JP3609907B2 - Method for producing optically active tetrahydroquinoline derivative - Google Patents

Method for producing optically active tetrahydroquinoline derivative Download PDF

Info

Publication number
JP3609907B2
JP3609907B2 JP24025496A JP24025496A JP3609907B2 JP 3609907 B2 JP3609907 B2 JP 3609907B2 JP 24025496 A JP24025496 A JP 24025496A JP 24025496 A JP24025496 A JP 24025496A JP 3609907 B2 JP3609907 B2 JP 3609907B2
Authority
JP
Japan
Prior art keywords
optically active
group
catalyst
ytterbium
mmol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24025496A
Other languages
Japanese (ja)
Other versions
JPH1087628A (en
Inventor
修 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP24025496A priority Critical patent/JP3609907B2/en
Publication of JPH1087628A publication Critical patent/JPH1087628A/en
Application granted granted Critical
Publication of JP3609907B2 publication Critical patent/JP3609907B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【0001】
【発明の属する技術分野】
本発明は、生理活性物質の合成中間体として有用な光学活性テトラヒドロキノリン誘導体の製造方法に関する。
【0002】
【従来技術】
従来、テトラヒドロキノリン誘導体を合成する方法としては、N−ベンジリデンアニリンとシクロペンタジエンをイッテルビウムトリフラートの存在下に反応させる方法が知られている[シンセシス(Synthesis)、1195頁(1995年)参照]。
【0003】
【発明が解決しようとする課題】
しかしながら、上記の方法により得られるテトラヒドロキノリン誘導体はラセミ体であり、かかる方法では光学活性なテトラヒドロキノリン誘導体を得ることはできない。このように、イミノ−ディールス−アルダー反応を用いた光学活性なテトラヒドロキノリン誘導体の製造方法は従来知られていない。
しかして、本発明の目的は、光学活性なテトラヒドロキノリン誘導体を、工業的に有利に製造する方法を提供することにある。
【0004】
【課題を解決するための手段】
本発明によれば、上記の目的は、一般式(I)
【0005】
【化4】

Figure 0003609907
【0006】
(式中、R はアルキル基、シクロアルキル基、アラルキル基またはアリール基を表す。)
で示されるイミン化合物[以下、これをイミン化合物(I)と略記する]と一般式(II)
【0007】
【化5】
Figure 0003609907
【0008】
(式中、Rは水素原子もしくはアルキル基を表し、Rはアルキル基もしくはアルコキシ基を表すか、またはRとRは一緒になって環を形成していてもよい。)
で示されるオレフィン[以下、これをオレフィン(II)と略記する]を、光学活性なランタノイド触媒の存在下に反応させることを特徴とする一般式(III)
【0009】
【化6】
Figure 0003609907
【0010】
(式中、R、RおよびRは前記定義のとおりである。)
で示される光学活性テトラヒドロキノリン誘導体[以下、これを光学活性テトラヒドロキノリン誘導体(III)と略記する]の製造方法を提供することにより達成される。
【0011】
【発明の実施の形態】
上記一般式中、Rが表すアルキル基としては、例えばメチル基、エチル基、プロピル基、ブチル基、t−ブチル基、ペンチル基、ヘプチル基等が挙げられ、シクロアルキル基としては、例えばシクロペンチル基、シクロヘキシル基、シクロオクチル基等が挙げられ、アリール基としては、例えばフェニル基、ナフチル基等が挙げられ、アラルキル基としては、例えばベンジル基、フェネチル基等が挙げられる。これらの基はメチル基、エチル基、t−ブチル基等の低級アルキル基;メトキシ基、プロポキシ基等の低級アルコキシ基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;シアノ基;ニトロ基等の置換基を有していてもよい。
【0012】
およびRが表すアルキル基としては、例えばメチル基、エチル基、プロピル基、ブチル基、t−ブチル基、ペンチル基、ヘプチル基等が挙げられ、Rが表すアルコキシ基としては、例えばメトキシ基、エトキシ基、プロポキシ基、ブトキシ基等が挙げられる。また、RとRが一緒になって環を形成する場合のオレフィン(II)の具体例としては、シクロペンテン、シクロヘキセン、シクロペンタジエン、2,3−ジヒドロフラン等が挙げられる。
【0013】
触媒として用いられる光学活性なランタノイド触媒は、例えば不活性溶媒中、モレキュラーシーブの存在下に、ランタノイドトリフラート、光学活性1,1’−ビ−2−ナフトールおよび1,8−ジアザビシクロ[5.4.0]−7−ウンデセンを反応させることにより調製される。かかる方法を用いてランタノイド触媒を調製する場合、光学活性1,1’−ビ−2−ナフトールの使用量はランタノイドトリフラート1モルに対して0.9〜2.0モルの範囲が好ましく、また1,8−ジアザビシクロ[5.4.0]−7−ウンデセンの使用量はランタノイドトリフラート1モルに対して1.0〜5.0モルの範囲が好ましい。ランタノイドトリフラートとしてはイッテルビウムトリフラートまたはスカンジウムトリフラートが特に好ましい。本発明の反応における光学活性なランタノイド触媒の使用量は、ランタノイドトリフラートの量として、イミン化合物(I)1モルに対して0.001〜0.5モルの範囲が好ましく、0.01〜0.3モルの範囲がより好ましい。
【0014】
本発明の反応は、不活性溶媒中で行うことが好ましい。不活性溶媒としては、塩化メチレン等のハロゲン化炭化水素等が使用される。なお、かかる溶媒はランタノイド触媒の調製にも使用することができる。イミン化合物(I)の使用量は、オレフィン(II)1モルに対して0.1〜2.0モルの範囲が好ましい。反応温度は、−40℃〜100℃の範囲が好ましく、−20℃〜0℃の範囲がより好ましい。
【0015】
本発明の反応において、置換ピリジンを共存させることが、反応収率、光学収率を高めるために好ましい。置換ピリジンとしては、立体障害の大きなものが好ましく、例えば2,6−ジ(t−ブチル)ピリジン、2,6−ジ(t−ブチル)−4−メチルピリジン、2,6−ジフェニルピリジン等が挙げられる。置換ピリジンの使用量は、ランタノイドトリフラート1モルに対して1〜5モルが好ましい。
【0016】
原料として用いるイミン化合物(I)は、対応するアルデヒドとo−ヒドロキシアニリンとをランタノイド触媒の存在下に反応させることにより得られる。得られたイミン化合物(I)は、単離することなく本発明の反応に用いることもできる。
【0017】
本発明の反応により得られた光学活性テトラヒドロキノリン誘導体は常法により単離することができる。すなわち、反応液に水を加えた後、濾過し、塩化メチレン、酢酸エチル等で抽出し、乾燥後濃縮し、再結晶、蒸留、カラムクロマトグラフィ等で精製することにより光学活性テトラヒドロキノリン誘導体を得ることができる。
【0018】
【実施例】
以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらの実施例等によりなんら限定されるものではない。
【0019】
参考例1 光学活性イッテルビウム触媒(i)の調製
イッテルビウムトリフラート62.0mg(0.1mmol)、モレキュラーシーブ4A125.0mgおよび(R)−(+)−1,1’−ビ−2−ナフトール32.3mgの塩化メチレン0.5ml懸濁液に、1,8−ジアザビシクロ[5.4.0]−7−ウンデセン36.5mg(0.24mmol)の塩化メチレン0.5ml溶液を0℃で加え、同温度で0.5時間撹拌して黄色の光学活性イッテルビウム触媒(i)の懸濁液を得た。
【0020】
実施例1
参考例1で得られた光学活性イッテルビウム触媒(i)の懸濁液の全量を−15℃に冷却し、N−(1−ナフチル)メチリデン−2−ヒドロキシアニリン123.7mg(0.5mmol)の塩化メチレン0.25ml溶液、2,6−ジ−t−ブチル−4−メチルピリジン102.3mg(0.5mmol)の塩化メチレン0.25ml溶液、およびエチルビニルエーテル108.2mg(1.5mmol)の塩化メチレン0.25ml溶液を順次加えた。20時間撹拌した後、水を加え、不溶物を濾過した。濾液の水層を塩化メチレンで抽出し、有機層を食塩水で洗浄した。無水硫酸ナトリウムで乾燥したのち、濃縮し、得られた濃縮液をシリカゲルカラムクロマトグラフィで精製することにより、下記の物性を有する1,2,3,4−テトラヒドロ−2−(1−ナフチル)−4−エトキシ−8−ヒドロキシキノリンを118.2mg得た(収率74%、シス/トランス=>99/1)。なお、これを光学活性HPLCカラム[Chiralpak AD(ダイセル株式会社製)、溶出液:ヘキサン/2−プロパノール=19/1]で分析したところ、光学純度は91%eeであった。
【0021】
H−NMRスペクトル(CDCl,TMS,270MHz)δ:
1.23(t,3H,J=6.9Hz), 2.27(q,1H,J=11.2Hz), 2.62(ddd,1H,J=2.5,5.8,11.2Hz), 3.51−3.71(m,2H), 4.99(dd,1H,J=5.8,11.2Hz), 5.32(d,1H,J=11.2Hz), 6.59−6.67(m,2H), 7.07−7.10(m,1H), 7.36(s,2H), 7.46−7.56(m,3H), 7.89−7.91(m,3H), 8.13−8.16(m,1H)
13C−NMRスペクトル(CDCl,270MHz)δ:
15.6, 35.5, 51.5, 63.4, 74.3, 113.6, 117.1, 119.9, 122.6, 123.6, 123.9, 125.6, 125.7, 126.2, 128.1, 129.1, 130.7, 133.9, 134.1, 138.8, 142.2
【0022】
実施例2
実施例1において、2,6−ジ−t−ブチル−4−メチルピリジン0.5mmolの代わりに2,6−ジ−t−ブチルピリジン0.5mmolを用いた以外は実施例1と同様に反応および分離精製を行うことにより、1,2,3,4−テトラヒドロ−2−(1−ナフチル)−4−エトキシ−8−ヒドロキシキノリンを得た(収率69%、シス/トランス=>99/1)。なお、これを光学活性HPLCカラム[Chiralpak AD(ダイセル株式会社製)]で分析したところ、光学純度は86%eeであった。
【0023】
実施例3
実施例1において、2,6−ジ−t−ブチル−4−メチルピリジン0.5mmolの代わりに2,6−ジフェニルピリジン0.5mmolを用いた以外は実施例1と同様に反応および分離精製を行うことにより、1,2,3,4−テトラヒドロ−2−(1−ナフチル)−4−エトキシ−8−ヒドロキシキノリンを得た(収率65%、シス/トランス=99/1)。なお、これを光学活性HPLCカラム[Chiralpak AD(ダイセル株式会社製)]で分析したところ、光学純度は91%eeであった。
【0024】
実施例4
実施例1において、光学活性イッテルビウム触媒(i)の量をN−(1−ナフチル)メチリデン−2−ヒドロキシアニリンに対し20モル%から10モル%に代えた以外は実施例1と同様に反応および分離精製を行うことにより、1,2,3,4−テトラヒドロ−2−(1−ナフチル)−4−エトキシ−8−ヒドロキシキノリンを得た(収率62%、シス/トランス=98/2)。なお、これを光学活性HPLCカラム[Chiralpak AD(ダイセル株式会社製)]で分析したところ、光学純度は82%eeであった。
【0025】
実施例5
実施例2において、N−(1−ナフチル)メチリデン−2−ヒドロキシアニリン0.5mmolの代わりにN−ベンジリデン−2−ヒドロキシアニリン0.5mmolを用い、反応温度を−15℃から−45℃とし、光学活性イッテルビウム触媒(i)をN−ベンジリデン−2−ヒドロキシアニリンに対し10モル%用いた以外は実施例1と同様に反応および分離精製を行うことにより、下記の物性を有する1,2,3,4−テトラヒドロ−2−フェニル−4−エトキシ−8−ヒドロキシキノリンを得た(収率52%、シス/トランス=94/6)。なお、これを光学活性HPLCカラム[Chiralpak AD(ダイセル株式会社製)]で分析したところ、光学純度は77%eeであった。
【0026】
H−NMRスペクトル(CDCl,TMS,270MHz)δ:
1.24(t,3H,J=6.9Hz), 2.11(q,1H,J=11.3Hz), 2.39(ddd,1H,J=2.6,5.6,11.3Hz), 3.53−3.73(m,2H), 4.49(d,1H,J=11.3Hz), 4.87(dd,1H,J=5.6,11.3Hz), 6.55−6.58(m,2H), 7.01−7.03(m,1H), 7.24−7.48(m,7H) 13C−NMRスペクトル(CDCl,270MHz)δ:
15.6, 36.8, 55.7, 63.3, 74.1, 113.6, 116.9, 119.5, 126.7, 127.7, 128.3, 128.6, 133.9, 141.9, 143.5
【0027】
実施例6
実施例1において、エチルビニルエーテル1.5mmolの代わりにブチルビニルエーテル1.5mmolを用いた以外は実施例1と同様に反応および分離精製を行うことにより、下記の物性を有する1,2,3,4−テトラヒドロ−2−(1−ナフチル)−4−ブトキシ−8−ヒドロキシキノリンを得た(収率80%、シス/トランス=66/34)。なお、これを光学活性HPLCカラム[Chiralpak AD(ダイセル株式会社製)]で分析したところ、光学純度は70%eeであった。
【0028】
シス体
H−NMRスペクトル(CDCl,TMS,270MHz)δ:
0.89(t,3H,J=7.3Hz), 1.38(dd,2H,J=6.6,14.4Hz), 1.52−1.61(m,2H), 2.25(q,1H,J=11.6Hz), 2.58−2.62(m,1H), 3.45−3.63(m,2H), 4.97(dd,1H,J=5.8,11.6Hz), 5.29(d,1H,J=11.6Hz), 6.59−6.62(m,2H), 7.07(d,1H,J=6.9Hz), 7.33(s,1H), 7.43−7.54(m,3H), 7.77−7.97(m,3H), 8.13(d,1H,J=6.9Hz)13C−NMRスペクトル(CDCl,270MHz)δ:
13.9, 19.4, 32.2, 35.5, 51.4, 67.8, 74.4, 113.5, 117.1, 119.7, 122.6, 123.6, 123.8, 125.5, 125.7, 126.2, 128.0, 129.1, 130.6, 133.9, 134.2, 138.8, 142.2
【0029】
トランス体
H−NMRスペクトル(CDCl,TMS,270MHz)δ:
0.97(t,3H,J=7.3Hz), 1.42−1.75(m,4H), 1.89−2.00(m,1H), 2.51−2.56(m,1H), 3.60−3.76(m,2H), 4.40−4.41(m,1H), 5.37−5.41(m,1H), 6.56−6.68(m,2H), 6.89(d,1H,J=7.6Hz), 7.26(s,1H), 7.46−7.53(m,3H), 7.78−7.91(m,3H), 8.23−8.26(m,1H)
13C−NMRスペクトル(CDCl,270MHz)δ:
14.0, 19.6, 32.3, 35.3, 47.2, 68.4, 73.2, 114.3, 116.3, 121.2, 122.7, 123.4, 125.5, 125.6, 126.1, 127.8, 128.3, 128.9, 130.8, 133.8, 134.7, 139.3, 142.5
【0030】
実施例7
実施例3において、エチルビニルエーテル1.5mmolの代わりに2,3−ジヒドロフラン1.5mmolを用いた以外は実施例3と同様に反応および分離精製を行うことにより、下記の物性を有する2,3,3a,9b,4,5−ヘキサヒドロ−4−(1−ナフチル)−6−ヒドロキシフラノ[3,2−c]キノリンを得た(収率67%、シス/トランス=93/7)。なお、これを光学活性HPLCカラム[Chiralpak AD(ダイセル株式会社製)]で分析したところ、光学純度は86%eeであった。
【0031】
H−NMRスペクトル(CDCl,TMS,270MHz)δ:
1.33−1.37(m,1H), 2.19−2.34(m,1H), 3.06−3.15(m,1H), 3.64−3.73(m,1H), 3.82−3.90(m,1H), 5.44−5.47(m,2H), 6.62−6.72(m,2H), 7.03(d,1H,J=7.6Hz), 7.36(s,2H), 7.48−7.58(m,3H), 7.80−8.08(m,4H)
13C−NMRスペクトル(CDCl,270MHz)δ:
25.0, 45.6, 52.9, 66.9, 75.9, 113.4, 118.3, 122.1, 123.3, 123.6, 125.6, 125.7, 126.3, 127.9, 128.3, 129.1, 130.2, 133.8, 134.8, 137.4, 142.6
【0032】
実施例8
実施例1において、エチルビニルエーテル1.5mmolの代わりにシクロペンタジエン1.5mmolを用いた以外は実施例1と同様に反応および分離精製を行うことにより、下記の物性を有する3a,9b,4,5−テトラヒドロ−4−(1−ナフチル)−6−ヒドロキシ−1−シクロペンテノ[4,3−c]キノリンを得た(収率69%、シス/トランス=>99/1)。なお、これを光学活性HPLCカラム[Chiralpak AD(ダイセル株式会社製)]で分析したところ、光学純度は68%eeであった。
【0033】
H−NMRスペクトル(CDCl,TMS,270MHz)δ:
1.52−1.58(m,1H), 2.57−2.67(m,1H), 3.32−3.27(m,1H), 4.17(d,1H,J=8.3Hz), 5.28(d,1H,J=2.6Hz), 5.54−5.64(m,1H), 5.74−5.86(m,1H), 6.33(d,1H,J=7.9Hz), 6.57(t,1H,J=7.9Hz), 6.70(d,1H,J=7.9Hz), 7.32(s,2H), 7.38−7.46(m,3H), 7.71(d,1H,J=7.9Hz), 7.82−7.84(m,2H), 8.01−8.04(m,1H)
13C−NMRスペクトル(CDCl,270MHz)δ:
31.8, 43.6, 46.3, 53.4, 112.0, 118.4, 121.2, 122.4, 123.0, 125.4, 125.5, 125.9, 127.4, 127.7, 128.2, 128.9, 130.4, 133.6, 133.7, 134.8, 138.0, 143.0
【0034】
実施例9
スカンジウムトリフラート49.2mg(0.1mmol)、モレキュラーシーブ4A125.0mgおよび(R)−(+)−1,1’−ビ−2−ナフトール32.3mgの塩化メチレン0.5ml懸濁液に、1,8−ジアザビシクロ[5.4.0]−7−ウンデセン36.5mg(0.24mmol)の塩化メチレン0.5ml溶液を0℃で加え、同温度で0.5時間撹拌して光学活性スカンジウム触媒の懸濁液を得た。この懸濁液を−15℃に冷却し、2,6−ジ−t−ブチル−4−メチルピリジン102.3mg(0.5mmol)の塩化メチレン0.25ml溶液、シクロヘキサンカルバルデヒド56mgの塩化メチレン0.25ml溶液、2−ヒドロキシアニリン54.5mgの塩化メチレン0.25ml溶液、シクロペンタジエン99mgの塩化メチレン0.25ml溶液を順次加え、同温度で20時間撹拌した。実施例1と同様の後処理および分離精製を行うことにより、下記の物性を有する3a,9b,4,5−テトラヒドロ−4−シクロヘキシル−6−ヒドロキシ−1−シクロペンテノ[4,3−c]キノリンを得た(収率58%、シス/トランス=>99/1)。なお、これを光学活性HPLCカラム[Chiralpak AD(ダイセル株式会社製)]で分析したところ、光学純度は73%eeであった。
【0035】
H−NMRスペクトル(CDCl,TMS,270MHz)δ:
0.94−1.06(m,2H), 1.15−1.43(m,4H), 1.68−1.92(m,4H), 2.04−2.08(m,1H), 2.19−2.28(m,1H), 2.47−2.56(m,1H), 2.93−2.96(m,2H), 3.93(d,1H,J=8.3Hz), 4.59(bs,1H), 5.70−5.82(m,2H), 6.47−6.63(m,3H), 7.36(s,1H)
13C−NMRスペクトル(CDCl,270MHz)δ:
25.9, 26.1, 26.3, 29.1, 30.3, 30.8, 40.0, 40.2, 46.3, 58.5, 111.7, 118.5, 120.9, 128.3, 130.2, 134.1, 134.2, 143.6
【0036】
実施例10
実施例5において、エチルビニルエーテル1.5mmolの代わりにシクロペンタジエン1.5mmolを用い、反応温度を−45℃から−15℃とし、光学活性イッテルビウム触媒(i)をN−ベンジリデン−2−ヒドロキシアニリンに対し20モル%用いた以外は実施例5と同様に反応および分離精製を行うことにより、下記の物性を有する3a,9b,4,5−テトラヒドロ−4−フェニル−6−ヒドロキシ−1−シクロペンテノ[4,3−c]キノリンを得た(収率92%、シス/トランス=>99/1)。なお、これを光学活性HPLCカラム[Chiralpak AD(ダイセル株式会社製)]で分析したところ、光学純度は71%eeであった。
【0037】
H−NMRスペクトル(CDCl,TMS,270MHz)δ:
1.77−1.86(m,1H), 2.58−2.68(m,1H), 3.01(ddd,1H,J=3.5,8.6,14.8Hz), 4.10(d,1H,J=8.6Hz), 4.56(d,1H,J=3.5Hz), 5.63−5.70(m,1H), 5.82−5.84(m,1H), 6.44(d,1H,J=7.8Hz), 6.59(t,1H,J=7.8Hz), 6.69(d,1H,J=7.8Hz), 7.20−7.48(m,7H)
13C−NMRスペクトル(CDCl,270MHz)δ:
31.4, 45.8, 46.3, 57.6, 111.9, 118.3, 121.2, 126.5, 127.1, 128.3, 128.4,
130.4, 133.8, 134.4, 142.8, 143.0
【0038】
実施例11
実施例10において、2,6−ジ−t−ブチルピリジンを使用せず、反応温度を−15℃から0℃に変えた以外は実施例10と同様に反応および分離精製を行うことにより、下記の物性を有する3a,9b,4,5−テトラヒドロ−4−フェニル−6−ヒドロキシ−1−シクロペンテノ[4,3−c]キノリンを得た(収率48%、シス/トランス=99/1)。なお、これを光学活性HPLCカラム[Chiralpak AD(ダイセル株式会社製)]で分析したところ、光学純度は68%eeであった。
【0039】
【発明の効果】
光学活性なテトラヒドロキノリン誘導体を工業的に有利に製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an optically active tetrahydroquinoline derivative useful as a synthetic intermediate for a physiologically active substance.
[0002]
[Prior art]
Conventionally, as a method for synthesizing a tetrahydroquinoline derivative, a method in which N-benzylideneaniline and cyclopentadiene are reacted in the presence of ytterbium triflate is known [see Synthesis, page 1195 (1995)].
[0003]
[Problems to be solved by the invention]
However, the tetrahydroquinoline derivative obtained by the above method is a racemate, and an optically active tetrahydroquinoline derivative cannot be obtained by this method. As described above, a method for producing an optically active tetrahydroquinoline derivative using an imino-Diels-Alder reaction has not been known.
Therefore, an object of the present invention is to provide a method for producing an optically active tetrahydroquinoline derivative advantageously in an industrial manner.
[0004]
[Means for Solving the Problems]
According to the invention, the above object is achieved by the general formula (I)
[0005]
[Formula 4]
Figure 0003609907
[0006]
(Wherein R 1 represents an alkyl group, a cycloalkyl group, an aralkyl group or an aryl group )
[Hereinafter abbreviated as imine compound (I)] and general formula (II)
[0007]
[Chemical formula 5]
Figure 0003609907
[0008]
(In the formula, R 2 represents a hydrogen atom or an alkyl group, R 3 represents an alkyl group or an alkoxy group, or R 2 and R 3 may together form a ring.)
(Hereinafter abbreviated as olefin (II)) is reacted in the presence of an optically active lanthanoid catalyst, represented by the general formula (III)
[0009]
[Chemical 6]
Figure 0003609907
[0010]
(Wherein R 1 , R 2 and R 3 are as defined above.)
It is achieved by providing a method for producing an optically active tetrahydroquinoline derivative represented by the following [hereinafter abbreviated as optically active tetrahydroquinoline derivative (III)].
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In the above general formula, examples of the alkyl group represented by R 1 include a methyl group, an ethyl group, a propyl group, a butyl group, a t-butyl group, a pentyl group, and a heptyl group. Examples of the cycloalkyl group include a cyclopentyl group. Group, cyclohexyl group, cyclooctyl group and the like. Examples of the aryl group include phenyl group and naphthyl group. Examples of the aralkyl group include benzyl group and phenethyl group. These groups are lower alkyl groups such as methyl, ethyl and t-butyl groups; lower alkoxy groups such as methoxy and propoxy groups; halogen atoms such as fluorine, chlorine and bromine; cyano groups; nitro groups and the like You may have the substituent of.
[0012]
Examples of the alkyl group represented by R 2 and R 3 include a methyl group, an ethyl group, a propyl group, a butyl group, a t-butyl group, a pentyl group, and a heptyl group. Examples of the alkoxy group represented by R 3 include A methoxy group, an ethoxy group, a propoxy group, a butoxy group, etc. are mentioned. Specific examples of olefin (II) when R 2 and R 3 together form a ring include cyclopentene, cyclohexene, cyclopentadiene, 2,3-dihydrofuran and the like.
[0013]
The optically active lanthanoid catalyst used as a catalyst is, for example, an lanthanoid triflate, optically active 1,1′-bi-2-naphthol and 1,8-diazabicyclo [5.4. Prepared by reacting 0] -7-undecene. When a lanthanoid catalyst is prepared using such a method, the amount of optically active 1,1′-bi-2-naphthol used is preferably in the range of 0.9 to 2.0 moles per mole of lanthanoid triflate. , 8-diazabicyclo [5.4.0] -7-undecene is preferably used in an amount of 1.0 to 5.0 moles per mole of lanthanoid triflate. As the lanthanoid triflate, ytterbium triflate or scandium triflate is particularly preferable. The amount of the optically active lanthanoid catalyst used in the reaction of the present invention is preferably in the range of 0.001 to 0.5 moles per mole of imine compound (I) as the amount of lanthanoid triflate. A range of 3 moles is more preferred.
[0014]
The reaction of the present invention is preferably carried out in an inert solvent. As the inert solvent, halogenated hydrocarbons such as methylene chloride are used. Such a solvent can also be used for preparing a lanthanoid catalyst. The amount of the imine compound (I) used is preferably in the range of 0.1 to 2.0 mol with respect to 1 mol of the olefin (II). The reaction temperature is preferably in the range of −40 ° C. to 100 ° C., and more preferably in the range of −20 ° C. to 0 ° C.
[0015]
In the reaction of the present invention, the presence of a substituted pyridine is preferable in order to increase the reaction yield and the optical yield. The substituted pyridine is preferably one having a large steric hindrance, such as 2,6-di (t-butyl) pyridine, 2,6-di (t-butyl) -4-methylpyridine, 2,6-diphenylpyridine and the like. Can be mentioned. The amount of the substituted pyridine used is preferably 1 to 5 mol per 1 mol of lanthanoid triflate.
[0016]
The imine compound (I) used as a raw material can be obtained by reacting a corresponding aldehyde with o-hydroxyaniline in the presence of a lanthanoid catalyst. The obtained imine compound (I) can also be used for the reaction of the present invention without isolation.
[0017]
The optically active tetrahydroquinoline derivative obtained by the reaction of the present invention can be isolated by a conventional method. That is, after adding water to the reaction solution, it is filtered, extracted with methylene chloride, ethyl acetate, etc., dried, concentrated, and purified by recrystallization, distillation, column chromatography, etc. to obtain an optically active tetrahydroquinoline derivative. Can do.
[0018]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited at all by these Examples.
[0019]
Reference Example 1 Preparation of optically active ytterbium catalyst (i) Ytterbium triflate 62.0 mg (0.1 mmol), molecular sieve 4A 125.0 mg and (R)-(+)-1,1′-bi-2-naphthol 32.3 mg A solution of 36.5 mg (0.24 mmol) of 1,8-diazabicyclo [5.4.0] -7-undecene in 0.5 ml of methylene chloride was added to a 0.5 ml suspension of methylene chloride at 0 ° C. For 0.5 hour to obtain a suspension of yellow optically active ytterbium catalyst (i).
[0020]
Example 1
The total amount of the suspension of the optically active ytterbium catalyst (i) obtained in Reference Example 1 was cooled to −15 ° C., and 123.7 mg (0.5 mmol) of N- (1-naphthyl) methylidene-2-hydroxyaniline was obtained. 0.25 ml of methylene chloride, 102.3 mg (0.5 mmol) of 2,6-di-tert-butyl-4-methylpyridine in 0.25 ml of methylene chloride, and 108.2 mg (1.5 mmol) of ethyl vinyl ether Methylene 0.25 ml solution was added sequentially. After stirring for 20 hours, water was added and insolubles were filtered. The aqueous layer of the filtrate was extracted with methylene chloride, and the organic layer was washed with brine. After drying over anhydrous sodium sulfate and concentrating, the resulting concentrated solution is purified by silica gel column chromatography to obtain 1,2,3,4-tetrahydro-2- (1-naphthyl) -4 having the following physical properties. 118.2 mg of ethoxy-8-hydroxyquinoline were obtained (yield 74%, cis / trans => 99/1). When this was analyzed with an optically active HPLC column [Chiralpak AD (manufactured by Daicel), eluent: hexane / 2-propanol = 19/1], the optical purity was 91% ee.
[0021]
1 H-NMR spectrum (CDCl 3 , TMS, 270 MHz) δ:
1.23 (t, 3H, J = 6.9 Hz), 2.27 (q, 1H, J = 11.2 Hz), 2.62 (ddd, 1H, J = 2.5, 5.8, 11. 2Hz), 3.51-3.71 (m, 2H), 4.99 (dd, 1H, J = 5.8, 11.2Hz), 5.32 (d, 1H, J = 11.2Hz), 6.59-6.67 (m, 2H), 7.07-7.10 (m, 1H), 7.36 (s, 2H), 7.46-7.56 (m, 3H), 7. 89-7.91 (m, 3H), 8.13-8.16 (m, 1H)
13 C-NMR spectrum (CDCl 3 , 270 MHz) δ:
15.6, 35.5, 51.5, 63.4, 74.3, 113.6, 117.1, 119.9, 122.6, 123.6, 123.9, 125.6, 125. 7, 126.2, 128.1, 129.1, 130.7, 133.9, 134.1, 138.8, 142.2
[0022]
Example 2
In Example 1, the reaction was performed in the same manner as in Example 1 except that 0.5 mmol of 2,6-di-t-butylpyridine was used instead of 0.5 mmol of 2,6-di-t-butyl-4-methylpyridine. And separation and purification, 1,2,3,4-tetrahydro-2- (1-naphthyl) -4-ethoxy-8-hydroxyquinoline was obtained (yield 69%, cis / trans => 99 / 1). In addition, when this was analyzed with the optically active HPLC column [Chiralpak AD (made by Daicel Corporation)], the optical purity was 86% ee.
[0023]
Example 3
In Example 1, the reaction, separation and purification were carried out in the same manner as in Example 1 except that 0.5 mmol of 2,6-diphenylpyridine was used instead of 0.5 mmol of 2,6-di-t-butyl-4-methylpyridine. As a result, 1,2,3,4-tetrahydro-2- (1-naphthyl) -4-ethoxy-8-hydroxyquinoline was obtained (yield 65%, cis / trans = 99/1). In addition, when this was analyzed with the optically active HPLC column [Chiralpak AD (made by Daicel Corporation)], the optical purity was 91% ee.
[0024]
Example 4
In Example 1, the reaction and reaction were carried out in the same manner as in Example 1 except that the amount of the optically active ytterbium catalyst (i) was changed from 20 mol% to 10 mol% with respect to N- (1-naphthyl) methylidene-2-hydroxyaniline. By performing separation and purification, 1,2,3,4-tetrahydro-2- (1-naphthyl) -4-ethoxy-8-hydroxyquinoline was obtained (yield 62%, cis / trans = 98/2). . In addition, when this was analyzed with the optically active HPLC column [Chiralpak AD (made by Daicel Corporation)], the optical purity was 82% ee.
[0025]
Example 5
In Example 2, 0.5 mmol of N-benzylidene-2-hydroxyaniline was used instead of 0.5 mmol of N- (1-naphthyl) methylidene-2-hydroxyaniline, the reaction temperature was changed from -15 ° C to -45 ° C, By carrying out the reaction and separation and purification in the same manner as in Example 1 except that 10 mol% of the optically active ytterbium catalyst (i) was used with respect to N-benzylidene-2-hydroxyaniline, 1,2,3 having the following physical properties , 4-tetrahydro-2-phenyl-4-ethoxy-8-hydroxyquinoline was obtained (yield 52%, cis / trans = 94/6). In addition, when this was analyzed with the optically active HPLC column [Chiralpak AD (made by Daicel Corporation)], the optical purity was 77% ee.
[0026]
1 H-NMR spectrum (CDCl 3 , TMS, 270 MHz) δ:
1.24 (t, 3H, J = 6.9 Hz), 2.11 (q, 1H, J = 11.3 Hz), 2.39 (ddd, 1H, J = 2.6, 5.6, 11. 3Hz), 3.53-3.73 (m, 2H), 4.49 (d, 1H, J = 11.3 Hz), 4.87 (dd, 1H, J = 5.6, 11.3 Hz), 6.5-5.58 (m, 2H), 7.01-7.03 (m, 1H), 7.24-7.48 (m, 7H) 13 C-NMR spectrum (CDCl 3 , 270 MHz) δ :
15.6, 36.8, 55.7, 63.3, 74.1, 113.6, 116.9, 119.5, 126.7, 127.7, 128.3, 128.6, 133. 9, 141.9, 143.5
[0027]
Example 6
In Example 1, except that 1.5 mmol of butyl vinyl ether was used instead of 1.5 mmol of ethyl vinyl ether, reaction, separation and purification were carried out in the same manner as in Example 1 to obtain 1, 2, 3, 4 having the following physical properties. -Tetrahydro-2- (1-naphthyl) -4-butoxy-8-hydroxyquinoline was obtained (yield 80%, cis / trans = 66/34). In addition, when this was analyzed with the optically active HPLC column [Chiralpak AD (made by Daicel Corporation)], the optical purity was 70% ee.
[0028]
Cis body
1 H-NMR spectrum (CDCl 3 , TMS, 270 MHz) δ:
0.89 (t, 3H, J = 7.3 Hz), 1.38 (dd, 2H, J = 6.6, 14.4 Hz), 1.52-1.61 (m, 2H), 2.25 (Q, 1H, J = 11.6 Hz), 2.58-2.62 (m, 1H), 3.45-3.63 (m, 2H), 4.97 (dd, 1H, J = 5. 8,11.6 Hz), 5.29 (d, 1 H, J = 11.6 Hz), 6.59-6.62 (m, 2 H), 7.07 (d, 1 H, J = 6.9 Hz), 7.33 (s, 1H), 7.43-7.54 (m, 3H), 7.77-7.97 (m, 3H), 8.13 (d, 1H, J = 6.9 Hz) 13 C-NMR spectrum (CDCl 3 , 270 MHz) δ:
13.9, 19.4, 32.2, 35.5, 51.4, 67.8, 74.4, 113.5, 117.1, 119.7, 122.6, 123.6, 123. 8, 125.5, 125.7, 126.2, 128.0, 129.1, 130.6, 133.9, 134.2, 138.8, 142.2
[0029]
Trans body
1 H-NMR spectrum (CDCl 3 , TMS, 270 MHz) δ:
0.97 (t, 3H, J = 7.3 Hz), 1.42-1.75 (m, 4H), 1.89-2.00 (m, 1H), 2.51-2.56 (m , 1H), 3.60-3.76 (m, 2H), 4.40-4.41 (m, 1H), 5.37-5.41 (m, 1H), 6.56-6.68. (M, 2H), 6.89 (d, 1H, J = 7.6 Hz), 7.26 (s, 1H), 7.46-7.53 (m, 3H), 7.78-7.91. (M, 3H), 8.23-8.26 (m, 1H)
13 C-NMR spectrum (CDCl 3 , 270 MHz) δ:
14.0, 19.6, 32.3, 35.3, 47.2, 68.4, 73.2, 114.3, 116.3, 121.2, 122.7, 123.4, 125. 5, 125.6, 126.1, 127.8, 128.3, 128.9, 130.8, 133.8, 134.7, 139.3, 142.5
[0030]
Example 7
In Example 3, except that 1.5 mmol of 2,3-dihydrofuran was used instead of 1.5 mmol of ethyl vinyl ether, reaction and separation / purification were performed in the same manner as in Example 3 to obtain 2,3 having the following physical properties. , 3a, 9b, 4,5-hexahydro-4- (1-naphthyl) -6-hydroxyfurano [3,2-c] quinoline (yield 67%, cis / trans = 93/7). In addition, when this was analyzed with the optically active HPLC column [Chiralpak AD (made by Daicel Corporation)], the optical purity was 86% ee.
[0031]
1 H-NMR spectrum (CDCl 3 , TMS, 270 MHz) δ:
1.33-1.37 (m, 1H), 2.19-2.34 (m, 1H), 3.06-3.15 (m, 1H), 3.64-3.73 (m, 1H) ), 3.82-3.90 (m, 1H), 5.44-5.47 (m, 2H), 6.62-6.72 (m, 2H), 7.03 (d, 1H, J = 7.6 Hz), 7.36 (s, 2H), 7.48-7.58 (m, 3H), 7.80-8.08 (m, 4H)
13 C-NMR spectrum (CDCl 3 , 270 MHz) δ:
25.0, 45.6, 52.9, 66.9, 75.9, 113.4, 118.3, 122.1, 123.3, 123.3, 123.6, 125.6, 125.7, 126. 3, 127.9, 128.3, 129.1, 130.2, 133.8, 134.8, 137.4, 142.6
[0032]
Example 8
In Example 1, except that 1.5 mmol of cyclopentadiene was used instead of 1.5 mmol of ethyl vinyl ether, reaction and separation / purification were performed in the same manner as in Example 1 to obtain 3a, 9b, 4, 5 having the following physical properties. -Tetrahydro-4- (1-naphthyl) -6-hydroxy-1-cyclopenteno [4,3-c] quinoline was obtained (yield 69%, cis / trans => 99/1). In addition, when this was analyzed with the optically active HPLC column [Chiralpak AD (made by Daicel Corporation)], the optical purity was 68% ee.
[0033]
1 H-NMR spectrum (CDCl 3 , TMS, 270 MHz) δ:
1.52-1.58 (m, 1H), 2.57-2.67 (m, 1H), 3.32-3.27 (m, 1H), 4.17 (d, 1H, J = 8 .3 Hz), 5.28 (d, 1 H, J = 2.6 Hz), 5.54-5.64 (m, 1 H), 5.74-5.86 (m, 1 H), 6.33 (d , 1H, J = 7.9 Hz), 6.57 (t, 1H, J = 7.9 Hz), 6.70 (d, 1H, J = 7.9 Hz), 7.32 (s, 2H), 7 .38-7.46 (m, 3H), 7.71 (d, 1H, J = 7.9 Hz), 7.82-7.84 (m, 2H), 8.01-8.04 (m, 1H)
13 C-NMR spectrum (CDCl 3 , 270 MHz) δ:
31.8, 43.6, 46.3, 53.4, 112.0, 118.4, 121.2, 122.4, 123.0, 125.4, 125.5, 125.9, 127. 4, 127.7, 128.2, 128.9, 130.4, 133.6, 133.7, 134.8, 138.0, 143.0
[0034]
Example 9
To a suspension of 49.2 mg (0.1 mmol) of scandium triflate, 125.0 mg of molecular sieve 4A and 32.3 mg of (R)-(+)-1,1′-bi-2-naphthol in 0.5 ml of methylene chloride, , 8-diazabicyclo [5.4.0] -7-undecene (36.5 mg, 0.24 mmol) in methylene chloride (0.5 ml) was added at 0 ° C., and the mixture was stirred at the same temperature for 0.5 hours to give an optically active scandium catalyst. A suspension of was obtained. The suspension was cooled to −15 ° C., a solution of 2,6-di-tert-butyl-4-methylpyridine 102.3 mg (0.5 mmol) in 0.25 ml of methylene chloride, cyclohexanecarbaldehyde 56 mg of methylene chloride 0 .25 ml solution, 2-hydroxyaniline 54.5 mg methylene chloride 0.25 ml solution, cyclopentadiene 99 mg methylene chloride 0.25 ml solution were sequentially added and stirred at the same temperature for 20 hours. 3a, 9b, 4,5-tetrahydro-4-cyclohexyl-6-hydroxy-1-cyclopenteno [4,3-c] quinoline having the following physical properties was obtained by performing post-treatment and separation / purification similar to Example 1. (Yield 58%, cis / trans => 99/1). In addition, when this was analyzed with the optically active HPLC column [Chiralpak AD (made by Daicel Corporation)], the optical purity was 73% ee.
[0035]
1 H-NMR spectrum (CDCl 3 , TMS, 270 MHz) δ:
0.94-1.06 (m, 2H), 1.15-1.43 (m, 4H), 1.68-1.92 (m, 4H), 2.04-2.08 (m, 1H) ), 2.19-2.28 (m, 1H), 2.47-2.56 (m, 1H), 2.93-2.96 (m, 2H), 3.93 (d, 1H, J = 8.3 Hz), 4.59 (bs, 1H), 5.70-5.82 (m, 2H), 6.47-6.63 (m, 3H), 7.36 (s, 1H)
13 C-NMR spectrum (CDCl 3 , 270 MHz) δ:
25.9, 26.1, 26.3, 29.1, 30.3, 30.8, 40.0, 40.2, 46.3, 58.5, 111.7, 118.5, 120. 9, 128.3, 130.2, 134.1, 134.2, 143.6
[0036]
Example 10
In Example 5, 1.5 mmol of cyclopentadiene was used instead of 1.5 mmol of ethyl vinyl ether, the reaction temperature was changed from −45 ° C. to −15 ° C., and the optically active ytterbium catalyst (i) was converted to N-benzylidene-2-hydroxyaniline. 3a, 9b, 4,5-tetrahydro-4-phenyl-6-hydroxy-1-cyclopenteno [] having the following physical properties was carried out in the same manner as in Example 5 except that 20 mol% was used. 4,3-c] quinoline was obtained (yield 92%, cis / trans => 99/1). In addition, when this was analyzed with the optically active HPLC column [Chiralpak AD (made by Daicel Corporation)], the optical purity was 71% ee.
[0037]
1 H-NMR spectrum (CDCl 3 , TMS, 270 MHz) δ:
1.77-1.86 (m, 1H), 2.58-2.68 (m, 1H), 3.01 (ddd, 1H, J = 3.5, 8.6, 14.8 Hz), 4 .10 (d, 1H, J = 8.6 Hz), 4.56 (d, 1H, J = 3.5 Hz), 5.63-5.70 (m, 1H), 5.82-5.84 ( m, 1H), 6.44 (d, 1H, J = 7.8 Hz), 6.59 (t, 1H, J = 7.8 Hz), 6.69 (d, 1H, J = 7.8 Hz), 7.20-7.48 (m, 7H)
13 C-NMR spectrum (CDCl 3 , 270 MHz) δ:
31.4, 45.8, 46.3, 57.6, 111.9, 118.3, 121.2, 126.5, 127.1, 128.3, 128.4
130.4, 133.8, 134.4, 142.8, 143.0
[0038]
Example 11
In Example 10, the reaction and separation and purification were carried out in the same manner as in Example 10 except that 2,6-di-t-butylpyridine was not used and the reaction temperature was changed from -15 ° C to 0 ° C. 3a, 9b, 4,5-tetrahydro-4-phenyl-6-hydroxy-1-cyclopenteno [4,3-c] quinoline having the following physical properties was obtained (48% yield, cis / trans = 99/1). . In addition, when this was analyzed with the optically active HPLC column [Chiralpak AD (made by Daicel Corporation)], the optical purity was 68% ee.
[0039]
【The invention's effect】
An optically active tetrahydroquinoline derivative can be advantageously produced industrially.

Claims (7)

一般式(I)
Figure 0003609907
(式中、Rはアルキル基、シクロアルキル基、アラルキル基またはアリール基を表す。)
で示されるイミン化合物と一般式(II)
Figure 0003609907
(式中、Rは水素原子もしくはアルキル基を表し、Rはアルキル基もしくはアルコキシ基を表すか、またはRとRは一緒になって環を形成していてもよい。)
で示されるオレフィンを、光学活性なランタノイド触媒の存在下に反応させることを特徴とする一般式(III)
Figure 0003609907
(式中、R、RおよびRは前記定義のとおりである。)
で示される光学活性テトラヒドロキノリン誘導体の製造方法。
Formula (I)
Figure 0003609907
(Wherein R 1 represents an alkyl group, a cycloalkyl group, an aralkyl group or an aryl group.)
And an imine compound represented by the general formula (II)
Figure 0003609907
(In the formula, R 2 represents a hydrogen atom or an alkyl group, R 3 represents an alkyl group or an alkoxy group, or R 2 and R 3 may together form a ring.)
Wherein the olefin represented by the general formula (III) is reacted in the presence of an optically active lanthanoid catalyst.
Figure 0003609907
(Wherein R 1 , R 2 and R 3 are as defined above.)
The manufacturing method of the optically active tetrahydroquinoline derivative shown by these.
光学活性なランタノイド触媒が光学活性なイッテルビウム触媒である請求項1に記載の製造方法。The production method according to claim 1, wherein the optically active lanthanoid catalyst is an optically active ytterbium catalyst. 光学活性なイッテルビウム触媒が、イッテルビウムトリフラート、光学活性1,1’−ビ−2−ナフトールおよび1,8−ジアザビシクロ[5.4.0]−7−ウンデセンから調製される光学活性なイッテルビウム触媒である請求項2に記載の製造方法。The optically active ytterbium catalyst is an optically active ytterbium catalyst prepared from ytterbium triflate, optically active 1,1′-bi-2-naphthol and 1,8-diazabicyclo [5.4.0] -7-undecene The manufacturing method according to claim 2. 光学活性なランタノイド触媒が光学活性なスカンジウム触媒である請求項1に記載の製造方法。The production method according to claim 1, wherein the optically active lanthanoid catalyst is an optically active scandium catalyst. 光学活性なスカンジウム触媒が、スカンジウムトリフラート、光学活性1,1’−ビ−2−ナフトールおよび1,8−ジアザビシクロ[5.4.0]−7−ウンデセンから調製される光学活性なスカンジウム触媒である請求項4に記載の製造方法。The optically active scandium catalyst is an optically active scandium catalyst prepared from scandium triflate, optically active 1,1′-bi-2-naphthol and 1,8-diazabicyclo [5.4.0] -7-undecene. The manufacturing method according to claim 4. 置換ピリジンを共存させることを特徴とする請求項1〜5のいずれか1項に記載の製造方法。6. The production method according to claim 1, wherein a substituted pyridine is allowed to coexist. 置換ピリジンが、2,6−ジ(t−ブチル)ピリジン、2,6−ジ(t−ブチル)−4−メチルピリジンおよび2,6−ジフェニルピリジンからなる群から選ばれる1種または2種以上である請求項1〜6のいずれか1項に記載の製造方法。The substituted pyridine is one or more selected from the group consisting of 2,6-di (t-butyl) pyridine, 2,6-di (t-butyl) -4-methylpyridine and 2,6-diphenylpyridine The manufacturing method according to any one of claims 1 to 6.
JP24025496A 1996-09-11 1996-09-11 Method for producing optically active tetrahydroquinoline derivative Expired - Fee Related JP3609907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24025496A JP3609907B2 (en) 1996-09-11 1996-09-11 Method for producing optically active tetrahydroquinoline derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24025496A JP3609907B2 (en) 1996-09-11 1996-09-11 Method for producing optically active tetrahydroquinoline derivative

Publications (2)

Publication Number Publication Date
JPH1087628A JPH1087628A (en) 1998-04-07
JP3609907B2 true JP3609907B2 (en) 2005-01-12

Family

ID=17056762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24025496A Expired - Fee Related JP3609907B2 (en) 1996-09-11 1996-09-11 Method for producing optically active tetrahydroquinoline derivative

Country Status (1)

Country Link
JP (1) JP3609907B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002950217A0 (en) * 2002-07-16 2002-09-12 Prana Biotechnology Limited 8- Hydroxy Quinoline Derivatives

Also Published As

Publication number Publication date
JPH1087628A (en) 1998-04-07

Similar Documents

Publication Publication Date Title
JPH09512559A (en) Preparation of Camptothecin Derivatives by Intramolecular Cyclization
JP2015007072A (en) Exo-selective synthesis of himbacine analogs
JP2007230963A (en) Method for producing 2,4-disubstituted pyridine
JP3609907B2 (en) Method for producing optically active tetrahydroquinoline derivative
JP2868183B2 (en) Process for producing optically active 4-oxo-1-benzopyran-2-carboxylic acid derivative, intermediate for synthesis thereof, and process for producing the intermediate
JP4176201B2 (en) Method for producing 5-halogeno-2-substituted pyridine
JPH1121275A (en) Production of aminonitrile derivative
KR100641908B1 (en) Pyridine derivatives, process for the preparation thereof, and use as an intermediate of herbicides
CN113214142B (en) Apixaban intermediate and preparation method thereof
JP4327911B2 (en) Method for producing imide compound
US5561233A (en) Process for the preparation of an intermediate of a benzo[a]quinolizinone derivative
JP4553338B2 (en) Aminoacrylic acid derivative and method for producing the same
US5516926A (en) (+) 2-benzoyl-3-(silyloxyprop-2(S)-yl)aminoacrylate derivatives and a method for preparing the same
JP3880883B2 (en) Pyridine derivatives, methods for producing the same, and uses as herbicide intermediates
JP3017338B2 (en) New intermediate compounds for the production of indole alkaloid derivatives
JP4267107B2 (en) Pyridine derivative and method for producing the same
JP4306213B2 (en) Process for producing 6,7-methylenedioxycoumarin
US5151544A (en) Intermediates in the preparation of chiral spirofluorenehydantoins
JP3796964B2 (en) Method for producing 4-nitroester compound
WO2002102803A1 (en) Total synthesis of galanthamine, analogues and derivatives thereof
JP2724634B2 (en) Optically active 1-phenylpyrrolidone derivatives, intermediates for their production, and methods for their production
US6008358A (en) Process for the preparation of piperidinylidene derivative
JP2958835B2 (en) Method for producing 4- (1-carboxyalkyl) azetidin-2-one derivative
JPH115771A (en) Production of amine derivative
Kojima Catalytic asymmetric synthesis of halenaquinone and halenaquinol

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041015

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071022

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees