by aging treatment in the atmosphere and carbonization heat treatment in a non-oxidizing atmosphere It consists of.
[0032]
In the production method of the solid activated carbon of the present invention, the activated carbon powder and activated carbon fiber of the starting material to be used are not particularly limited, and any of coconut shell system, coal system, and wood system may be used. So the coconut shell system is the most desirable.
[0033]
In addition, the activated carbon powder and activated carbon fiber of the starting material should just select the specific surface area by the target electrostatic capacitance, and when using the obtained solid activated carbon for the polarizable electrode for electric double layer capacitors, activated carbon The powder preferably has a specific surface area of about 1500 to 2500 m 2 / g, and the activated carbon fiber preferably has a fiber diameter of 6 to 18 μm and a specific surface area of about 1000 to 2500 m 2 / g. It is also possible to mix them as appropriate.
[0034]
Further, the amount of any one or more of the phthalic acid-based, phosphoric acid-based and fatty acid-based esters impregnated in the activated carbon and / or activated carbon fiber is 50 parts by weight with respect to 100 parts by weight of the activated carbon and / or activated carbon fiber. Is less than quantitatively sufficient to impregnate the fine pores in the activated carbon and / or the activated carbon fiber and prevent the resin of the binder from clogging the fine pores of at least 5 mm larger than the ion diameter of the electrolyte, The specific surface area of the obtained solid activated carbon is reduced because the effect of protecting the micropores is not sufficiently exerted, leading to a decrease in capacitance.
[0035]
On the other hand, even if impregnated in an amount of 200 parts by weight or more, the activated carbon and / or the activated carbon fiber is excessive to block the micropores. In the extreme case, the ester may ooze out during molding and the molding itself may be impossible.
[0036]
Accordingly, the amount of the ester to be impregnated is limited to 50 to 200 parts by weight with respect to 100 parts by weight of the activated carbon powder and / or the activated carbon fiber, and if within this range, the ester is a resin derived from PVA or PVA. Therefore, it is not necessary to add any other plasticizer, and as a flexible and easy-to-handle molded product, the molded product has a strength of 50 gf / mm 2 or more. A molded body is obtained.
[0037]
On the other hand, when the blending amount of the resin derived from PVA or PVA is less than 20 parts by weight with respect to 100 parts by weight of the activated carbon powder and / or the activated carbon fiber, the strength of the obtained solid activated carbon is extremely reduced. If the amount exceeds 200 parts by weight, the compact is greatly deformed during the aging treatment, so the blending amount is limited to 20 to 200 parts by weight.
[0038]
Next, using the raw material consisting of the mixture, it is formed into a sheet shape by a doctor blade method, a calender roll method or the like to form an activated carbon substrate, a block shape is formed by various press forming methods, or a rod shape is formed by an extrusion method. And by aging the molded body formed into various shapes by combining them into a cylindrical shape or by combining them, the ester of the fine pore protective material is decomposed to open the fine pores of the activated carbon, and from PVA or PVA The strength of the derived resin is improved by a crosslinking reaction, and a carbide having a high specific surface area and high mechanical strength can be obtained.
[0039]
Therefore, if the aging treatment temperature is less than 150 ° C., the impregnated micropore protective material is not sufficiently decomposed and the micropores of the activated carbon cannot be completely opened, and are derived from the binder PVA or PVA. The cross-linking reaction of the resin does not proceed, resulting in a decrease in strength. When the temperature exceeds 300 ° C., the molded body is deformed due to a rapid cross-linking reaction, and at the same time, the binder starts to decompose, leading to a decrease in strength and lacking in practicality.
[0040]
Therefore, the aging treatment temperature is limited to a temperature range of 150 to 300 ° C., and 180 to 220 ° C. is more desirable from the viewpoint of the strength of the solid activated carbon and the formation of micropores.
[0041]
In addition, it is possible to heat-treat in a non-oxidizing atmosphere after laminating a plurality of the sheet-like molded bodies, laminating a plurality of sheet-like molded bodies, thermocompression bonding, adhesion liquid, adhesive, etc. By joining together, it is possible to cancel out the warpage directions of each other and reduce the occurrence of warpage during heat treatment.
[0042]
In addition, the carbonization heat treatment temperature in the present invention sufficiently proceeds with the carbonization of the resin derived from PVA or PVA, and also proceeds with the sintering of the neck portion of the activated carbon powder or activated carbon fiber to maintain sufficient strength. In a non-oxidizing atmosphere, a temperature of about 600 to 1200 ° C. is desirable, and a temperature of 800 to 1000 ° C. is particularly optimal.
[0043]
Therefore, although the carbonization heat treatment temperature is increased by increasing the temperature or by increasing the carbonization time, the specific surface area is decreased, but the optimum surface area is selected from the balance between the strength and the capacitance. It is important to select carbonization heat treatment conditions so as to have a pore distribution.
[0044]
Then, in the manufacturing method of the solid activated carbon of the present invention, in order to activate the carbide binder made of a resin derived from PVA or PVA after carbonization heat treatment also, again, in a water vapor atmosphere or CO 2 atmosphere, or It is also necessary to perform activation treatment by heat treatment in the atmosphere because higher capacitance can be obtained .
[0045]
【Example】
The solid activated carbon of the present invention, the electric double layer capacitor using the same, and the production method thereof were evaluated as follows.
[0046]
First, with respect to 100 parts by weight of coconut shell activated carbon powder having a BET value of 2000 m 2 / g, various impregnating agents are added to the activated carbon powder in the ratios shown in Tables 1 and 2, and impregnated using a high-speed mixing stirrer.
[0047]
Then, the organic resin used as a binder was added in the ratios shown in Tables 1 and 2 and stirred with a high-speed mixing stirrer, and the obtained powder was sieved with a 40-mesh sieve to produce a molding raw material.
[0048]
The details of the impregnating agent and the organic resin are as shown in Table 3.
[0049]
Next, the obtained molding raw material is press-molded or roll-molded to obtain a flat molded body, and then the molded body is impregnated by aging treatment at the temperatures shown in Tables 1 and 2 in the atmosphere. The resulting ester is decomposed and volatilized to open fine pores in the activated carbon raw material, and then subjected to carbonization heat treatment at 900 ° C. in a vacuum to carbonize the resin derived from PVA or PVA added as a binder to combine carbon and activated carbon. An activated carbon substrate for evaluation having a body length of 70 mm, a width of 50 mm, and a thickness of 1 mm was produced.
[0050]
Furthermore, the activated carbon substrate was oxidized in the atmosphere, and the activated carbide was added again to activate the added carbide of the binder.
[0051]
[Table 1]
Figure 0003610205
[0052]
[Table 2]
Figure 0003610205
[0053]
[Table 3]
Figure 0003610205
[0054]
Using the activated carbon substrate for evaluation thus obtained, the specific surface area was determined by nitrogen adsorption by the BET method.
[0055]
Next, the activated carbon substrate for evaluation was used as an electrode, and it was charged in a 40% sulfuric acid aqueous solution to obtain the capacitance (F / cc) per unit electrode volume.
[0056]
The equivalent series resistance of the electrode at 1 kHz was measured by assembling an evaluation capacitor using two substrates having a thickness of 1 mm and a length and width of 10 mm.
[0057]
For the evaluation of formability, a molded product having a thickness of 3 mm, a width of 5 mm, and a length of 50 mm was press-molded using the same material as the activated carbon substrate for evaluation, and the distance between the fulcrums was set to 30 mm. The load was set at 10 mm / min, the strength of the molded body calculated from the load when the molded body broke was determined, and the collapsed state and releasability of the granulated body were observed.
[0058]
Next, a test piece having a thickness of 1 mm, a width of 4 mm, and a length of 40 mm was prepared in the same manner as described above for the mechanical strength of the activated carbon substrate for evaluation, and the distance between fulcrums was set to 30 mm using the test piece. The speed was calculated from the breaking load at 0.5 mm / min.
[0059]
[Table 4]
Figure 0003610205
[0060]
[Table 5]
Figure 0003610205
[0061]
As apparent from Tables 4 and 5, in the sample numbers 53 to 56 of the comparative examples, the granulated body was not crushed and the moldability was poor, the specific surface area of the activated carbon substrate could not be measured, and the mechanical strength was 52 g / mm 2 or less. Even if the specific surface area of the sample outside the claimed range of the present invention can be measured as in Sample No. 17, it is less than 700 m 2 / g, or the physical properties such as the specific surface area cannot be measured. In Sample Nos. 1, 6, 7, 17, 22, 23, 37, and 52, all of the granulated bodies were not crushed or the moldability was poor. In 32, 38 and 41, the activated carbon substrate has a mechanical strength as low as 81 g / mm 2 or less. Similarly, in Sample Nos. 12 and 28, although the moldability is good, the solid activated carbon of the present invention is deformed by aging treatment. As for lack of practicality It is.
[0062]
On the other hand, in the present invention, the specific surface area is 700 m 2 / g or more, and the capacitance is 20.8 F / cc or more in the practical range. The mechanical strength and bending strength of the activated carbon substrate are 315 g / It is as high as mm 2 or more, adherence to the mold is not observed, moldability is good, and the strength of the obtained molded body is 50 gf / mm 2 or more, which satisfies various practical requirements as solid activated carbon. there were.
[0063]
【The invention's effect】
As described above in detail, according to the solid activated carbon of the present invention, the electric double layer capacitor using the same, and the manufacturing method thereof, the manufacturing process of molding and heat treatment can be easily and stably performed, and the specific surface area is large. In addition, it is possible to obtain a multipurpose solid activated carbon that can be applied to various applications with high mechanical strength and excellent durability, and can realize a reduction in volume with respect to the capacitance.
[0064]
Therefore, when the solid activated carbon of the present invention is used as a polarizable electrode, the surface area in contact with the electrolytic solution as the electrode increases, and the electric path through which charges pass increases. In addition to being able to obtain an excellent small electric double layer capacitor that is efficient in structure, it is a versatile solid suitable for various applications, such as electrode materials for various auxiliary power batteries with excellent mechanical strength and durability. Activated carbon is obtained.

Claims (3)

活性炭粉末及び/又は活性炭繊維100重量部に対してフタル酸系又はリン酸系、脂肪酸系のエステルのいずれか一種以上を50〜200重量部含浸させた後、前記活性炭粉末及び/又は活性炭繊維100重量部に対してポリビニルアルコール(PVA)又はポリビニルアルコール(PVA)より誘導される樹脂を20〜200重量部の割合で混合し、該混合物を成形した後、得られた成形体を大気中150〜300℃の温度でエージング処理を行ってから非酸化性雰囲気中600〜1200℃で炭化熱処理して前記活性炭粉末及び/又は活性炭繊維とポリビニルアルコール(PVA)又はポリビニルアルコール(PVA)より誘導される樹脂の炭化物とを焼成一体化した後、賦活処理して前記炭化物を活性化することを特徴とする固形状活性炭の製造方法。After impregnating 50 to 200 parts by weight of any one of phthalic acid, phosphoric acid, and fatty acid ester with respect to 100 parts by weight of the activated carbon powder and / or the activated carbon fiber, the activated carbon powder and / or the activated carbon fiber 100 is used. A resin derived from polyvinyl alcohol (PVA) or polyvinyl alcohol (PVA) is mixed in an amount of 20 to 200 parts by weight with respect to parts by weight, and after molding the mixture, the resulting molded body is 150 to 150 parts in the atmosphere. Resin derived from the activated carbon powder and / or activated carbon fiber and polyvinyl alcohol (PVA) or polyvinyl alcohol (PVA) by carbonization heat treatment at 600 to 1200 ° C. in a non-oxidizing atmosphere after aging treatment at a temperature of 300 ° C. after firing integrating a carbide, a solid characterized by activating the carbide and activation treatment Jokatsu Manufacturing method of charcoal. 前記エステルが、室温で液体のフタル酸ジブチル(DBP)であることを特徴とする請求項1に記載の固形状活性炭の製造方法。The method for producing solid activated carbon according to claim 1, wherein the ester is dibutyl phthalate (DBP) which is liquid at room temperature. 前記ポリビニルアルコール(PVA)より誘導される樹脂が、ポリビニルブチラール(PVB)であることを特徴とする請求項1に記載の固形状活性炭の製造方法。The method for producing solid activated carbon according to claim 1, wherein the resin derived from polyvinyl alcohol (PVA) is polyvinyl butyral (PVB).
JP29704997A 1997-10-29 1997-10-29 Method for producing solid activated carbon Expired - Fee Related JP3610205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29704997A JP3610205B2 (en) 1997-10-29 1997-10-29 Method for producing solid activated carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29704997A JP3610205B2 (en) 1997-10-29 1997-10-29 Method for producing solid activated carbon

Publications (2)

Publication Number Publication Date
JPH11130416A JPH11130416A (en) 1999-05-18
JP3610205B2 true JP3610205B2 (en) 2005-01-12

Family

ID=17841559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29704997A Expired - Fee Related JP3610205B2 (en) 1997-10-29 1997-10-29 Method for producing solid activated carbon

Country Status (1)

Country Link
JP (1) JP3610205B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100994639B1 (en) * 2006-02-16 2010-11-15 파나소닉 주식회사 Electric double layer capacitor
CN103014921B (en) * 2012-12-17 2014-09-17 中国科学院化学研究所 Multi-hole carbon fiber and preparation method thereof

Also Published As

Publication number Publication date
JPH11130416A (en) 1999-05-18

Similar Documents

Publication Publication Date Title
CN1139622C (en) Porous composite product particularly with high specific surface area, method for preparing and electrode for electrochemical assembly formed with porous composite film
US5993996A (en) Carbon supercapacitor electrode materials
EP1202302B1 (en) Process for producing an electrode assembly for an electric double layer capacitor
JP2000007315A (en) Solid active carbon, electric double layer capacitor using the same and production of solid active carbon
JP3610205B2 (en) Method for producing solid activated carbon
JP3602933B2 (en) Activated carbon substrate
JP3592863B2 (en) Solid activated carbon and method for producing the same
JPH09278558A (en) Carbonaceous porous body and its production
US4882103A (en) Process for producing carbon product having coarse and dense structure
JP2000007316A (en) Solid active carbon and electric double layer capacitor using the same
JP4587522B2 (en) Electric double layer capacitor
JP3904755B2 (en) Activated carbon and electric double layer capacitor using the same
JP2001130905A (en) Solid activated carbon-based structure, method for electric double-layered capacitor
JP2008251958A (en) Manufacturing method of electric double layer capacitor electrode
JP2001185452A (en) Electric double layer capacitor and its method of manufacture
JP3580644B2 (en) Method for producing solid activated carbon and electric double layer capacitor obtained thereby
JP2001058807A (en) Polyvinylidene chloride resin powder and activated carbon
JP3559408B2 (en) SOLID ACTIVE CARBON, PROCESS FOR PRODUCING THE SAME, AND ELECTRIC DOUBLE LAYER CAPACITOR USING THE SAME
JP4025456B2 (en) Electric double layer capacitor and manufacturing method thereof
JP2017535080A (en) Method for producing high density carbon material suitable for high density carbon electrode application
JP3801802B2 (en) Electric double layer capacitor and manufacturing method thereof
JP2008044822A (en) Method of manufacturing porous glassy carbon material and porous glassy carbon material
JPH10275749A (en) Solid activated carbon, its manufacture and electric double layer capacitor using the same
JPH07135127A (en) Electric double layer capacitor and its manufacture
JP2000169127A (en) Solid activated carbon structure, electric double layer capacitor using the same and their production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071022

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees