JP3609344B2 - Mixing element of static mixer - Google Patents

Mixing element of static mixer Download PDF

Info

Publication number
JP3609344B2
JP3609344B2 JP2000578101A JP2000578101A JP3609344B2 JP 3609344 B2 JP3609344 B2 JP 3609344B2 JP 2000578101 A JP2000578101 A JP 2000578101A JP 2000578101 A JP2000578101 A JP 2000578101A JP 3609344 B2 JP3609344 B2 JP 3609344B2
Authority
JP
Japan
Prior art keywords
mixing
primary
mixing chamber
mixing element
chambers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000578101A
Other languages
Japanese (ja)
Inventor
靖治 原田
Original Assignee
マトリックスジーテイー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マトリックスジーテイー株式会社 filed Critical マトリックスジーテイー株式会社
Priority claimed from PCT/JP1999/004851 external-priority patent/WO2000024502A1/en
Application granted granted Critical
Publication of JP3609344B2 publication Critical patent/JP3609344B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

技術分野
この発明は、静止型混合器の混合要素体に関する。
背景技術
従来、複数の流体をインラインで混合する静止型混合器は、第21〜24図に示すように、流体の流路を構成する流路構造体である円筒状のケーシングA内に複数の混合エレメントBを内装しており、混合エレメントBは、大小二枚の円板C、Dから構成され、大径な円板Cは,中心の流通孔Eの周りに同形同大の六角筒状(他に図示しないが四角筒、八角筒、三角筒、丸筒状などがある)の小室Fを配列した小室列群Gが設けられ、更に順次直径(外側)方向には、小径なる小室列群Gの小室Fの周りに、同形同大な小室Fを配列した大径な小室列群Gが設けられ、全体としてハニカム状(最密状)に形成されている。
また、小径な円板Dは、大径な円板Cと重ね合わさるものであって、小径な円板Dにも同形同大な六角筒状の小室Fがハニカム状に形成され、かかる小径な円板Dの小室Fと大径な円板Cの小室Fとは、互いに対向する小室F同士が連通するように位置を違えて配列、即ち小室Fの中心に、他の小室Fを形成する側壁Hの交差接続部位Pが位置するように配列されている。
また、ケーシングA内における複数の混合エレメントBは、同形の円板C、D同士が背中合わせで重ね合わさり、大径な円板Cの外周とケーシングAの内周は密封されると共に、小径な円板Dの外周とケーシングAの内周間には流通路Mが形成され、また流通孔Eが他の流通孔Eおよび入口J、出口Kと連通されている。
つぎに、混合メカニズムとしては,流体を入口JからケーシングA内に流入させると、上流側の混合エレメントBの大径な円板Cの流通孔Eからその内部に達し、互いに連通する小室Fを通過して中心から外側に向かって放射状に流動し、ケーシングA内周側に達した流体は、流通路Mから下流側の混合エレメントBの外側より各小室Fへ入り、互いに連通する小室Fを通過して外側から中心に向かって求心状に集合しながら流れ、再び流通孔Eから下流側の混合エレメントBに入り、そして、再度各小室を通過しながら順次複数の混合エレメントBの内部を流動して出口Kより流出する。
ところが、従来の静止型混合器は小室Fの形状(六角筒、四角筒、八角筒、三角筒、丸筒状など)に関係なく次の課題を有している。
すなわち、同形同大な小室Fがハニカム状に配列され、小室Fの室数が外側に移行するにしたがって増加しているため,流体が上流側の混合エレメントBの流通孔Eから入る場合、この混合エレメントB内では、流体は拡散しながら分散されるが、つぎに配置される下流側の混合エレメントB内では、小室Fの室数が中心に移行するにしたがって減少しているため、流体は外側から入って中心側に向かって複数の小室Fからひとつの小室Fへと集合しながら流れるので、この混合エレメントB内部では、分散粒子の合一現象が起こり、分散粒子が微細化することが期待できない。
また、対向する小室Fから他の小室Fへの分散状態としては,均一に分散しない。すなわち、流れ方向(放射状若しくは求心方向)に関係なく、図示する六角筒状の小室Fの場合でも、分散数が2のものと、分散に寄与しない分散数が1の小室がひとつの小室群Gの中に存在し、しかも、この小室Fは順次外側に配列される小室列群G内でその数が増加することと相まって、混合エレメントB内部の外側の分散領域(周方向)と中心側の分散領域(周方向)での分散数に相違が生じ、これによって分散混合が不均一となる。
また、流体が混合エレメントBに流入して流出する際の分散数の総数(以下、分散総数という)を増加させるには,小室Fが最密状に配列されているため、順次大径な小室列群Gを増加する以外に対応できなく、このため混合エレメントBが大型化する。
発明の開示
本発明は、上記従来技術に基づく分散粒子の合一化、不均一分散混合、分散総数の増加による大型化などの課題に鑑み、一次混合要素部と二次混合要素部からなる二層構造体の混合要素体は、その内部に内側(または外側)から外側(または内側)に連通する複雑な流路を形成し、この流路は一方向(外側から内側)での流動時と、他方向(内側から外側)での流動時の分散数を同数にし、また一次混合室群(または二次混合室群)から二次混合室群(または一次混合室群)への分散状態は、その分散領域(周方向)の全域で均一化することにより、分散粒子の微細化と、均一分散混合を可能にし、さらに分散総数の増減は、一次混合室(または二次混合室)を区割する一次区割壁(または二次区割壁)の増減で対応し、混合要素体の大型化を無くすようにしたことを要旨とする静止型混合器の混合要素体を提供して上記課題などを解消する。
静止型混合器の混合要素体としては、流体の流路中に設けるものであって、一次混合要素部と二次混合用要素部との二層構造体から成り、その一方の板部に一次出入口を形成し、該一次出入口の周りの二層構造境界面において、これに連通する混合室を円周状に配列して形成すると共に、これら円周状の混合室群を同心的に配列し、これら混合室群の半径方向の位置関係にある各混合室の間でせん断力を与える段差を介して夫々二つの混合室が相互に連通するよう構成して成る。
さらに、一次混合要素部と二次混合用要素部との二層構造体から成り、一次混合要素部は、一次出入口、一次混合室群を設けており、一次出入口は一次板部に形成し、また一次混合室群は、一次板部における一次出入口の周りの二層構造境界面に環状の一次溝部を形成すると共に、一次溝部内に一次区割壁を放射状に複数形成し、一次区割壁で区割した一次混合室で構成している。
また、二次混合要素部は二次混合室群を設けており、二次混合室群は、二次板部の二層構造境界面に環状の二次溝部を形成すると共に、二次溝部内には一次区割壁と同数の二次区割壁を放射状に形成し、二次区割壁で区割した二次混合室で構成している。
また二次混合室と一次混合室とは、直径方向で一部分がオーバーラップし、また一次出入口は一次混合室若しくは二次混合室の何れか一方と連通させると共に、他の一次混合室若しくは二次混合室は外部に開放して二次出入口となしている。
また、一次混合要素部の一次混合室群、二次混合要素部の二次混合室群を多重形成したり、また一次混合要素部の一次区割壁と、二次混合用要素の二次区割壁は、周方向での位置を一致させて設けたり、また一次混合要素部の一次区割壁と、二次混合要素部は周方向での位置を概ね等間隔で交互に設けている。
また、一次混合要素部の一次混合要素部の一次板部若しくは二次混合要素部の二次板部の何れかの外周側に貫通口を形成し、一次混合室若しくは二次混合室を外部に開放させずに貫通口と連通させて二次出入口と成したり、また貫通口に放射状の仕切壁を複数形成して二次出入り口と成している。
また、上記一次混合要素部と二次混合要素部に形成した各混合室が、両方の板部の二層構造境界面においておのおの独立した凹部として形成されてなる。
さらに、静止型混合器の混合要素体として、流体の流路中に設けるものであって、一次混合要素部と二次混合要素部との二層構造体から成り、その一方の混合要素部に一次出入口を形成すると共に他方の二次混合要素部との間で流路を形成するカップ状のケーシングとし、二次要素部の該一次出入口に相対する衝突面の周りにおいて、これに連通する混合室を円周状に配列して形成すると共に、これら円周状の混合室群を同心的に配列し、これら混合室群の半径方向の位置関係にある各混合室の間でせん断力を与える段差を介して夫々二つの混合室が相互に連通するよう構成して成ることを特徴とする静止型混合器の混合要素体であり、上記混合室の間を傾斜面とすることによりその外周側に上記段差を形成し、或いはまた、上記二次混合要素部の円周状に形成された各列の混合室群を階段状として、上記段差を形成してなる。
【図面の簡単な説明】
第1図は、本発明に係る静止型混合器の混合要素体を示す断面図であり、第2図は、混合要素体を構成する一次混合要素部を示す平面図、第3図はその斜視図である。
第4図は、混合要素体を構成する二次混合要素部を示す平面図であり、第5図は、その斜視図である。
第6図は、一次混合室と二次混合室の連通関係を示す図であり、第7図は同様の連通状態の他の実施の形態を示す。
第8、9、10及び11図は、それぞれ混合要素体の他の実施の形態を示す断面図である。
第12図は、混合要素体を流路構造体内に設けた形態の静止型混合器を示す断面図であり、第13図は同じく静止型混合器の他の実施の形態を示す断面図である。
第14図は、本発明の混合要素体の混合過程を示す模式図である。
第15図(A)、(B)は、本発明の他の実施の形態を示す平面図である。
第16図は、本発明の混合要素体の混合過程の変形例を示す模式図である。
第17図(A)、(B)は、第16図の模式図に基づく本発明の他の実施の形態を示す斜視図である。
第18図(A)、(B)は、第16図の模式図に示す本発明の他の実施例であって、同心状の混合室群の間を傾斜面として段差を形成した混合器の斜視図である。
第19図(A)、(B)は、同じく第16図の模式図に示す本発明の他の実施列であって、同心状の混合室群の間を階段状とすると共に区割体として分散作用を持たせた混合器を示す斜視図である。
第20図は、同じく際16図の模式図に示す本発明の階段状の混合室間の段差及び区割壁の組合せの他の形態を示す斜視図である。
第21図は、従来の静止型混合器の内部構造を示す断面図であり、第22及び23図はその静止型混合器の混合エレメントを構成する大径な円板と小径な円板との正面図であり、図24はその静止型混合器の混合エレメントの小室の連通状態を示す図である。
発明を実施するための最良の形態
本発明にかかる静止型混合器の混合要素体1は、気体、液体などの各種流体混合(液・液、気・液、気・気、固・液など)に用いられるインラインミキサーの一種、すなわち、機械的可動部を有しない静止型混合器の構造体の発明であり、以下請求の範囲第1〜8項記載の発明を順次第1〜15図に基づき、請求の範囲第9〜12項記載の発明について第16〜20図に基づいて説明する。
混合要素体1は、一次混合要素部2と二次混合要素部3の二層構造からなり、一次混合要素部2と二次混合要素部3とを別体で形成する場合には、かかる2体を同心的に重ね合わせるものであり、前者の一次混合要素部2は、円板状の一次板部4の中央側に一次出入口5を貫通形成し、この一次出入口5の周りの重ね合わせ面である二層構造境界面4aには所定の内外径、深さを備える環状の一次溝部6を形成すると共に、一次溝部6内に一次区割壁7を放射状に複数形成し、この一次区割壁7によって2室以上の一次混合室8を周方向に区割し、この一次混合室8からなる一次混合室群9を設けている。
また、後者の二次混合要素部3は,円板状の二次板部10の重ね合わせ面である二層構造境界面10aに所定の内外径,深さを備える環状の二次溝部11を形成すると共に、溝部11内に二次区割壁12を放射状に複数形成し、二次区割壁12によって前記一次混合室8と同室数となすべき2室以上の二次混合室13を周方向に区割し、この二次混合室13からなる二次混合室群14を設けている。
また、一次混合室8、二次混合室13は、流体を放射および求心方向に均一分散させるために、一次区割壁7、二次区割壁12によって一次溝部6、二次溝部11内を,それぞれ概ね均一に区割形成している。
また、一次板部4、二次板部10の形状は円板状に限定されず、二層構造境界面4a、二層構造境界面10aに、一次混合室群9、二次混合室群14が形成可能な板状のものであれば、例えば三角以上の多角板状にしてもよく、また一次溝部6、二次溝部11についても、図示する平面視円状に限定されず、一次溝部6、二次溝部11内に一次区割壁7、二次区割壁12によってそれぞれ概ね均一な大きさの一次混合室8、二次混合室13が形成可能であれば、例えば三角以上の平面視多角形状にしてもよい。
二次混合要素部3の二次混合室13と、一次混合要素部2の一次混合室8とは、二層構造境界面4aと二層構造境界面10aを同心的に重ね合わせた状態で、それらの一部分が直径方向でオーバーラップ、すなわち、一次混合要素部2の一次混合室群9と、二次混合要素部3の二次混合室群14は、それぞれの一次溝部6と二次溝部11を異なる大きさに形成し、一次溝部6と二次溝部11の直径方向の内側と外側をオーバーラップさせることにより、一次混合室群9の一次混合室8と、二次混合室群14の二次混合室13を連通している。
上記連通状態について、一次混合室群9の一次区割壁7と、二次混合室群14の二次区割壁12は、周方向での位置を交互にするように所定角度だけ偏位、好ましくは流体を放射および求心方向に均一分散させるために、一次区割壁7と、二次区割壁12を周方向に概ね等間隔で交互に設け、一次混合室8、二次混合室13のそれぞれ概ね中央に一次区割壁7と、二次区割壁12を位置させ、ひとつの一次混合室8若しくは二次混合室13と、二つの二次混合室13若しくは一次混合室8とを連通している。
また、一次混合室群9の一次区割壁7と、二次混合室群14の二次区割壁12は、周方向での位置を一致させて設けることにより、ひとつの一次混合室8と、ひとつの二次混合室13とが連通される。
また、一次混合要素部2の一次混合室群9と、二次混合要素部3の二次混合室群14の数は、一重(単数)で形成しても良く,さらに分散を繰り返し増加させ、分散総数の増加を図って混合効率を高めるために、一次混合室群9、二次混合室群14を同心的に多重(複数)形成してもよい。
また、一次出入口5は、一次混合要素部2の一次混合室群9若しくは二次混合要素部3の二次混合室群14の内、最も外側に形成されるものとを連通させ、また一次混合要素部2の一次混合室群若しくは二次混合要素部3の二次混合室群14の内、最も外側に形成されるものを、外部に開放させて二次出入口15となしている(第8、9図参照)。
また、一次混合室群9若しくは二次混合室群14の形態としては、一次出入口5、二次出入口15にそれぞれ連通させるため、溝状の一次溝部6、二次溝部11は外側壁、内側壁をそれぞれ形成せずに開放させた形態を含んでいる。
また、二次出入口15の他の実施の形態としては、最も外側に形成される一次混合室群9若しくは二次混合室群14に対応して一次混合要素部2の一次板部4若しくは二次混合要素部3の二次板部10外周側に貫通口16を周設して二次出入口15となしている。また、貫通口16に仕切壁17を放射状に複数形成することもできる(第10、11図参照)。
また、一次混合要素部2、二次混合要素部3は、別体で形成した一枚の円板状の一次板部4、二次板部10をもとに形成したもので説明したが、かかる形態には何ら限定されず、これら部材の厚み方向や円周方向の適宜個所で少なくとも2体以上に分割形成した分割体(図示せず)を接着、溶接手段などで一体的に結合させたり、鋳込み、圧縮、射出成形などで一体成形してもよく、この場合の二層構造境界面4a、二層構造境界面10aは仮想面とし、要するに複数の分割体から構成した場合や、一体成形した場合でも最終形態として上述の各形態を備えればよい。
つぎに、混合要素体1の使用形態としては各種あり、混合要素体1は一次出入口5若しくは二次出入口15のいずれか一方を流体の流入側にし、他方を流体の流出側にするように、流体を流す配管(図示しない)に単体で接続して静止型混合器として使用する場合や、また第1、10図に示すような混合要素体1は、一次出入口5、二次出入口15が同軸状に位置し、かつ流体の流入、流出方向も同方向の場合には、複数の混合要素体1を連結させて使用することが可能であり、この場合には前後の混合要素体の間で一次出入口5若しくは二次出入口15同士を連通させるようにする。
また、流体の混合器としては、混合すべき流体の性質、特性並びに混合度合、混合用途、目的などによって、流体の不要な個所からの漏れを防止するために、必要な個所に密封装置18を設ければ良く、例えば図面上の「黒丸」印の個所が例示できる。
また、混合要素体1の他の使用形態は、配管に相当する流路構造体19内に混合要素体1を設けて静止型混合器として使用する場合であり、かかる形態の流路構造体19は、円筒状の筒体20と、筒体20の両端開口部を密封する蓋体21から構成し、蓋体21はそれぞれの中央に流体の入口22、出口23が形成され、筒体20に流体の漏れを防止する密封装置18aを介して着脱自在に装着されている。
そして、流路構造体19内での混合要素体1の配設形態としては、図12に示すように、一次出入口5若しくは二次出入口15同士を連通させると共に、一次出入口5を入口22、出口23と連通させるようにする。
また、他の使用形態は、第13図に示すように、下流側の混合要素体1の一次出入口5と、上流側の混合要素体1の二次出入口15を連通させるために、混合要素体1間にリング状のスペーサー24を介在させると共に、一次出入口5、二次出入口15を入口22、出口23と連通させている。
また、図示しないが、第8、9図に示す混合要素体1を流路構造体19内に配設する場合には、二次流出口15から流出したり、流入させたりするために、流路構造体19の筒体20内周側に、従来の静止型混合器に示される流通路Mが形成されるように混合要素体1の外径を設定するのであり、例えば、混合要素体1の一次混合要素部2若しくは二次混合要素部3同士が背中合わせで重ねられた場合では、混合要素体1における二次混合要素部3の外周側と筒体20の内周側に流通路Mを形成すればよい。
次に、本発明の混合要素体の作用について説明すると、まず、混合要素体1は一次出入口5若しくは二次出入口15のいずれか一方を流体の流入側にし、他方を流出側にすることが可能であり、分散混合すべき流体は、混合要素体1の一次混合室群9と二次混合室群14とによって形成される複雑な流路を流れる過程で分散混合される。
まず、第1、6図に示すように、ひとつの一次混合室8若しくは二次混合室13と、二つの二次混合室13若しくは一次混合室8とが連通される形態の混合要素体1において、流入側を一次出入口5とした場合、流体は、一次出入口5と最初に連通する複数(図面では12個)の二次混合室13に分散して入り、つぎに、この二次混合室13の二次溝部11の外側壁で進路が変更されると共に、この二次混合室13と連通するように対抗して配設される二つの一次混合室8内へと分散して流入し、さらに、一次混合室8の一次溝部6の外側壁で進路が変更されると共に、ひとつの一次混合室8と連通するように対抗して配設される二つの二次混合室13に分散して入り、以下この分散が順次繰り返されて最終的に外部に開放している二次出入口15から分散混合処理された流体が流入方向と同方向に流出される。
また、二次出入口15が貫通口16に仕切壁17を形成した形態であるため、最終的に一次混合室8から二次出入口15へ流入する際にも、仕切壁17で仕切られた開口数に応じて分散される。
つぎに、上記とは逆に、流入側を二次出入口15とした場合については、流れ方向が逆となるだけであって、分散総数は流動方向に何ら影響されずに変化しないため、基本的な分散混合作用は同様となる。
次に第11図に示す他の実施の形態の混合要素体1の場合については、基本的に上記と同様であり、相違する点として、最初に流入する室が一次混合室8に代わり、また流入方向に対し流出方向が逆に代わったものである。
次に、第7図に示すように一つの一次混合室8とひとつの二次混合室13とが連通される形態の混合要素体1において、流入側を一次出入口5とした場合、流体は一次出入口5と最初に連通する複数の(図では12個)の二次混合室13に分散して入り、次にこの二次混合室13の二次溝部11の外側壁で進路が変更されると共に、この二次混合室13と連通するように対向して配設されるひとつの一次混合室8内へと流入し、さらに、この一次混合室8の一次溝部6の外側壁で進路が変更されると共に、この一次混合室8と連通するように対抗して配設されるひとつの二次混合室13に入り、以下この流れが順次繰り返されて最終的に外部に開放している二次出入口15から分散混合処理された流体が流入方向と同方向に流出される。
つぎに、上記とは逆に、流入側を二次出入口15とした場合については、流れ方向が逆となる以外は、基本的には上記と同様となる。また、一次混合要素部位2と二次混合要素部3を夫々別体で構成し、同心的に重ね合わせる混合要素体1については、一次混合室群9の一次区割壁7と、二次混合室群14の二次区割壁12の位置を、周方向で交互にさせたり、一致させることができ、これによって同一の混合要素体1であっても、分散総数を変化させることが可能となる。
以上のように本発明は、一次混合要素部2と二次混合要素部3との二層構造体からなり、一次混合要素部2は、一次板部4に一次出入口5を形成し、一次出入口5の周りの二層構造境界面4aには環状の一次溝部6を形成し、一次溝部6内には一次区割壁7を放射状に複数形成し、一次区割壁7で区割する一次混合室8からなる一次混合室群9を設け、また二次混合要素部3は、二次板部10の二層構造境界面10aに環状の二次溝部11を形成し、二次溝部11内には一次区割壁7と同数の二次区割壁12を放射状に形成し、二次区割壁12で区割する二次混合室13からなる二次混合室群14を設け、また二次混合室13と一次混合室8とは、直径方向で一部分がオーバーラップし、また一次出入口5は、一次混合室8若しくは二次混合室13のいずれか一方と連通し、他の一次混合室8若しくは二次混合室13は外部に開放して二次出入口15となしたので、流体を放射若しくは求心方向に流動させても、一次混合室群9の一次混合室8と、二次混合室群14の二次混合室13の室数は、直径方向の内側と外側で変化しないため、求心方向での流動時と、放射方向での流動時とは同じ状態で流れ、すなわち、流れ方向に関係なく同一分散数による分散混合作用が得られることにより、従来の混合器で発生していた集合流による合一現象をなくすことができるため、分散粒子の微細化が損なわれないと共に、一次混合室群9から二次混合室群14への分散領域(周方向)の全域においても、従来の混合器のような分散数が異なる室がなく、すべて同じ分散数であるため、分散数の相違による不均一分散混合が防止でき、従来に比し混合能力が格段に向上する。
また、分散総数の増減は、一次混合室8、二次混合室13を区割する一次区割壁7、二次区割壁12の増減で簡易に対応でき、しかも混合要素体1が従来のように大型化しないと共に、同一外形で分散総数の異なる混合要素体1が得られ、これによって流路構造体19内での混合要素体1の連結使用時の静止型混合器としての分散総数の設定の自由度が増し、各種流体に応じた混合度の調整が容易にできる効果を奏する。
次に、一次混合要素部2の一次混合室群9と、二次混合室部3の二次混合室群14を多重形成したので、一次混合室群9、二次混合室群14の群数によって分散総数を著しく増加でき、しかも、かかる群数に関係なく上記の分散粒子の微細化や、均一混合効果などは何ら損なわれずに維持できる。
つぎに、一次混合要素部2の一次区割壁7と、二次混合要素部3の二次区割壁12は、周方向での位置を一致させて設けたので、流路の断面積を最大化でき、これによって流動時の圧力損失の低減化を図って流速、流量を増加させることが可能な混合要素体1を提供する。
つぎに、一次混合要素部2の一次区割壁7と、二次混合要素部3の二次区割壁12は、周方向での位置を概ね等間隔で交互に設けたので、上述の効果に加え、各分散時は、すべて均一な分散混合作用を奏する混合要素体1を提供できる。
つぎに、一次混合要素部2の一次板部4若しくは二次混合要素部3の二次板部10のいずれかの外側に貫通口16を周設し、一次混合室8若しくは二次混合室13を外部に開放させずに貫通口16と連通させて二次出入口15となしたので、一次混合要素部2の一次板部4に二次出入口15を設けた場合は、流入方向に対して流れを逆方向にできると共に、二次混合要素部3の二次板部10に二次出入口15を設けた場合は、混合要素体1を直線的に連結して使用することができ、これにより混合要素体1単体で具有する分散混合能力を著しく向上することができる。
また、貫通口16に放射状の仕切り壁17を複数形成して二次出入口15となしたので、仕切り壁17による開口数に応じて、流体が流出する際に、さらに分散混合されるため、分散総数に基づく分散能力を一段と向上させることができる混合要素体1を提供する。
本発明の静止型混合器の混合作用については、3次元的な流体の複雑な挙動からなるためそのメカニズムの詳細は必ずしも明かではないが、その混合過程を模式的に表すと第14図のようになる。
図において、一方の一次混合要素部の出入口5から流入した流体は相対する二次混合要素部の底面50に衝突してその方向を変え、該底面50に沿って矢印のように放射状に流れる。流体は区割壁12により分散されて、その外側壁30により方向を変えられて相対する側の一次混合室8の外側壁20の段差を越え、その区割壁7により分散されると共に隣接する分散流と合流して混合室8に流入・混合される。更に流体は、混合室8のさらに外側の外側壁20によって方向を変えられて再び相対する二次混合室13に向かい、その外側壁30の段差を越え、区画壁12により分散されると共に隣接する混合室からの分散流と合流して混合室13に流入・混合され、以下同様の混合過程を繰り返す。
以上から明らかなように本発明にかかる混合器の混合過程は、混合流体に対して混合要素体の二層境界面に形成された混合室が、円周状に配列された混合室群を構成し、さらにこれらの混合室群が同心的に配列されていて、1対の混合要素部の間で夫々の混合室群が半径方向及び周方向に位置をずらされて、各混合室が半径方向にそれぞれ二つの混合室と連通し、かつ各混合室群の列の間で外側壁により段差を与えられてせん断力を受けることにより、流体は同心的に配列された混合室を放射状若しくは求心的に流れる間に分散とせん断力とを受けて混合する過程を繰り返すのである。
即ち、その静止型混合器としての基本的な構造は、1対の混合要素部に形成された溝部からなる混合室群が円周状に配列されると共に求心方向即ち半径方向に同心的に環状を配列されてなることにより、これら1対の混合要素部を同心的に重ね合わせた状態で、夫々の混合室群を半径方向でオーバーラップさせ、また周方向での位置を交互にするように所定角度だけ偏位させて夫々連通させてなることによって上記の混合過程を実現しているのである。
そして、それらの分散とせん断力による微細な分散作用は、これらの混合室群の構成からなる大きな分散総数に表される混合効果によって均一化されるため、混合流体全体にわたって滴径の揃った均一微細な分散粒子が得られるのである。
したがって、これらの混合過程及び基本構成からすると、混合室を構成する溝部は区割壁及び外周壁により区画された形態に限られず、これらの上記の混合過程をもたらす混合室の基本的な位置関係を満たす種々の形状、構造によって同様の機能を達成することができる。
例えば、第15図(A)、(B)に示すように混合要素部2、3の板面に形成された混合室8、13となる溝部の平面形が楕円状やその他の丸みを帯びた四辺形であったり、その断面形状が隅部にRを形成したり、半径方向にその深さを変えた凹部として形成され、構造上相互に独立した形態であってもよい。要は、上記した混合過程で明らかなように、各混合室・群(8、13:9、14)が円周状に配列されてかつ同心的に環状に配列され、液体が順次経由する(相対する側の)混合室・群との間で各混合室が前後夫々に二つの混合室と連通して、その間でせん断力を与える段差が形成されていればよい。
この例では、混合室群の間の段差のせん断作用は、各混合室の半径方向の外側壁によって達成されている。
また、上記の説明においては2枚1対の混合要素部板部にそれぞれ形成した溝部からなる混合室の間を流体が交互に経由する形態としたが、このような混合過程は混合室を一方の混合要素部に形成しても同様に行なうことができる。
第16図はこのような混合要素部の一方にのみ混合室となる溝部を形成した場合の混合過程を示す模式図で、混合室13は、この場合には二次混合要素部板部に形成されており、相対する一次混合要素部板部の中心部に設けられた流体出入口5から流入した流体は、混合室部底面50に沿って図中矢印のように放射状に向かい、区割壁12により分散されて混合室の段差部30を越えて隣接する分散流と合流して混合室13に流入・混合する。以下この過程を繰り返すことによって混合過程が進行するもので、上記の一対の混合要素部を同心的に重ね合わせたものと混合過程は何ら変わらない。
この混合要素部間に流体の流路もしくは混合室を形成するには、各混合室及びその間の流路を閉塞する部材が必要であって、相対する一方の混合要素部がこの混合室に相対していわばカップ状のケーシングとなって、混合流体の流路若しくは混合室の壁面をなす。この段差部30は、上記の例におけるように混合室を半径方向に仕切る堰状の壁として形成し、次列の混合室との間に混合流体を連通するためその一部を低くして天井となるケーシング側との間に間隙を設けてもよいが、要は次列の混合室群との間で段差が形成されればよいのであるから、各混合室間に仕切りを設けると共に各列の混合室群の間で段差を設けたり、各混合室の間に傾斜面を設けてその後部側に段差を形成したり、あるいは、次列の混合室群との間をそのまま段差として次列の混合室を形成してもよい。
第17図(A)、(B)にその例を示す。図において、このような階段状の混合室群の各混合室の間を区割壁12で仕切ったもので、段差30と区画壁12及びケーシングとなる混合要素部2との間で混合室13を形成する。この構造の静止型混合器においては、混合要素部2の流体出入口5から流入した流体は、相対する混合要素部3の底面50に衝突して該底面に沿って放射状に周方向に向かい、区割壁12により分散されると共に段差30によりせん断力を与えられ、隣接する領域からの分散流と合流して次列の混合室13に流入・混合する。以下この過程を繰り返すことにより上記した混合作用を達成する。
このような混合室群を階段状とした混合器は、1対の混合要素部に形成した混合室間の堰状の外側壁を越えて混合過程が進行する他の例に比較してより流動抵抗が少なく、流速・流量が大きくできる利点がある。
第18図の例においては、各混合室の間には傾斜面41を有する区割体40が円周状に設けられ、その外周側が段差30となって、次列の区割体40の間の底面と区割体の頂面46に接するケーシングとの間で混合室13が構成される。この傾斜面41は、流体に対して混合室群の成す円周の接線方向に流体の方向を変え、隣接する混合室からの分流と衝突させると共に合流した流体を次列の混合室に加速して流入させる作用を有する。この結果、混合流体はこれらの2液衝突作用と、合流して加速されて底面及び壁面41に向けられることによる壁面衝突作用とによって微細に分散した混合流体となり、液−液混合流体の場合には微細なエマルジョンを形成することができる。
また、これらの段差部をそのまま混合室群の間の段差として混合室を形成する場合、これらの段差によって各混合室群は各列毎に階段状となるが、隣接する混合室の間は、区割壁12で仕切るか若しくは平面のまま次列の混合室同士を段差で仕切る区割体40として、次列に流入する流体を2分して導く。
さらに、第19図に本発明の他の実施例を示す。基本的な構成は第18図記載の実施例と変わらないが、各混合室同士の間を階段状の段差を成す底面をそのまま延長して区割体40として区切ったもので、その底面50は第17図の実施例における区割体40の傾斜面41の傾斜を緩やかにして構造上水面とし、連続する階段状の底面と一体化させたものに相当する。その結果、図に示すように各底面50が衝突面として階段状に配置された形状となる。
流体の挙動は、上記第18図の実施例の場合と基本的には変わらず、混合要素体2の流体出入口5から圧入された流体は衝突面50によって直角に方向を変えられて半径方向に向かい、区割体40によって分散されると共に円周方向に方向を変えられるのであり、合流後の流体は加速されて次段の区割体40の底面50に対して衝突する。
この区割体40の底面は、混合流体を次列の混合室に2分して導くと共にその際、いわゆる壁面衝突作用により混合流体を微細に分散させるのであり、また衝突した流体は円周に対して接線方向に向けられて隣接する分流といわゆる2液衝突方式の分散作用を受け、合流して加速されて次列の混合室に導かれる過程を繰り返すため、効果的な分散作用を発揮することができる。
これらの実施例によれば、各混合要素部の構造は更に単純となって製作が容易であり、強度的にも更に高い剛性をもたせることができる。また、上記した洗浄処理における利点でも一層優れた効果を発揮できる。
図20は、本発明の更に他の実施例であるが、混合要素部2の構造は基本的に変わらないので混合要素部3のみ示す。この例では円周方向に配列する区割体40の数を上記実施例より減らして6とし、衝突面50外周の延長部を区割壁12としたもので、区割壁12の整流作用により次段の混合室に流体を速やかに導き、流路抵抗を減少させると共に流量・流速を大きくすることによって、より効果的な気・液、液・液分散化作用を目指すものである。このような区割壁や流路分割体の数は、混合すべき流体の種類や粘性などの性質によって適宜変更することができ、また、上記のような整流部はこれらの流路分割体の配置や構造を利用してあるいはその変形として適宜設けることができる。
以上に本発明の特徴を表す具体的な例を挙げたか、これらの混合要素部2、3の間に形成された流路において、混合流体を分散し、せん断力を与える混合室の形状や構造は、その混合過程で明らかにした基本構成によって種々変更可能であり、これらの形状や位置関係あるいはその数を変更することによって混合流体の性質や用途、あるいは目的とする気・液、液・液分散粒子の滴径等に対応することが可能である。
たとえば、混合室間で流体に与えるせん断力は、堰状の段差の大きさはもとより、区割体の傾斜面や階段状の段差の大きさ、あるいは区割体の平面形によっても調整され、また、これらの間隔や混合要素部2,3の間の流路の形状・構造を変更することによっても調整することができる。
また、上記説明では言及しなかったが流路を形成する他方の混合要素部2も、従来の壁面衝突方式の場合と同様に流体との衝突作用を有しているのであり、これらの作用を効果的に発揮するためや流体の性質に合わせて流速・流量を調整するためなど、必要に応じてその形状・構造も単純なカップ状ではなく、混合要素部3と共に衝突壁として成形したり、流路を拡大・収束するように構造・形状を変形することができる。
このように本発明の特許請求の範囲記載の各構成要件の形状・構造や数などは処理対象とする流体の性質や、混合の目的・用途等によって変えることができるのであり、何らこれらの実施例の形態に限定されるものでないことは明らかである。
産業上の利用可能性
本発明の静止型混合器は、この構造要素が混合要素部2、3から形成される流路である混合室(群)の形状・構造と相互の位置関係からなる単純な構造であるため、流体の性質や用途あるいは要求されるエマルジョンの滴径などの種々の条件に対応してこれらの構造要素の形状・構造を変えることで容易に対応することができ、且つこれらのデータを蓄積することによって、より適切な条件の設定が可能となる。
本発明の混合器は、その原理・構造上サイズに制約がない点にも特徴があり、スケールアップにより工業的な規模・生産量に拡大できるとともに、一方その簡単な構造は小型化においても有利であり、単に構造上小型化が可能というのみでなく、流体のエマルジョン化、混合過程が進行する際もその簡単な構造から流体の流動抵抗、粘性抵抗や乱流などの影響が少なく、小型器若しくは超小型器においても大型器と同様に効果的に作動するのである。
また、本発明の混合器は低圧損であるため流量が大きく効率的であると共に、低圧で効果的に動作するためポンプの負荷が低くできるなど工業上有利であり、更にこの特性から作動圧力を高めて更に微細なエマルジョン化を実用的な圧力条件下で行なうことができる。
対象とする混合流体について、上記の説明は主として2液混合の場合を例としたが、気−液混合、液−固混合、及び高粘性の流体を対象とする混練の際にも同様に効果的に混合効果を発揮するものであり、このため応用面においても気−液混合の場合、上記したように小型化、超小型化に適するからエアゾル形成用ノズルなどに好適であり、低圧損で抵抗が小さいことから従来困難であった混練工程への適用が可能であり、また、上記した簡単な構造で洗浄性に優れた点は食品や化学用途に不可欠の特性であり、本発明は各産業分野にわたって適用を図ることにより広く産業の発達に資することができる。
Technical field
The present invention relates to a mixing element body of a static mixer.
Background art
Conventionally, as shown in FIGS. 21 to 24, a static mixer that mixes a plurality of fluids in-line has a plurality of mixing elements in a cylindrical casing A that is a flow channel structure constituting a fluid flow channel. The mixing element B is composed of two large and small discs C, D, and the large-diameter disc C has a hexagonal cylindrical shape of the same shape and size around the central flow hole E ( Although not shown in the drawings, a small chamber row group G in which small chambers F of a square tube, an octagon tube, a triangular tube, a round tube shape, etc. are arranged is provided, and further, a small chamber row group having a smaller diameter in the diameter (outer) direction. Around the small chamber F of G, a large-diameter small chamber row group G in which small chambers F of the same shape and size are arranged is formed in a honeycomb shape (closest density) as a whole.
The small-diameter disk D is overlapped with the large-diameter disk C, and the small-diameter disk D is also formed with a hexagonal cylindrical chamber F having the same shape and size in a honeycomb shape. The small chamber F of the large disc D and the small chamber F of the large-diameter disc C are arranged at different positions so that the small chambers F facing each other communicate with each other, that is, the other small chamber F is formed at the center of the small chamber F. It arranges so that the cross connection part P of the side wall H to be located may be located.
In addition, the plurality of mixing elements B in the casing A have the same shape of the discs C and D overlapped back to back, the outer periphery of the large-diameter disc C and the inner periphery of the casing A are sealed, and the small-diameter circle A flow passage M is formed between the outer periphery of the plate D and the inner periphery of the casing A, and the flow hole E communicates with the other flow holes E, the inlet J, and the outlet K.
Next, as a mixing mechanism, when a fluid is caused to flow into the casing A from the inlet J, the small chambers F that reach the inside through the flow holes E of the large-diameter disk C of the upstream mixing element B and communicate with each other are formed. The fluid that passes through and flows radially outward from the center and reaches the inner peripheral side of the casing A enters the small chambers F from the outside of the mixing element B on the downstream side through the flow passage M, and passes through the small chambers F that communicate with each other. Passing through and flowing from the outside to the center while gathering in a centripetal manner, entering the mixing element B on the downstream side again from the flow hole E, and flowing in the plurality of mixing elements B sequentially while passing through each small chamber again And flows out from the exit K.
However, the conventional static mixer has the following problems regardless of the shape of the chamber F (hexagonal cylinder, square cylinder, octagonal cylinder, triangular cylinder, round cylinder, etc.).
That is, the small chambers F having the same shape and the same size are arranged in a honeycomb shape, and the number of the small chambers F increases as it moves to the outside, so that when the fluid enters from the flow hole E of the mixing element B on the upstream side, In the mixing element B, the fluid is dispersed while being diffused, but in the downstream mixing element B arranged next, the number of the small chambers F decreases as the center moves to the center. Flows from the outside and gathers from a plurality of chambers F to one chamber F toward the center, so that the coalescence phenomenon of dispersed particles occurs inside the mixing element B, and the dispersed particles become finer. I can not expect.
Further, the dispersed state from the facing small chamber F to the other small chambers F is not uniformly dispersed. That is, regardless of the flow direction (radial or centripetal direction), even in the case of the illustrated hexagonal cylindrical chamber F, the chamber group G includes one chamber having a dispersion number of 2 and one chamber having a dispersion number of 1 that does not contribute to dispersion. In addition, the number of the small chambers F increases in the small chamber row group G sequentially arranged on the outside, and the outer dispersion region (circumferential direction) inside the mixing element B and the center side thereof are combined. There is a difference in the number of dispersions in the dispersion region (circumferential direction), which results in non-uniform dispersion mixing.
In order to increase the total number of dispersions (hereinafter referred to as the total number of dispersions) when the fluid flows into and out of the mixing element B, the small chambers F are arranged in a close-packed manner. Other than increasing the row group G, it is not possible to cope with it, so that the mixing element B is enlarged.
Disclosure of the invention
The present invention is a two-layer structure composed of a primary mixing element part and a secondary mixing element part in view of problems such as coalescence of dispersed particles based on the above prior art, non-uniform dispersion mixing, and increase in size due to an increase in the total number of dispersions. The mixing element body forms a complex flow channel that communicates from the inside (or outside) to the outside (or inside) inside, and this flow channel flows in one direction (from outside to inside) and in the other direction. The number of dispersion during flow (from inside to outside) is the same, and the dispersion state from the primary mixing chamber group (or secondary mixing chamber group) to the secondary mixing chamber group (or primary mixing chamber group) is the dispersion By making uniform in the whole area (circumferential direction), it is possible to make the dispersed particles finer and uniformly disperse and mix, and the increase or decrease in the total number of dispersions is the primary that divides the primary mixing chamber (or secondary mixing chamber). Corresponding to the increase or decrease of the ward dividing wall (or secondary ward dividing wall) That it has to eliminate provide mixing elements of a static mixer to subject matter to solve such problems described above.
The mixing element body of the static mixer is provided in a fluid flow path, and is composed of a two-layer structure of a primary mixing element part and a secondary mixing element part. An entrance / exit is formed, and at the boundary surface of the two-layer structure around the primary entrance / exit, mixing chambers communicating therewith are arranged circumferentially, and these circumferential mixing chamber groups are arranged concentrically. The two mixing chambers are configured to communicate with each other through a step which applies a shearing force between the mixing chambers in the radial positional relationship of the mixing chamber group.
Furthermore, it consists of a two-layer structure of a primary mixing element part and a secondary mixing element part, the primary mixing element part is provided with a primary inlet / outlet, a primary mixing chamber group, and the primary inlet / outlet is formed in the primary plate part, In addition, the primary mixing chamber group is formed with an annular primary groove portion on the boundary surface of the two-layer structure around the primary entrance in the primary plate portion, and a plurality of primary partition walls are radially formed in the primary groove portion. It consists of a primary mixing chamber divided by.
In addition, the secondary mixing element part is provided with a secondary mixing chamber group, and the secondary mixing chamber group forms an annular secondary groove part on the boundary surface of the secondary layer of the secondary plate part. The secondary partition wall is the same as the primary partition wall, and is composed of secondary mixing chambers divided by the secondary partition wall.
The secondary mixing chamber and the primary mixing chamber partially overlap in the diametrical direction, and the primary inlet / outlet communicates with either the primary mixing chamber or the secondary mixing chamber, and the other primary mixing chamber or the secondary mixing chamber. The mixing chamber is open to the outside and serves as a secondary entrance.
In addition, the primary mixing chamber group and the secondary mixing chamber group of the secondary mixing element unit are formed in multiple layers, or the primary partition wall of the primary mixing element unit and the secondary mixing element unit The dividing wall is provided with the position in the circumferential direction matched, and the primary dividing wall and the secondary mixing element part in the primary mixing element part are alternately provided at substantially equal intervals in the circumferential direction.
Moreover, a through-hole is formed on the outer peripheral side of either the primary plate portion of the primary mixing element portion or the secondary plate portion of the secondary mixing element portion, and the primary mixing chamber or the secondary mixing chamber is set to the outside. The secondary entrance is formed by communicating with the through-hole without being opened, and a plurality of radial partition walls are formed at the through-hole to form the secondary entrance.
Moreover, each mixing chamber formed in the said primary mixing element part and the secondary mixing element part is formed as an independent recessed part in the double-layer structure boundary surface of both board parts, respectively.
Furthermore, the mixing element body of the static mixer is provided in the fluid flow path, and is composed of a two-layer structure of a primary mixing element section and a secondary mixing element section. A cup-shaped casing that forms a primary inlet / outlet and a flow path between the other secondary mixing element part, and is mixed around the collision surface of the secondary element part facing the primary inlet / outlet. The chambers are formed in a circumferential arrangement, the circumferential mixing chamber groups are concentrically arranged, and a shearing force is applied between the mixing chambers in the radial positional relationship of the mixing chamber groups. A mixing element body of a static mixer characterized in that two mixing chambers communicate with each other through a step, and the outer peripheral side of the mixing chamber is formed as an inclined surface between the mixing chambers. Or the above secondary mixing is required. The mixing chamber group of each row formed circumferentially parts as stepped, obtained by forming the step.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a mixing element body of a static mixer according to the present invention, FIG. 2 is a plan view showing a primary mixing element portion constituting the mixing element body, and FIG. 3 is a perspective view thereof. FIG.
FIG. 4 is a plan view showing a secondary mixing element portion constituting the mixing element body, and FIG. 5 is a perspective view thereof.
FIG. 6 is a view showing the communication relationship between the primary mixing chamber and the secondary mixing chamber, and FIG. 7 shows another embodiment of the same communication state.
FIGS. 8, 9, 10 and 11 are sectional views showing other embodiments of the mixing element body.
FIG. 12 is a cross-sectional view showing a static mixer in which the mixing element body is provided in the flow channel structure, and FIG. 13 is a cross-sectional view showing another embodiment of the static mixer. .
FIG. 14 is a schematic view showing a mixing process of the mixing element body of the present invention.
15 (A) and 15 (B) are plan views showing other embodiments of the present invention.
FIG. 16 is a schematic view showing a modification of the mixing process of the mixing element body of the present invention.
17 (A) and 17 (B) are perspective views showing another embodiment of the present invention based on the schematic diagram of FIG.
FIGS. 18 (A) and 18 (B) are other embodiments of the present invention shown in the schematic diagram of FIG. 16 and show a mixer in which a step is formed with an inclined surface between concentric mixing chamber groups. It is a perspective view.
FIGS. 19 (A) and 19 (B) show another embodiment of the present invention shown in the schematic diagram of FIG. 16 as a step-shaped section between concentric mixing chamber groups. It is a perspective view which shows the mixer which gave the dispersion | distribution effect | action.
FIG. 20 is a perspective view showing another embodiment of the combination of the step between the step-like mixing chamber and the dividing wall of the present invention shown in the schematic diagram of FIG.
FIG. 21 is a cross-sectional view showing the internal structure of a conventional static mixer, and FIGS. 22 and 23 show a large-diameter disk and a small-diameter disk constituting the mixing element of the static mixer. FIG. 24 is a front view, and FIG. 24 is a view showing a communication state of the small chambers of the mixing element of the static mixer.
BEST MODE FOR CARRYING OUT THE INVENTION
The mixing element 1 of the static mixer according to the present invention is a kind of in-line mixer used for mixing various fluids such as gas and liquid (liquid / liquid, gas / liquid, gas / gas, solid / liquid, etc.), An invention of a structure of a static mixer having no mechanical movable part, and the inventions of claims 1 to 8 are sequentially based on FIGS. 1 to 15 and claims 9 to 12 of the invention. The described invention will be described with reference to FIGS.
The mixing element body 1 has a two-layer structure of a primary mixing element part 2 and a secondary mixing element part 3, and when the primary mixing element part 2 and the secondary mixing element part 3 are formed as separate bodies, the 2 The former primary mixing element portion 2 has a primary entrance 5 penetrating through the central side of the disc-shaped primary plate portion 4, and an overlapping surface around the primary entrance 5. An annular primary groove 6 having a predetermined inner and outer diameter and depth is formed on the boundary surface 4a, and a plurality of primary partition walls 7 are radially formed in the primary groove 6, and this primary partition Two or more primary mixing chambers 8 are divided in the circumferential direction by walls 7, and a primary mixing chamber group 9 including the primary mixing chambers 8 is provided.
Further, the latter secondary mixing element portion 3 includes an annular secondary groove portion 11 having a predetermined inner and outer diameter and depth on a two-layer structure boundary surface 10a that is an overlapping surface of the disk-shaped secondary plate portion 10. A plurality of secondary partition walls 12 are formed radially in the groove 11, and the secondary partition walls 12 surround two or more secondary mixing chambers 13 that should have the same number as the primary mixing chamber 8. A secondary mixing chamber group 14 composed of the secondary mixing chambers 13 is provided which is divided in the direction.
Further, the primary mixing chamber 8 and the secondary mixing chamber 13 are formed in the primary groove 6 and the secondary groove 11 by the primary partition wall 7 and the secondary partition wall 12 in order to uniformly disperse the fluid in the radial and centripetal directions. , Each of them is divided almost uniformly.
Moreover, the shape of the primary plate part 4 and the secondary plate part 10 is not limited to a disk shape, and the primary mixing chamber group 9 and the secondary mixing chamber group 14 are formed on the two-layer structure boundary surface 4a and the two-layer structure boundary surface 10a. Can be formed into a polygonal plate shape having a triangular shape or more, for example, and the primary groove portion 6 and the secondary groove portion 11 are not limited to a circular shape in a plan view, and the primary groove portion 6 If the primary mixing chamber 8 and the secondary mixing chamber 13 having a substantially uniform size can be formed in the secondary groove 11 by the primary partition wall 7 and the secondary partition wall 12, respectively, for example, a plan view of a triangle or more It may be polygonal.
The secondary mixing chamber 13 of the secondary mixing element part 3 and the primary mixing chamber 8 of the primary mixing element part 2 are in a state where the two-layer structure boundary surface 4a and the two-layer structure boundary surface 10a are concentrically overlapped, A part of them overlaps in the diametrical direction, that is, the primary mixing chamber group 9 of the primary mixing element part 2 and the secondary mixing chamber group 14 of the secondary mixing element part 3 have a primary groove part 6 and a secondary groove part 11 respectively. Of the primary mixing chamber group 9 and the secondary mixing chamber group 14 by overlapping the inner and outer sides of the primary groove portion 6 and the secondary groove portion 11 in the diametrical direction. The next mixing chamber 13 is communicated.
Regarding the communication state, the primary partition wall 7 of the primary mixing chamber group 9 and the secondary partition wall 12 of the secondary mixing chamber group 14 are displaced by a predetermined angle so that the positions in the circumferential direction are alternated. Preferably, in order to uniformly disperse the fluid in the radial and centripetal directions, the primary partition walls 7 and the secondary partition walls 12 are provided alternately at substantially equal intervals in the circumferential direction, and the primary mixing chamber 8 and the secondary mixing chamber 13 are provided. The primary partition wall 7 and the secondary partition wall 12 are positioned approximately in the center of each, and one primary mixing chamber 8 or secondary mixing chamber 13 and two secondary mixing chambers 13 or primary mixing chambers 8 are provided. Communicate.
In addition, the primary partition wall 7 of the primary mixing chamber group 9 and the secondary partition wall 12 of the secondary mixing chamber group 14 are provided so as to coincide with each other in the circumferential direction. , One secondary mixing chamber 13 communicates.
Further, the number of the primary mixing chamber group 9 of the primary mixing element part 2 and the secondary mixing chamber group 14 of the secondary mixing element part 3 may be formed as a single (single), and further increase the dispersion repeatedly, In order to increase the total number of dispersions and increase the mixing efficiency, the primary mixing chamber group 9 and the secondary mixing chamber group 14 may be formed concentrically (multiple).
Further, the primary inlet / outlet 5 communicates with the primary mixing chamber group 9 of the primary mixing element unit 2 or the secondary mixing chamber group 14 of the secondary mixing element unit 3 which is formed at the outermost side, and also performs primary mixing. Of the primary mixing chamber group of the element part 2 or the secondary mixing chamber group 14 of the secondary mixing element part 3, the outermost one formed outside is opened to the outside to form a secondary inlet / outlet 15 (eighth). , See FIG. 9).
The primary mixing chamber group 9 or the secondary mixing chamber group 14 is configured so as to communicate with the primary inlet / outlet 5 and the secondary inlet / outlet 15 respectively, so that the groove-shaped primary groove 6 and the secondary groove 11 are the outer wall and the inner wall. Each is formed without being formed.
Further, as another embodiment of the secondary inlet / outlet 15, the primary plate portion 4 or the secondary plate of the primary mixing element portion 2 corresponding to the primary mixing chamber group 9 or the secondary mixing chamber group 14 formed on the outermost side. A through-hole 16 is provided around the secondary plate portion 10 on the outer peripheral side of the mixing element portion 3 to form a secondary entrance 15. Further, a plurality of partition walls 17 can be radially formed in the through-hole 16 (see FIGS. 10 and 11).
Moreover, although the primary mixing element part 2 and the secondary mixing element part 3 were demonstrated based on what was formed based on the disk-shaped primary plate part 4 and the secondary plate part 10 which were formed separately, There is no limitation to such a form, and a divided body (not shown) that is divided into at least two bodies at appropriate locations in the thickness direction and the circumferential direction of these members can be joined together by bonding, welding means, or the like. In this case, the two-layer structure boundary surface 4a and the two-layer structure boundary surface 10a are assumed to be virtual surfaces. Even if it does, what is necessary is just to provide each above-mentioned form as a last form.
Next, there are various usage forms of the mixing element body 1, and the mixing element body 1 has either the primary inlet / outlet 5 or the secondary inlet / outlet 15 as the fluid inflow side and the other as the fluid outflow side. When the unit is connected to a pipe (not shown) through which a fluid flows and used as a static mixer, or in the mixing element body 1 as shown in FIGS. 1 and 10, the primary inlet / outlet 5 and the secondary inlet / outlet 15 are coaxial. If the fluid inflow and outflow directions are also in the same direction, a plurality of mixing element bodies 1 can be connected and used. In this case, between the front and rear mixing element bodies The primary entrance 5 or the secondary entrance 15 is made to communicate with each other.
Further, as a fluid mixer, a sealing device 18 is provided at a necessary place in order to prevent leakage of the fluid from an unnecessary place depending on the nature and characteristics of the fluid to be mixed, the degree of mixing, the mixing application, the purpose and the like. What is necessary is just to provide, for example, the part of the "black circle" mark on drawing can be illustrated.
Another use form of the mixing element body 1 is a case where the mixing element body 1 is provided in a flow path structure 19 corresponding to a pipe and used as a static mixer. Is composed of a cylindrical cylindrical body 20 and a lid body 21 that seals the openings at both ends of the cylindrical body 20, and the lid body 21 has a fluid inlet 22 and an outlet 23 formed in the center of each. It is detachably mounted through a sealing device 18a that prevents fluid leakage.
And as the arrangement | positioning form of the mixing element body 1 in the flow-path structure 19, as shown in FIG. 12, while making the primary entrance / exit 5 or the secondary entrance / exit 15 communicate with each other, the primary entrance / exit 5 is made into the entrance 22, the exit 23 to communicate.
Further, as shown in FIG. 13, the other use form is to mix the primary inlet / outlet 5 of the downstream mixing element body 1 with the secondary inlet / outlet 15 of the upstream mixing element body 1. A ring-shaped spacer 24 is interposed between the primary inlet 5 and the secondary inlet 15 and the inlet 22 and outlet 23 are communicated with each other.
Although not shown in the figure, when the mixing element body 1 shown in FIGS. 8 and 9 is disposed in the flow path structure 19, it flows out of or flows in from the secondary outlet 15. The outer diameter of the mixing element body 1 is set so that the flow path M shown in the conventional static mixer is formed on the inner peripheral side of the cylindrical body 20 of the path structure 19. For example, the mixing element body 1 When the primary mixing element part 2 or the secondary mixing element part 3 are stacked back to back, the flow path M is formed on the outer peripheral side of the secondary mixing element part 3 and the inner peripheral side of the cylindrical body 20 in the mixing element body 1. What is necessary is just to form.
Next, the operation of the mixing element body of the present invention will be described. First, the mixing element body 1 can have either the primary inlet / outlet 5 or the secondary inlet / outlet 15 as the fluid inflow side and the other as the outflow side. The fluid to be dispersed and mixed is dispersed and mixed in the process of flowing through a complicated flow path formed by the primary mixing chamber group 9 and the secondary mixing chamber group 14 of the mixing element body 1.
First, as shown in FIGS. 1 and 6, in the mixing element body 1 in a form in which one primary mixing chamber 8 or secondary mixing chamber 13 and two secondary mixing chambers 13 or primary mixing chamber 8 communicate with each other. When the inflow side is the primary inlet / outlet 5, the fluid is dispersedly entered into a plurality of (12 in the drawing) secondary mixing chambers 13 communicating with the primary inlet / outlet 5 first, and then the secondary mixing chamber 13. The course is changed by the outer wall of the secondary groove portion 11 and flows into the two primary mixing chambers 8 arranged so as to communicate with the secondary mixing chamber 13, The course is changed at the outer wall of the primary groove portion 6 of the primary mixing chamber 8, and the two are mixed in the two secondary mixing chambers 13 that are arranged so as to communicate with the primary mixing chamber 8. This secondary distribution is repeated in order and finally opened to the outside. 15 distributed mixture treated fluid flows out in the inflow direction and the direction from.
In addition, since the secondary inlet / outlet 15 has a configuration in which the partition wall 17 is formed in the through-hole 16, the numerical aperture partitioned by the partition wall 17 is also obtained when the secondary inlet / outlet 15 finally flows into the secondary inlet / outlet 15 from the primary mixing chamber 8. Depending on the distribution.
Next, contrary to the above, in the case where the inflow side is the secondary inlet / outlet 15, the flow direction is only reversed, and the total number of dispersions is not affected by the flow direction and does not change. The same dispersion and mixing action is the same.
Next, the mixing element body 1 of another embodiment shown in FIG. 11 is basically the same as the above, except that the first inflow chamber is replaced with the primary mixing chamber 8, The outflow direction is reversed with respect to the inflow direction.
Next, in the mixing element body 1 having a form in which one primary mixing chamber 8 and one secondary mixing chamber 13 are communicated with each other as shown in FIG. The plurality of (12 in the figure) secondary mixing chambers 13 communicating with the entrance / exit 5 at first are dispersed and entered, and then the course is changed at the outer wall of the secondary groove 11 of the secondary mixing chamber 13. Then, it flows into one primary mixing chamber 8 disposed so as to be in communication with the secondary mixing chamber 13, and the course is changed at the outer wall of the primary groove 6 of the primary mixing chamber 8. At the same time, it enters one secondary mixing chamber 13 which is disposed so as to communicate with the primary mixing chamber 8, and this flow is repeated in succession and finally opened to the outside. The fluid that has been dispersed and mixed from 15 is discharged in the same direction as the inflow direction.
Next, contrary to the above, the case where the inflow side is the secondary inlet / outlet 15 is basically the same as the above except that the flow direction is reversed. In addition, the primary mixing element part 2 and the secondary mixing element part 3 are configured separately, and the mixing element body 1 that is concentrically overlapped is divided into the primary partition wall 7 of the primary mixing chamber group 9 and secondary mixing. The positions of the secondary partition walls 12 of the chamber group 14 can be alternated or matched in the circumferential direction, so that the total number of dispersions can be changed even for the same mixed element body 1. Become.
As described above, the present invention comprises a two-layer structure of the primary mixing element part 2 and the secondary mixing element part 3, and the primary mixing element part 2 forms the primary inlet / outlet 5 in the primary plate part 4, and the primary inlet / outlet is formed. 5 is formed on the boundary surface 4a of the two-layer structure around 5 and primary mixing walls are formed in the primary groove section 6 by radially forming a plurality of primary partition walls 7 and dividing by the primary partition walls 7. A primary mixing chamber group 9 consisting of chambers 8 is provided, and the secondary mixing element portion 3 is formed with an annular secondary groove portion 11 on the two-layer structure boundary surface 10a of the secondary plate portion 10, and is formed in the secondary groove portion 11. Is provided with a secondary mixing chamber group 14 composed of secondary mixing chambers 13 which are formed radially with the same number of secondary dividing walls 12 as the primary dividing walls 7 and divided by the secondary dividing walls 12. The mixing chamber 13 and the primary mixing chamber 8 partially overlap in the diametrical direction, and the primary inlet / outlet 5 is the primary mixing chamber 8 or secondary mixing. Since the other primary mixing chamber 8 or the secondary mixing chamber 13 is opened to the outside and becomes the secondary inlet / outlet 15, even if the fluid flows in the radial or centripetal direction, the primary mixing chamber The number of the primary mixing chamber 8 of the chamber group 9 and the secondary mixing chamber 13 of the secondary mixing chamber group 14 does not change between the inner side and the outer side in the diametrical direction. Since the flow and flow in the same state as when flowing, that is, the dispersion and mixing action with the same number of dispersions can be obtained regardless of the flow direction, the coalescence phenomenon caused by the collective flow that has occurred in conventional mixers can be eliminated. In addition, the fineness of the dispersed particles is not impaired, and also in the entire dispersion region (circumferential direction) from the primary mixing chamber group 9 to the secondary mixing chamber group 14, there are chambers having different dispersion numbers as in a conventional mixer. The number of variances Differences can heterogeneous dispersion mixing prevention by mixing ability is remarkably improved compared with the prior art.
Further, the increase or decrease of the total number of dispersions can be easily dealt with by the increase or decrease of the primary partition wall 7 and the secondary partition wall 12 that divide the primary mixing chamber 8 and the secondary mixing chamber 13, and the mixing element 1 is the conventional one. Thus, a mixed element body 1 having the same outer shape and a different total number of dispersions can be obtained. Thus, the total number of dispersed elements as a static mixer when the mixed element bodies 1 are connected in the flow path structure 19 can be obtained. There is an effect that the degree of freedom of setting increases and the adjustment of the mixing degree according to various fluids can be easily performed.
Next, since the primary mixing chamber group 9 of the primary mixing element unit 2 and the secondary mixing chamber group 14 of the secondary mixing chamber unit 3 are formed in a multiplexed manner, the number of groups of the primary mixing chamber group 9 and the secondary mixing chamber group 14 is increased. In addition, the total number of dispersed particles can be remarkably increased, and the above-mentioned fineness of the dispersed particles and the uniform mixing effect can be maintained without any loss regardless of the number of groups.
Next, since the primary partition wall 7 of the primary mixing element part 2 and the secondary partition wall 12 of the secondary mixing element part 3 are provided with their positions in the circumferential direction matched, Provided is a mixing element body 1 that can be maximized, thereby reducing the pressure loss during flow and increasing the flow velocity and flow rate.
Next, since the primary partition wall 7 of the primary mixing element part 2 and the secondary partition wall 12 of the secondary mixing element part 3 are alternately provided at substantially equal intervals in the circumferential direction, the above-described effect In addition, at the time of each dispersion, the mixing element body 1 having a uniform dispersion mixing action can be provided.
Next, the through-hole 16 is provided in the outer side of either the primary plate part 4 of the primary mixing element part 2 or the secondary plate part 10 of the secondary mixing element part 3, and the primary mixing chamber 8 or the secondary mixing chamber 13 is provided. Since the secondary inlet / outlet 15 is communicated with the through-hole 16 without opening it to the outside, when the secondary inlet / outlet 15 is provided in the primary plate part 4 of the primary mixing element part 2, the flow flows in the inflow direction. When the secondary inlet / outlet 15 is provided in the secondary plate part 10 of the secondary mixing element part 3, the mixing element body 1 can be used by linearly connecting it. The dispersive mixing ability of the element body 1 alone can be remarkably improved.
Further, since a plurality of radial partition walls 17 are formed in the through-hole 16 to form the secondary entrance / exit 15, the fluid is further dispersed and mixed when the fluid flows out according to the numerical aperture of the partition wall 17; Provided is a mixed element body 1 capable of further improving the dispersion capacity based on the total number.
The mixing action of the static mixer according to the present invention consists of complicated behavior of a three-dimensional fluid, so the details of the mechanism are not necessarily clear, but the mixing process is schematically shown in FIG. become.
In the figure, the fluid flowing in from the inlet / outlet 5 of one of the primary mixing element portions collides with the bottom surface 50 of the opposing secondary mixing element portion and changes its direction, and flows radially along the bottom surface 50 as indicated by arrows. The fluid is dispersed by the partition wall 12, is redirected by the outer wall 30, exceeds the step of the outer wall 20 of the primary mixing chamber 8 on the opposite side, and is dispersed by the partition wall 7 and adjacent thereto. The mixed flow is combined with the dispersed flow to be mixed into the mixing chamber 8. Further, the fluid is redirected to the opposing secondary mixing chamber 13 by the outer wall 20 on the outer side of the mixing chamber 8, crosses the step of the outer wall 30, is dispersed by the partition wall 12 and is adjacent. The dispersed flow from the mixing chamber joins and flows into the mixing chamber 13 and is mixed, and thereafter the same mixing process is repeated.
As is apparent from the above, the mixing process of the mixer according to the present invention comprises a mixing chamber group in which the mixing chambers formed on the two-layer boundary surface of the mixing element body are arranged circumferentially with respect to the mixed fluid. Further, these mixing chamber groups are concentrically arranged, and the mixing chamber groups are displaced in the radial direction and the circumferential direction between the pair of mixing element portions, so that each mixing chamber is in the radial direction. Each of the mixing chambers communicates with the two mixing chambers and is subjected to a shearing force by being stepped by the outer wall between the rows of the respective mixing chamber groups, so that the fluid flows in the concentrically arranged mixing chambers in a radial or centripetal manner. During the flow, the process of mixing by receiving dispersion and shearing force is repeated.
In other words, the basic structure of the static mixer is that a group of mixing chambers composed of grooves formed in a pair of mixing elements are arranged circumferentially and annularly concentrically in the centripetal direction, that is, in the radial direction. By arranging the pair of mixing element portions concentrically with each other, the respective mixing chamber groups are overlapped in the radial direction and the positions in the circumferential direction are alternated. The above mixing process is realized by deviating by a predetermined angle and communicating with each other.
The fine dispersion action due to the dispersion and shearing force is made uniform by the mixing effect represented by the large total number of dispersions composed of these mixing chamber groups, so that the droplet diameter is uniform over the entire mixed fluid. Fine dispersed particles are obtained.
Therefore, based on these mixing processes and basic configurations, the grooves constituting the mixing chamber are not limited to the form partitioned by the dividing wall and the outer peripheral wall, and the basic positional relationship of the mixing chambers that brings about the above mixing processes. Similar functions can be achieved by various shapes and structures satisfying the above requirements.
For example, as shown in FIGS. 15 (A) and 15 (B), the planar shape of the groove portion that becomes the mixing chambers 8 and 13 formed on the plate surfaces of the mixing element portions 2 and 3 is elliptical or other rounded. It may be a quadrilateral, its cross-sectional shape may be formed as a concave portion with an R formed at the corner, or its depth varied in the radial direction, and may be independent from each other in structure. In short, as is apparent from the mixing process described above, the mixing chambers / groups (8, 13: 9, 14) are arranged circumferentially and concentrically in an annular fashion, and liquid sequentially passes ( It is only necessary that each mixing chamber communicates with the two mixing chambers on the front and rear sides between the mixing chambers / groups (on the opposite side) and a step for applying a shearing force is formed between them.
In this example, the shearing action of the step between the mixing chamber groups is achieved by the radially outer wall of each mixing chamber.
In the above description, the fluid is alternately routed between the mixing chambers formed by the grooves formed in the two pairs of mixing element plate portions. Even if it is formed in the mixing element portion, it can be carried out in the same manner.
FIG. 16 is a schematic diagram showing a mixing process in the case where a groove serving as a mixing chamber is formed in only one of such mixing element portions. In this case, the mixing chamber 13 is formed in the secondary mixing element portion plate portion. The fluid flowing in from the fluid inlet / outlet 5 provided at the center of the opposing primary mixing element plate is directed radially along the bottom 50 of the mixing chamber as indicated by arrows in the figure, and the dividing wall 12 And mixed with the adjacent dispersed flow beyond the stepped portion 30 of the mixing chamber, and flows into and mixed with the mixing chamber 13. Hereinafter, the mixing process proceeds by repeating this process, and the mixing process is the same as that obtained by concentrically superposing the pair of mixing elements.
In order to form a fluid flow path or mixing chamber between the mixing element portions, a member for closing each mixing chamber and the flow path between them is required, and one of the opposing mixing element portions is relative to the mixing chamber. In other words, it becomes a cup-shaped casing and forms the flow path of the mixed fluid or the wall surface of the mixing chamber. The step portion 30 is formed as a weir-like wall that divides the mixing chamber in the radial direction as in the above example, and a part of the step portion 30 is lowered to communicate with the mixing chamber in the next row so that the ceiling is lowered. A gap may be provided between the casing and the casing side, but it is only necessary to form a step between the mixing chamber groups in the next row. A step is provided between the mixing chamber groups, an inclined surface is provided between the mixing chambers to form a step on the rear side thereof, or the next row is used as a step between the next mixing chamber group. A mixing chamber may be formed.
Examples are shown in FIGS. 17 (A) and 17 (B). In the figure, each mixing chamber of such a step-like mixing chamber group is partitioned by a dividing wall 12, and the mixing chamber 13 is formed between the stepped portion 30 and the mixing element portion 2 serving as the partition wall 12 and the casing. Form. In the static mixer having this structure, the fluid flowing in from the fluid inlet / outlet 5 of the mixing element unit 2 collides with the bottom surface 50 of the opposing mixing element unit 3 and travels radially in the circumferential direction along the bottom surface. It is dispersed by the dividing wall 12 and is given a shearing force by the step 30, merges with the dispersed flow from the adjacent region, and flows into and mixed with the mixing chamber 13 in the next row. Thereafter, the above-described mixing action is achieved by repeating this process.
Such a mixer having a stepped mixing chamber group is more fluid than other examples in which the mixing process proceeds beyond a weir-shaped outer wall between mixing chambers formed in a pair of mixing elements. There is an advantage that resistance is small and flow velocity and flow rate can be increased.
In the example of FIG. 18, a partition 40 having an inclined surface 41 is provided between the mixing chambers in a circumferential shape, and the outer peripheral side becomes a step 30, so that the partition 40 in the next row is between The mixing chamber 13 is configured between the bottom surface of the casing and the casing in contact with the top surface 46 of the partition. The inclined surface 41 changes the direction of the fluid in the tangential direction of the circumference formed by the mixing chamber group with respect to the fluid, collides with the shunt flow from the adjacent mixing chamber, and accelerates the merged fluid to the mixing chamber in the next row. Has the effect of flowing in. As a result, the mixed fluid becomes a finely dispersed mixed fluid by the two-liquid collision action and the wall collision action by merging and accelerating and being directed to the bottom surface and the wall surface 41. In the case of a liquid-liquid mixed fluid Can form fine emulsions.
In addition, when forming the mixing chamber as a step between the mixing chamber groups as they are, the mixing chamber groups are stepped for each row by these steps, but between adjacent mixing chambers, The fluid flowing into the next row is divided into two parts as a partition body 40 that is divided by the partition wall 12 or is divided into flat surfaces by dividing the next row of mixing chambers by a step.
Further, FIG. 19 shows another embodiment of the present invention. The basic configuration is the same as the embodiment shown in FIG. 18, but the bottom surfaces forming the stepped steps between the mixing chambers are extended as they are and divided as the division body 40. This corresponds to a structure in which the inclined surface 41 of the partition body 40 in the embodiment of FIG. 17 is gently inclined to form a water surface on the structure and integrated with a continuous stepped bottom surface. As a result, as shown in the figure, each bottom surface 50 has a shape arranged in a stepped manner as a collision surface.
The behavior of the fluid is basically the same as that of the embodiment of FIG. 18 described above, and the fluid press-fitted from the fluid inlet / outlet 5 of the mixing element body 2 is changed in the direction perpendicularly by the collision surface 50 and is changed in the radial direction. Opposite, it is dispersed by the division body 40 and can be changed in the circumferential direction, and the fluid after merging is accelerated and collides against the bottom surface 50 of the next-stage division body 40.
The bottom surface of the divided body 40 divides the mixed fluid into the next row of mixing chambers and divides the mixed fluid finely by a so-called wall collision action. On the other hand, it is subjected to the dispersive action of the so-called two-liquid collision system, which is directed in the tangential direction and adjoins, repeats the process of joining and accelerating and being guided to the mixing chamber in the next row, thus exhibiting an effective dispersive action. be able to.
According to these embodiments, the structure of each mixing element portion is further simplified and easy to manufacture, and can have higher rigidity in terms of strength. In addition, even the advantages of the above-described cleaning treatment can exhibit a more excellent effect.
FIG. 20 shows still another embodiment of the present invention, but since the structure of the mixing element portion 2 is basically the same, only the mixing element portion 3 is shown. In this example, the number of division bodies 40 arranged in the circumferential direction is reduced to 6 from the above embodiment, and the extension of the outer periphery of the collision surface 50 is a division wall 12. The aim is to achieve a more effective gas / liquid and liquid / liquid dispersion action by quickly guiding the fluid to the next-stage mixing chamber, reducing the flow resistance, and increasing the flow rate / flow velocity. The number of such partition walls and channel divisions can be changed as appropriate depending on the type of fluid to be mixed and the properties such as viscosity. It can be provided as appropriate using the arrangement or structure or as a modification thereof.
A specific example representing the characteristics of the present invention has been given above, or the shape and structure of the mixing chamber that disperses the mixed fluid and gives a shearing force in the flow path formed between the mixing element portions 2 and 3. Can be changed in various ways depending on the basic structure clarified in the mixing process, and by changing the shape, positional relationship, or number thereof, the properties and applications of the mixed fluid, or the target gas / liquid, liquid / liquid It is possible to cope with the drop diameter of the dispersed particles.
For example, the shearing force applied to the fluid between the mixing chambers is adjusted not only by the size of the weir-shaped step, but also by the slope of the partition, the size of the stepped step, or the planar shape of the partition, Moreover, it can also adjust by changing the shape and structure of the flow path between these space | intervals and the mixing element parts 2 and 3. FIG.
Further, although not mentioned in the above description, the other mixing element portion 2 forming the flow path also has a collision action with the fluid as in the case of the conventional wall surface collision system, and these actions are performed. The shape and structure is not a simple cup shape, if necessary, for example, to adjust the flow velocity and flow rate according to the properties of the fluid, so that it can be used effectively, or as a collision wall with the mixing element part 3, The structure and shape can be modified so that the flow path is enlarged and converged.
As described above, the shape, structure, number, and the like of each constituent element described in the claims of the present invention can be changed depending on the properties of the fluid to be treated, the purpose and application of the mixing, and the like. Obviously, the invention is not limited to the form of examples.
Industrial applicability
The static mixer according to the present invention has a simple structure composed of the shape and structure of the mixing chamber (group), which is a flow path formed from the mixing element portions 2 and 3, and the mutual positional relationship. It can be easily handled by changing the shape and structure of these structural elements in response to various conditions such as the properties and applications of the fluid or the required droplet size of the emulsion, and storing these data Thus, more appropriate conditions can be set.
The mixer of the present invention is also characterized in that there is no restriction in size in principle and structure, and it can be expanded to an industrial scale and production volume by scaling up, while its simple structure is advantageous in downsizing. Not only is it possible to reduce the size of the structure, but also when the fluid is emulsified and mixed, the simple structure is less affected by fluid flow resistance, viscous resistance, turbulence, etc. Or the microminiature device operates as effectively as the large size device.
In addition, the mixer of the present invention has a low pressure loss, so that the flow rate is large and efficient. In addition, since the mixer operates effectively at a low pressure, the load on the pump can be reduced. Higher and finer emulsions can be carried out under practical pressure conditions.
As for the target mixed fluid, the above explanation is mainly made in the case of two-liquid mixing. However, the same effect is obtained also in the case of gas-liquid mixing, liquid-solid mixing, and kneading for high viscosity fluid. As a result, the gas-liquid mixture is suitable for miniaturization and ultra-miniaturization as described above. Since the resistance is small, it can be applied to a kneading process that has been difficult in the past, and the above-described simple structure and excellent cleaning properties are indispensable characteristics for food and chemical applications. Application to the industrial field can contribute to the development of industry widely.

Claims (12)

一次混合要素部と二次混合要素部との二層構造体から成り、その一方の板部に一次出入口を形成し、該一次出入口の周りの二層構造境界面において、これに連通する混合室を円周状に配列して形成すると共に、これら円周状の混合室群を同心的に配列し、これら混合室群の半径方向の位置関係にある各混合室の間でせん断力を与える段差を介して夫々二つの混合室が相互に連通するよう構成して成ることを特徴とする静止型混合器の混合要素体。A mixing chamber composed of a two-layer structure of a primary mixing element portion and a secondary mixing element portion, forming a primary inlet / outlet in one plate portion thereof, and communicating with this at a boundary surface of the two-layer structure around the primary inlet / outlet Are arranged in a circumferential manner, and the circumferential mixing chamber groups are concentrically arranged to provide a shearing force between the mixing chambers in the radial positional relationship of the mixing chamber groups. A mixing element of a static mixer, wherein the two mixing chambers are configured to communicate with each other via each other. 一次混合要素部と二次混合用素部との二層構造体から成り、一次混合要素部は、一次板部に一次出入口を形成し、一次出入口の周りの二層構造境界面には環状の一次溝部を形成し、一次溝部内には一次区割壁を放射状に複数形成し、一次区割壁で区割した一次混合室からなる一次混合室群を設け、また二次混合要素部は、二次板部の二層構造境界面に環状の二次溝部を形成し、二次溝部内には一次区割壁と同数の二次区割壁を放射状に形成し、二次区割壁で区割した二次混合室からなる二次混合室群を設け、また二次混合室と一次混合室とは、直径方向で一部分がオーバーラップし、また一次出入口は、一次混合室若しくは二次混合室の何れか一方と連通し、他の一次混合室若しくは二次混合室は外部に開放して二次出入口となしたことを特徴とする静止型混合器の混合要素体。It consists of a two-layer structure of a primary mixing element part and a secondary mixing element part. A primary groove portion is formed, a plurality of primary partition walls are radially formed in the primary groove portion, a primary mixing chamber group consisting of primary mixing chambers divided by the primary partition wall is provided, and the secondary mixing element portion is An annular secondary groove is formed at the boundary of the two-layer structure of the secondary plate part, and the same number of secondary partition walls as the primary partition wall are formed radially in the secondary groove part. A secondary mixing chamber group consisting of divided secondary mixing chambers is provided, and the secondary mixing chamber and the primary mixing chamber partially overlap in the diameter direction, and the primary inlet / outlet is the primary mixing chamber or the secondary mixing chamber. It communicates with either one of the chambers, and the other primary mixing chamber or secondary mixing chamber is open to the outside and serves as a secondary entrance. Mixing elements of the static mixer to. 一次混合要素部の一次混合室群と、二次混合要素部の二次混合室群を同心的にそれぞれ複数形成したことを特徴とする請求の範囲第2項記載の静止型混合器の混合要素体。3. The mixing element of the static mixer according to claim 2, wherein a plurality of primary mixing chamber groups of the primary mixing element section and a plurality of secondary mixing chamber groups of the secondary mixing element section are formed concentrically. body. 一次混合要素部の一次区割壁と、二次混合要素部の二次区割壁は、周方向での位置を一致させて設けたことを特徴とする請求の範囲第2又は3項記載の静止型混合器の混合要素体。The primary partitioning wall of the primary mixing element part and the secondary partitioning wall of the secondary mixing element part are provided with their positions in the circumferential direction matched to each other. Mixing element of static mixer. 一次混合要素部の一次区割壁と、二次混合要素部の二次区割壁は周方向での位置を概ね等間隔で交互に設けたことを特徴とする請求の範囲第2、3又は4項記載の静止型混合器の混合要素体。The primary partition wall of the primary mixing element part and the secondary partition wall of the secondary mixing element part are provided with positions in the circumferential direction alternately at substantially equal intervals. The mixing element of the static mixer according to claim 4. 一次混合要素部の一次板部若しくは二次混合要素部の二次板部の何れか外周側に貫通口を周設し、一次混合室若しくは二次混合室を外部に開放させずに貫通口と連通させて二次出入口と成したことを特徴とする請求の範囲第2、3、4、又は5項記載の静止型混合器の混合要素体。A through-hole is provided on the outer peripheral side of either the primary plate part of the primary mixing element part or the secondary plate part of the secondary mixing element part, and the primary mixing chamber or the secondary mixing chamber is not opened to the outside. 6. The mixing element of a static mixer according to claim 2, 3, 4 or 5, wherein the mixing element is a secondary inlet / outlet. 請求項5記載の混合要素体において、貫通口に放射状の仕切壁を複数形成して二次出入り口と成したことを特徴とする請求の範囲第6項記載の静止型混合器の混合要素体。6. The mixing element body according to claim 6, wherein a plurality of radial partition walls are formed at the through-holes to form secondary entrances. 上記一次混合要素部と二次混合要素部に形成した各混合室が、両方の板部の二層構造境界面においておのおの独立した凹部として形成されてなることを特徴とする請求の範囲第2項記載の静止型混合器の混合要素体。The mixing chambers formed in the primary mixing element part and the secondary mixing element part are formed as independent recesses on the boundary surface of the two layers of both plate parts, respectively. A mixing element of the described static mixer. 一次混合要素部と二次混合要素部との二層構造体から成り、その一方の一次要素部板部に一次出入口を形成すると共に他方の二次混合要素部に対してその相対する面において流路を形成するカップ状のケーシングとし、二次要素部の該一次出入口に相対する衝突面の周りにおいて、これに連通する混合室を円周状に配列して形成すると共に、これら円周状の混合室群を同心的に配列し、これら混合室群の半径方向の位置関係にある各混合室の間でせん断力を与える段差を介して夫々二つの混合室が相互に連通するよう構成して成ることを特徴とする静止型混合器の混合要素体。It consists of a two-layer structure of a primary mixing element part and a secondary mixing element part, and forms a primary inlet / outlet in one primary element part plate part and flows on the opposite surface with respect to the other secondary mixing element part. A cup-shaped casing that forms a path is formed around the collision surface facing the primary entrance of the secondary element portion, and the mixing chambers communicating therewith are arranged in a circumferential manner. The mixing chamber groups are arranged concentrically, and the two mixing chambers are configured to communicate with each other through a step that applies a shearing force between the mixing chambers in the radial positional relationship of the mixing chamber groups. A mixing element body of a static mixer characterized by comprising: 上記各混合室を区割壁で仕切ると共に円周状に形成された各列の混合室群を階段状として上記段差で形成し、該区割壁と段差及びカップ状の一次混合要素部との間で混合室を形成してなることを特徴とする請求項9記載の静止型混合器。Each of the mixing chambers is partitioned by a dividing wall, and each row of the mixing chambers formed in a circumferential shape is formed in a stepped shape with the step, and the dividing wall and the step and the cup-shaped primary mixing element portion 10. The static mixer according to claim 9, wherein a mixing chamber is formed therebetween. 上記混合室の間を傾斜面とすることによりその傾斜外周側に上記段差を形成し、該段差と次列混合室間の傾斜面及びカップ状の一次混合要素部との間で混合室を形成してなることを特徴とする請求項9記載の静止型混合器。By forming an inclined surface between the mixing chambers, the step is formed on the inclined outer peripheral side, and a mixing chamber is formed between the step and the inclined surface between the next row mixing chamber and the cup-shaped primary mixing element portion. 10. The static mixer according to claim 9, wherein 上記円周状に形成された各列の混合室群を階段状として、上記段差を形成すると共に、各混合室間を前列の混合室の延長部により仕切り、該段差、該前列延長部側壁及びカップ状の一次混合要素部との間で混合室を形成してなることを特徴とする請求項9記載の静止型混合器。The circumferentially formed mixing chambers in each row are stepped to form the step, and the mixing chambers are partitioned by the extension of the mixing chamber in the front row, the step, the front row extension side wall, and The static mixer according to claim 9, wherein a mixing chamber is formed between the cup-shaped primary mixing element portion.
JP2000578101A 1999-09-07 1999-09-07 Mixing element of static mixer Expired - Fee Related JP3609344B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/004851 WO2000024502A1 (en) 1998-10-26 1999-09-07 Mixing element body for stationary type mixer

Publications (1)

Publication Number Publication Date
JP3609344B2 true JP3609344B2 (en) 2005-01-12

Family

ID=34090573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000578101A Expired - Fee Related JP3609344B2 (en) 1999-09-07 1999-09-07 Mixing element of static mixer

Country Status (1)

Country Link
JP (1) JP3609344B2 (en)

Similar Documents

Publication Publication Date Title
WO2000024502A1 (en) Mixing element body for stationary type mixer
US4869849A (en) Fluid mixing apparatus
JP4339163B2 (en) Microdevice and fluid merging method
EP0824368B1 (en) Static fluid flow mixing apparatus
US4514095A (en) Motionless mixer
US4053142A (en) Nonmechanical shearing mixer
US20040125689A1 (en) Method and statistical micromixer for mixing at least two liquids
US6161584A (en) High energy loss fluid control device
US6905595B2 (en) Scalable liquid distribution system for large scale chromatography columns
JP6229185B2 (en) Mixing element, apparatus using the same, fluid mixing method and fluid
JPH0833836A (en) Method and device for mixing gas
JPH0261294B2 (en)
JP3706872B2 (en) Static fluid mixing device
JP3609344B2 (en) Mixing element of static mixer
JPS5939173B2 (en) fluid mixing device
JPWO2018128114A1 (en) Dispersing device, defoaming device
JP6046465B2 (en) Static fluid mixing device
JPS6055173B2 (en) fluid mixing device
JP3149372B2 (en) Multi-point collision type atomizer
EP3798485A1 (en) Flow control device
JPH0952034A (en) Static type mixer
RU2124935C1 (en) Rotor-pulsation apparatus
CN213286386U (en) Mixing device
RU222860U1 (en) MIXER
CN220573411U (en) Inlet diffuser and fixed bed reactor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041013

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees