JP3609346B2 - Operation method of distributed power supply - Google Patents

Operation method of distributed power supply Download PDF

Info

Publication number
JP3609346B2
JP3609346B2 JP2001034738A JP2001034738A JP3609346B2 JP 3609346 B2 JP3609346 B2 JP 3609346B2 JP 2001034738 A JP2001034738 A JP 2001034738A JP 2001034738 A JP2001034738 A JP 2001034738A JP 3609346 B2 JP3609346 B2 JP 3609346B2
Authority
JP
Japan
Prior art keywords
distributed power
power supply
distributed
gas turbine
backup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001034738A
Other languages
Japanese (ja)
Other versions
JP2002238168A (en
Inventor
誠二 山下
一雄 田中
英一 原田
恭敏 庄司
潤一 北嶋
建二 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2001034738A priority Critical patent/JP3609346B2/en
Publication of JP2002238168A publication Critical patent/JP2002238168A/en
Application granted granted Critical
Publication of JP3609346B2 publication Critical patent/JP3609346B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガスタービン、マイクロガスタービン、ガスエンジン、ディーゼルエンジン等のような設備を用いた分散型電源の運用方法に関するものである。
【0002】
【従来の技術】
近年、マイクロガスタービンのような分散型発電システムの開発が進められており、将来は分散型発電システムが各家庭、各工場、各地域等に普及することが予想される。
例えば、特開2000−303854号公報には、家庭用から業務用まで利用可能な超小型コジェネレーションを可能とする高効率ガスタービンとして、タービン手段が接線方向に動力ガスのジェット流を発生させるインレットと膨張ガスを排出するアウトレットと、インレットとアウトレットとの間に配置されたデフレクタを有するステータと、ステータの内側に回転可能に配置されたタービンロータとを備え、タービンロータがインレットとアウトレットとの間で周方向にジェット流を通過させる環状溝と、環状溝に隣接して配列されたタービンブレードとを備えた構成が開示されており、デフレクタが環状溝に収納されてジェット流をタービンブレードに偏向させることにより、単位流量当たりの出力効率を改善するようにしている。また、第1排熱回収熱交換器によりタービンの排熱エネルギーを回収して圧縮空気を予熱し、第2排熱回収熱交換器により排ガスの熱エネルギーで温水を供給するようにし、第1、第2排熱回収熱交換器をタービンハウジング内に収納することにより、小型化、軽量化、低コスト化を図るようにしている。
【0003】
また、特開2000−166100号公報には、構内負荷に給電しながら商用電力系統と連係して運転される自家発電装置の制御装置として、運転中の発電機の容量に基づいて受電電力削減量を演算し、受電電力基準値から前記受電電力削減量を減算して受電電力目標値を出力し、この信号により発電電力指令値を調節するという構成が開示されており、構内負荷の急激な変動により受電電力が減少した場合でも、ガバナへの回転数指令を高速に変化させることにより高速に電力を制御し、速やかに受電電力を設定値まで回復させるようにしている。
【0004】
【発明が解決しようとする課題】
現在、マイクロガスタービンのような分散型発電システムが抱えている課題としては次のような事項が挙げられる。
(1) 分散型電源のメンテナンス、故障時に需要者は系統電力を購入しなければならない。
(2) 分散型電源の稼動率が低い。
(3) 分散型電源の発電効率、特に部分負荷における発電効率が低い。
(4) 分散型電源を系統に連係すると系統電力の品質低下のおそれがある。
【0005】
また、上述した特開2000−303854号公報に記載の高効率ガスタービンを用いた分散型コジェネレーション発電装置や、特開2000−166100号公報に記載の商用電力系統と連係して運転される自家発電装置等についても、上記のような課題は解決されていない。
【0006】
本発明は上記の諸点に鑑みなされたもので、本発明の目的は、分散型電源保有の需要家を開閉器下で連係し、分散型電源を遠隔監視、遠隔操作できるようにし、分散型電源の電力供給指令を一括して行うことにより、分散型電源のメンテナンス、故障時の問題を解決するととともに、分散型電源の発電効率を向上させることができ、分散型発電システムの普及の促進につながる分散型電源の運用方法を提供することにある。
【0007】
【課題を解決するための手段】
上記の目的を達成するために、本発明の分散型電源の運用方法は、分散型電源を保有する需要家を開閉器下で連係し、それぞれの分散型電源を集中監視コントロールシステムにより遠隔監視及び遠隔操作できるようにし、分散型電源の電力供給指令を一括して行い、分散型電源を需要家間で互いに融通しあうように構成されている。
【0008】
また、本発明の方法は、ガスタービン、マイクロガスタービン、ガスエンジン及びディーゼルエンジンの少なくともいずれかの分散型電源を保有する需要家を開閉器下で連係し、それぞれの分散型電源を集中監視コントロールシステムにより遠隔監視及び遠隔操作できるようにし、分散型電源の電力供給指令を一括して行うことにより、分散型電源の稼動率が低い場合や部分負荷により発電効率が低い場合に、分散型電源を需要家間で互いに融通しあって、需要家の数より少ない台数の分散型電源で全ての需要家の電力をまかなうことを特徴としている。
【0009】
また、本発明の方法は、ガスタービン、マイクロガスタービン、ガスエンジン及びディーゼルエンジンの少なくともいずれかの分散型電源を保有する需要家を開閉器下で連係し、それぞれの分散型電源を集中監視コントロールシステムにより遠隔監視及び遠隔操作できるようにし、分散型電源の電力供給指令を一括して行うことにより、分散型電源のメンテナンス時又は故障時に、他の分散型電源にバックアップ用の負荷指令を加えて発電負荷を上昇させ、メンテナンス時又は故障時のバックアップを行うことを特徴としている。
【0010】
上記の本発明の方法においては、分散型電源の機器トラブル時のバックアップに際し、遠隔監視システムにより検知した機器故障から、契約電力オーバーのペナルティー期限として設定された時間内に、バックアップ電源を立ち上げ、託送により需要家に供給する仕組みを構築することが好ましい。
【0011】
また、上記の本発明の方法においては、分散型電源の機器契約におけるオプションとしてバックアップ用負荷指令特約を設定し、バックアップ用電源として契約した需要家に対して、メンテナンス保守料の割引などの特典を与えるとともに、バックアップ時に燃料費プラスアルファ相当のペイバックを与えるものとすることができる。
【0012】
これらの本発明の方法において、分散型電源としては、一例として、ガスタービン、マイクロガスタービン、ガスエンジン、ディーゼルエンジン等を使用することができる。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態について説明するが、本発明は下記の実施の形態に何ら限定されるものではなく、適宜変更して実施することが可能なものである。図1は、本発明の実施の第1形態による分散型電源の運用方法を実施する装置を示している。図1に示すように、例えば、マイクロガスタービン等の分散型電源10を保有する需要家12は開閉器14下で連係されており、図示を省略しているが、各分散型電源10は集中監視コントロールセンターと通信回線で接続されており、遠隔監視、遠隔操作できるようになっている。また、開閉器14下にはバッテリー22が設けられている。なお、需要家16は、分散型電源を保有せず系統電力(発電所18、変電所20)を購入している需要家である。
【0014】
分散型電源10の電力供給指令は、集中監視コントロールセンター(図示略)より一括して行われ、結果として分散型電源を融通しあうことになる。場合によっては、一台の分散型電源を複数の需要家でシェアしてもよい。例えば、35kW×2を70kW×1とすると、発電効率がアップするというメリットがある。
また、分散型電源10を系統に連係すると系統電力の品質低下のおそれがあるが、分散型電源10保有の需要家12を開閉器14下で連係し、分散型電源を融通しあうことで、分散型電源のメンテナンス時、故障時等にも対応することが可能となる。
【0015】
以下に、バックアップ電源提供システムの具体的な一例を説明する。
現在マイクロガスタービンのような分散型発電システムの経済性確保のキーは電力供給契約(契約電力)にある。これは、電力供給契約における基本料金の低減効果が最も大きいものとなるからである。
しかしながら、機器トラブル時のバックアップを電力会社に依頼した場合、バックアップ料金は高く、分散型エネルギシステム普及の大きな阻害要因になっている。
そこで、このような問題を解決するために、遠隔監視システムにより検知した機器故障から、通常の電力会社の契約電力オーバーのペナルティー期限である30分以内に、バックアップ電源を立ち上げ、託送により需要家に供給する仕組みを構築し、保守契約のオプションとして選択可能とする。
【0016】
機器契約台数の増加に伴い、オプション契約として遠隔負荷司令オプションパックを設定する。これは、バックアップ用電源を本出願人のような機器メーカやメンテナンス保守契約業者が用意するのではなく、例えば、その時点で100%負荷で運転していない顧客の負荷に、バックアップ用の負荷司令を加えて、1%負荷増要求を100台の需要家に司令し、各所の発電負荷を1%上昇させればバックアップが可能になるという仕組みである。
それぞれの発電機と集中監視コントロールセンターと電力会社とを通信回線で結合し、種々のデータのやりとりを行いつつこの機能を実現する。
バックアップ用負荷司令特約を締結したユーザには、メンテナンス保守料の割引などの特典を与えるとともに、バックアップ時には、燃料費プラスアルファ相当のペイバックを与える。
従来の遠隔監視システムは故障時の対応等の消極的な対応が中心であったが、本システムにより機器故障時にも顧客に迷惑をかけない対応が能動的に可能となり、システム販売にも大きな威力を発揮できる。
【0017】
【発明の効果】
本発明は上記のように構成されているので、つぎのような効果を奏する。
(1) 分散型電源を融通しあうことで、系統電力に連係することなく、分散型電源のメンテナンス、故障時に対応することが可能となる。
(2) 分散型電源を融通しあうことにより、発電効率を向上させることができる。
(3) 系統電力の品質を低下させることがない。
(4) 分散型発電システムの普及を促進することができる。
【図面の簡単な説明】
【図1】本発明の実施の第1形態による分散型電源の運用方法を実施する装置を示す概略構成説明図である。
【符号の説明】
10 分散型電源
12、16 需要家
14 開閉器
18 発電所
20 変電所
22 バッテリー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for operating a distributed power source using equipment such as a gas turbine, a micro gas turbine, a gas engine, and a diesel engine.
[0002]
[Prior art]
In recent years, development of a distributed power generation system such as a micro gas turbine has been promoted, and it is expected that the distributed power generation system will be widely used in homes, factories, and regions in the future.
For example, Japanese Patent Laid-Open No. 2000-303854 discloses an inlet in which turbine means generates a jet flow of power gas in a tangential direction as a high-efficiency gas turbine that enables ultra-compact cogeneration that can be used from home use to business use. And an outlet for discharging the expansion gas, a stator having a deflector disposed between the inlet and the outlet, and a turbine rotor rotatably disposed inside the stator, the turbine rotor being disposed between the inlet and the outlet. A configuration including an annular groove that allows the jet stream to pass in the circumferential direction and a turbine blade that is arranged adjacent to the annular groove is disclosed, and a deflector is housed in the annular groove to deflect the jet stream to the turbine blade. By doing so, the output efficiency per unit flow rate is improved. The first exhaust heat recovery heat exchanger recovers exhaust heat energy of the turbine to preheat the compressed air, and the second exhaust heat recovery heat exchanger supplies hot water with the exhaust gas thermal energy, By accommodating the second exhaust heat recovery heat exchanger in the turbine housing, the size, weight, and cost are reduced.
[0003]
Japanese Patent Application Laid-Open No. 2000-166100 discloses a reduction in received power based on the capacity of an operating generator as a control device for a private power generator that is operated in conjunction with a commercial power system while supplying power to a premises load. A configuration is disclosed in which the received power reduction value is subtracted from the received power reference value to output a received power target value, and the generated power command value is adjusted by this signal. Even when the received power is reduced by the above, the power is controlled at a high speed by changing the rotational speed command to the governor at a high speed, and the received power is quickly recovered to the set value.
[0004]
[Problems to be solved by the invention]
Currently, the following issues can be cited as problems facing distributed power generation systems such as micro gas turbines.
(1) The customer must purchase grid power at the time of maintenance or failure of the distributed power source.
(2) The operating rate of distributed power sources is low.
(3) The power generation efficiency of distributed power sources, particularly the power generation efficiency at partial loads, is low.
(4) Linking a distributed power supply to the grid may cause a reduction in grid power quality.
[0005]
In addition, a distributed cogeneration power generation apparatus using a high-efficiency gas turbine described in Japanese Patent Laid-Open No. 2000-303854 described above, and a private house operated in conjunction with a commercial power system described in Japanese Patent Laid-Open No. 2000-166100 The above-described problems have not been solved for power generation devices and the like.
[0006]
The present invention has been made in view of the above points. An object of the present invention is to link customers with distributed power sources under a switch so that the distributed power sources can be remotely monitored and operated. The power supply directives for all of the power stations can be used to maintain the distributed power supply, solve problems during failure, improve the power generation efficiency of the distributed power supply, and promote the spread of the distributed power generation system. It is to provide a method for operating a distributed power source.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the distributed power supply operating method of the present invention links customers who have distributed power supplies under a switch, and remotely monitors each distributed power supply by a centralized monitoring control system. It is configured so that it can be operated remotely, a power supply command for the distributed power supply is collectively performed, and the distributed power supply is mutually interchanged between consumers.
[0008]
In addition, the method of the present invention links customers having a distributed power source of at least one of a gas turbine, a micro gas turbine, a gas engine, and a diesel engine under a switch, and centrally monitors and controls each distributed power source. By enabling remote monitoring and remote operation by the system and issuing power supply commands for the distributed power supply collectively, the distributed power supply can be used when the operation rate of the distributed power supply is low or the power generation efficiency is low due to partial load. It is characterized by being able to provide power to all consumers with a distributed power source that is less in number than the number of consumers, with mutual flexibility among customers.
[0009]
In addition, the method of the present invention links customers having a distributed power source of at least one of a gas turbine, a micro gas turbine, a gas engine, and a diesel engine under a switch, and centrally monitors and controls each distributed power source. By enabling remote monitoring and remote operation by the system and performing a power supply command for the distributed power supply in a lump, by adding a load command for backup to other distributed power supplies at the time of maintenance or failure of the distributed power supply It is characterized by increasing the power generation load and performing backup at the time of maintenance or failure.
[0010]
In the method of the present invention described above, the backup power supply is started up within the time set as the penalty period of contract power over from the equipment failure detected by the remote monitoring system at the time of backup at the time of equipment trouble of the distributed power supply, It is preferable to construct a mechanism for supplying to customers by consignment.
[0011]
In the above-described method of the present invention, a backup load command special contract is set as an option in a distributed power supply equipment contract, and a benefit such as a maintenance maintenance fee discount is given to a customer who has contracted as a backup power supply. In addition, the payback equivalent to fuel cost plus alpha can be given at the time of backup.
[0012]
In these methods of the present invention, as the distributed power source, for example, a gas turbine, a micro gas turbine, a gas engine, a diesel engine, or the like can be used.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to the following embodiments, and can be implemented with appropriate modifications. FIG. 1 shows an apparatus for implementing a distributed power supply operation method according to a first embodiment of the present invention. As shown in FIG. 1, for example, a consumer 12 having a distributed power source 10 such as a micro gas turbine is linked under a switch 14 and is not shown, but each distributed power source 10 is concentrated. It is connected to the monitoring control center via a communication line so that it can be remotely monitored and operated. A battery 22 is provided under the switch 14. The consumer 16 is a consumer who does not have a distributed power source and purchases grid power (power plant 18 and substation 20).
[0014]
The power supply command of the distributed power source 10 is collectively executed from a centralized monitoring control center (not shown), and as a result, the distributed power sources are interchanged. In some cases, a single distributed power source may be shared by a plurality of consumers. For example, when 35 kW × 2 is set to 70 kW × 1, there is a merit that power generation efficiency is improved.
In addition, when the distributed power supply 10 is linked to the system, there is a risk of system power quality degradation, but by linking the customers 12 possessing the distributed power supply 10 under the switch 14 and allowing the distributed power supply to be interchanged, It is possible to cope with the maintenance of the distributed power supply, the time of failure, and the like.
[0015]
A specific example of the backup power supply providing system will be described below.
Currently, the key to ensuring the economics of a distributed power generation system such as a micro gas turbine is the power supply contract (contract power). This is because the effect of reducing the basic charge in the power supply contract is the largest.
However, when a backup is requested from an electric power company in the event of a device trouble, the backup fee is high, which is a major impediment to the spread of distributed energy systems.
Therefore, in order to solve such problems, the backup power supply is started up within 30 minutes, which is the penalty period for the contract power over of the normal power company, from the equipment failure detected by the remote monitoring system, and the customer is sent by consignment. A system to supply the system is constructed and can be selected as a maintenance contract option.
[0016]
As the number of equipment contracts increases, the remote load commander option pack is set as an option contract. This is because a backup power supply is not prepared by a device manufacturer or a maintenance contractor such as the present applicant. For example, a load command for backup is applied to a load of a customer who is not operating at 100% load at that time. In addition, if the demand for 1% load increase is commanded to 100 customers and the power generation load at each location is increased by 1%, backup is possible.
Each generator, centralized monitoring and control center, and electric power company are connected by a communication line to realize this function while exchanging various data.
Users who have signed a backup load command special contract are given benefits such as discounts on maintenance and maintenance fees, and at the time of backup, a payback equivalent to fuel cost plus alpha is given.
The conventional remote monitoring system was mainly passive response such as failure response, but this system can actively respond to the customer in the event of equipment failure, and it is also a great power for system sales Can be demonstrated.
[0017]
【The invention's effect】
Since this invention is comprised as mentioned above, there exist the following effects.
(1) By accommodating distributed power sources, it becomes possible to cope with maintenance and failure of distributed power sources without linking to system power.
(2) Power generation efficiency can be improved by interchanging distributed power sources.
(3) The system power quality will not be degraded.
(4) The spread of distributed power generation systems can be promoted.
[Brief description of the drawings]
FIG. 1 is a schematic configuration explanatory diagram showing an apparatus for implementing a distributed power supply operating method according to a first embodiment of the present invention;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Distributed power supply 12, 16 Consumer 14 Switch 18 Power station 20 Substation 22 Battery

Claims (2)

ガスタービン、マイクロガスタービン、ガスエンジン及びディーゼルエンジンの少なくともいずれかの分散型電源を保有する需要家を開閉器下で連係し、それぞれの分散型電源を集中監視コントロールシステムにより遠隔監視及び遠隔操作できるようにし、分散型電源の電力供給指令を一括して行うことにより、分散型電源の稼動率が低い場合や部分負荷により発電効率が低い場合に、系統電力に連係することなく、分散型電源を需要家間で互いに融通しあって、需要家の数より少ない台数の分散型電源で全ての需要家の電力をまかなうことを特徴とする分散型電源の運用方法。Users who have distributed power sources of at least one of gas turbine, micro gas turbine, gas engine, and diesel engine can be linked under the switch, and each distributed power source can be remotely monitored and remotely controlled by a centralized monitoring control system As a result, the distributed power supply command can be used without any linkage to the grid power when the operation rate of the distributed power supply is low or when the power generation efficiency is low due to partial load. A method for operating a distributed power supply, characterized in that the power of all the customers is covered by a smaller number of distributed power supplies than the number of consumers, which are mutually flexible among consumers. ガスタービン、マイクロガスタービン、ガスエンジン及びディーゼルエンジンの少なくともいずれかの分散型電源を保有する需要家を開閉器下で連係し、それぞれの分散型電源を集中監視コントロールシステムにより遠隔監視及び遠隔操作できるようにし、分散型電源の電力供給指令を一括して行うことにより、分散型電源のメンテナンス時又は故障時に、系統電力に連係することなく、他の分散型電源にバックアップ用の負荷指令を加えて発電負荷を上昇させ、メンテナンス時又は故障時のバックアップを行うことを特徴とする分散型電源の運用方法。Users who have distributed power sources of at least one of gas turbine, micro gas turbine, gas engine, and diesel engine can be linked under the switch, and each distributed power source can be remotely monitored and remotely controlled by a centralized monitoring control system In this way, by supplying the power supply command for the distributed power supply in a lump, it is possible to add a backup load command to other distributed power supplies without linking to the grid power during maintenance or failure of the distributed power supply. A method of operating a distributed power source, characterized by increasing a power generation load and performing backup at the time of maintenance or failure.
JP2001034738A 2001-02-13 2001-02-13 Operation method of distributed power supply Expired - Fee Related JP3609346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001034738A JP3609346B2 (en) 2001-02-13 2001-02-13 Operation method of distributed power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001034738A JP3609346B2 (en) 2001-02-13 2001-02-13 Operation method of distributed power supply

Publications (2)

Publication Number Publication Date
JP2002238168A JP2002238168A (en) 2002-08-23
JP3609346B2 true JP3609346B2 (en) 2005-01-12

Family

ID=18898288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001034738A Expired - Fee Related JP3609346B2 (en) 2001-02-13 2001-02-13 Operation method of distributed power supply

Country Status (1)

Country Link
JP (1) JP3609346B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3925350B2 (en) 2002-08-23 2007-06-06 株式会社日立製作所 Coordinating controller for electric power equipment
JP2008099373A (en) * 2006-10-06 2008-04-24 Furukawa Co Ltd Hydraulic power generating system
JP5503677B2 (en) * 2012-03-06 2014-05-28 ヤフー株式会社 System, information processing method, and computer program

Also Published As

Publication number Publication date
JP2002238168A (en) 2002-08-23

Similar Documents

Publication Publication Date Title
US6313544B1 (en) Self-contained energy center for producing mechanical, electrical, and heat energy
AU2003233157B2 (en) Hybrid power system for continuous reliable power at remote locations
EP2036180B1 (en) Power compensator and method for providing a black start with that compensator
US20080219866A1 (en) Generation and Management of Mass Air Flow
CN101425688A (en) Method and system for power plant block loading
JPWO2008117392A1 (en) Power system
Cleveland IEC 61850-7-420 communications standard for distributed energy resources (DER)
CN112529244B (en) Comprehensive energy system collaborative optimization operation method considering electric load demand response
CN109409595B (en) Garden multi-energy complementary system day-ahead scheduling method
JP2007060826A (en) Operation system of electric power storing device
JP6103624B2 (en) Cogeneration type power supply and cogeneration system
JP6754880B2 (en) Power supply system
JP3609346B2 (en) Operation method of distributed power supply
JP2003013744A (en) Gas turbine control device and cogeneration system
CN111293689A (en) Wind power and PHEV cooperative scheduling power system unit combination method
JP3774487B2 (en) Combined cycle power plant
JP3526026B2 (en) Waste heat recovery method for gas turbine power generation system
WO2014104091A1 (en) Power supply system and method for constructing same
JPH06176792A (en) Power storage type heat-electricity combined supply system
JP6315431B2 (en) Combined heat and power supply for adjustment
KR101118564B1 (en) Micro generating system using gas pressure difference in a gas pipe
JP2004048961A (en) Apparatus, method, and program for computing cost for generator operation
JP2003052127A (en) Network system of cogeneration apparatuses
JP2001073799A (en) Gas turbine for generation and thermoelectric co-supply equipment
JP7210197B2 (en) power supply system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041013

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees