JP3607610B2 - High melting point metal melting equipment - Google Patents

High melting point metal melting equipment Download PDF

Info

Publication number
JP3607610B2
JP3607610B2 JP2000401756A JP2000401756A JP3607610B2 JP 3607610 B2 JP3607610 B2 JP 3607610B2 JP 2000401756 A JP2000401756 A JP 2000401756A JP 2000401756 A JP2000401756 A JP 2000401756A JP 3607610 B2 JP3607610 B2 JP 3607610B2
Authority
JP
Japan
Prior art keywords
melting
mold
cooling water
cooling
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000401756A
Other languages
Japanese (ja)
Other versions
JP2002206869A (en
Inventor
智 菅原
健 新良貴
就平 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP2000401756A priority Critical patent/JP3607610B2/en
Publication of JP2002206869A publication Critical patent/JP2002206869A/en
Application granted granted Critical
Publication of JP3607610B2 publication Critical patent/JP3607610B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Furnace Details (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、一般には、高融点金属を真空アーク溶解炉(VAR溶解炉)、電子ビーム溶解炉(EB溶解炉)、プラズマアーク溶解炉(PB溶解炉)などを用いて溶解するチタン或いはチタン合金などの高融点金属の溶解装置に関し、特に、溶解炉内に設置される溶解鋳型の冷却技術に特徴を有する。
【0002】
【従来の技術】
従来、高融点金属の溶解は、特に、極めて活性なTi、Nb、Taなどの高融点金属の溶解は、溶解雰囲気を真空にできるVAR溶解炉やEB溶解炉を用いて行なわれている。図1にチタンインゴットを製造するための自己消耗形VAR溶解炉100の概略構成を示す。
【0003】
VAR溶解炉100内には、チタンインゴットを製造するための溶解鋳型1が配置され、VAR炉100内は、0.01Torr程度の真空に保持される。溶解鋳型1は、所定形状の、例えば、円筒状の本体2と、本体2の下端開口部を閉鎖するための底板3とにて構成された銅製のルツボとされる。
【0004】
溶解鋳型である銅ルツボ1内には、スポンジチタンをブリケットにしてこれらの複数のブリケットを溶接接合して一体化させた円柱状又は角柱状の塊とされる一次電極4が配置される。この一次電極4と、対極としての溶融Tiプール5との間にアークを発生させ、その熱で一次電極を構成するチタンブリケット4が溶解される。
【0005】
一方、銅ルツボ1は、冷却水10が充満した、底壁12及び周壁13にて構成される水冷容器11に浸漬されており、水冷容器11と銅ルツボ1との空間部に冷却水10を満たすことで、溶解したチタンブリケットを銅ルツボ1内に冷却固化させ、チタンインゴットが製造される。
【0006】
このようにして得られたチタンインゴット、即ち、一次インゴットは、純度を更に向上させるべく、再度、電極として使用して、上述と同様の手順にて再溶解され、チタンインゴットが製造される。
【0007】
【発明が解決しようとする課題】
しかしながら、スポンジチタンブリケットを溶接接合して成型した一次電極4を溶解して得られた一次インゴットは、一次電極に比べて緻密になるため一次電極に比べて全長が短くなる。そのために、二次溶解に使用される溶解鋳型、即ち、銅ルツボ1は小型のものが使用される。従って、もし、一次溶解の時に使用した水冷容器11を二次溶解の時に使用すると、図2に示すように、溶解鋳型1の底部(底板)3と、水冷容器11の底壁12との隔たり(L)が大きくなり、それによって冷却水10の流れの中に淀みRが発生し易くなる。特に、溶解鋳型底部3の下方領域での冷却水10の流れに淀みRが生じると、溶解鋳型底部3の冷却効果が低下する。
【0008】
このような問題を解決するために、二次溶解時には溶解鋳型1を小型のものに変更したことに対応して、水冷容器11をもより小型のものに変更することが考えられるが、大型のインゴットを溶解する場合には、水冷容器11が地上に据え付けられているため、インゴットの長さに応じて水冷容器11を変更することは困難であり、現実的ではない。
【0009】
しかしながら、上述のように、溶解鋳型(銅ルツボ)1の底部3に冷却水10の淀みRが発生した状態を放置すると溶解鋳型1の熱変形や溶損といった事態を招く恐れがある。
【0010】
又、溶解鋳型底部3の変形が進むと鋳型側壁2との結合組み立てが困難となり溶解鋳型1としての機能を維持できなくなる。このため、変形がひどい溶解鋳型に対しては、切削、鍛造等の手段により元の形状に修復することが必要となる。この修復作業には時間とコストが要求される。
【0011】
従って、本発明の目的は、溶解鋳型の変形或いは溶損等の問題を引き起こすことがなく、溶解鋳型の冷却を効率良く行わせることのできる高融点金属溶解装置を提供することである。
【0012】
本発明の他の目的は、鋳型修復の頻度が少なく、その結果として鋳型修理のためのコスト低減を可能とする高融点金属溶解装置を提供することである。
【0013】
【課題を解決するための手段】
上記諸目的は、本発明に係る高融点金属溶解装置にて達成される。要約すれば、本発明によれば、溶解鋳型と、冷却水導入口及び冷却水排水口を備えた水冷容器とを有し、冷却水導入口が前記水冷容器の底壁に形成された高融点金属の溶解装置において、前記溶解鋳型底部と前記冷却水導入口との間に、前記冷却水導入口より導入された冷却水を前記溶解鋳型底部へと案内するガイド筒を配置することを特徴とする高融点金属溶解装置である。
【0014】
本発明の一実施態様によれば、前記ガイド筒は、高さが調整自在とされる。
【0015】
本発明の他の実施態様によれば、前記ガイド筒は、出口が複数に分割されている。
【0016】
本発明の他の実施態様によれば、前記溶解鋳型底部の直径(D)に対する前記溶解鋳型底部から前記ガイド筒上端までの距離(M)の比(M/D)が0.1〜1.0である。
【0017】
【発明の実施の形態】
以下、本発明に係る高融点金属溶解装置を図面に即して更に詳しく説明する。本発明は、高融点金属を真空アーク溶解炉(VAR溶解炉)、電子ビーム溶解炉(EB溶解炉)、プラズマアーク溶解炉(PB溶解炉)などを用いて溶解する高融点金属溶解装置に適用し得るが、以下の実施例では、自己消耗形VAR溶解炉を使用してチタンインゴットを溶解して製造する溶解装置について説明する。
【0018】
図3に本発明に従ったチタンインゴットを製造する高融点金属溶解装置の一実施例を示す。本実施例において、溶解装置を構成する溶解鋳型1及び水冷容器11は、図1に関連して説明した従来装置と同様に、0.01Torr程度の真空に保持されたVAR溶解炉(図示せず)内に配置される。
【0019】
先ず、図1に示す高融点金属溶解装置にて一次溶解を行った。
【0020】
溶解鋳型1は、所定形状の、例えば、円筒状の本体2と、本体2の下端開口部を閉鎖するための底板3とにて構成された銅製のルツボとされ、冷却水10の充満した水冷容器11に浸漬されている。水冷容器11は、底壁中央部に冷却水導入口14を有し、周壁13の上方端部に隣接して複数の冷却水排水口15を有している。
【0021】
溶解鋳型である銅ルツボ1内には、スポンジチタンをブリケットにしてこれらの複数のブリケットを溶接接合して一体化させた円柱状の塊とされる一次電極4が配置される。この一次電極4と、対極としての溶融Tiプール5との間にアークを発生させ、その熱で一次電極4を構成するチタンブリケットが溶解される。この溶解した溶融Tiプール5は、水冷容器11と銅ルツボ1との空間部に冷却水10を流すことで、銅ルツボ1内に冷却固化し、一次チタンインゴットとなる。冷却水10は、水冷容器11の冷却水導入口14より所定の流量、例えば3〜5m/分、及び流速、例えば1〜100cm/秒にて水冷容器11内に供給し、銅ルツボ1の周りを流動して上昇し、水冷容器11の上部の冷却水排水口15より流出する。
【0022】
このようにして得られた一次インゴットは、二次電極として使用して、図3に示す高融点金属溶解装置にて二次溶解を行った。
【0023】
二次溶解では、小型の溶解鋳型が使用されるので、溶解鋳型底部3と水冷容器底壁12との間に、冷却水導入口14より導入される冷却水10を溶解鋳型底部3へと案内するために水冷容器11の内径よりも径の小さいガイド筒20が配置される。
【0024】
即ち、本実施例では、水冷容器11の底壁12に冷却水導入口14と整列して水冷容器11の内径より小さい径を有したガイド筒20を設置し、ガイド筒20の冷却水出口21を溶解鋳型11の底部3に隣接して位置するようにする。このような構成を採ることで、溶解鋳型底部3の下方における冷却水10の淀みを解消することができる。
【0025】
そこで、溶解鋳型底部の直径(D)に対する前記溶解鋳型底部から前記ガイド筒上端までの距離(M)の比(M/D)と、鋳型底の修理までの溶解回数との関係を調べた。表1は、この時の試験結果を示す。溶解鋳型底部の直径(D)に対する前記溶解鋳型底部から前記ガイド筒上端までの距離(M)の比(M/D)が、1.2から減少するに伴い、溶解回数は、増加する傾向を示す。
【0026】
次いで、溶解鋳型1の底部3の直径(D)に対するガイド筒20の出口21の内径(d)の比(d/D)と、鋳型底の修理までの溶解回数との関係を調べた。表2はこのときの試験結果を示す。この試験では、溶解鋳型1の直径(D)は130cmとし、ガイド筒20の出口21の内径(d)を種々に変更した。
【0027】
溶解鋳型1の底部3から水冷容器11の底壁12までの距離(L)の溶解鋳型1の外径(D)に対する比(L/D)が0.8、また外径(D)に対するガイド筒20の先端21から溶解鋳型底部3までの距離(M)の比(M/D)が0.3の場合に、溶解鋳型1の外径(D)に対するガイド筒20の出口内径(d)の比を変更した時に、修理に出すまでの溶解した回数を調査した。
【0028】
【表1】

Figure 0003607610
【0029】
【表2】
Figure 0003607610
【0030】
表2から理解されるように、ガイド筒を配置した場合、配置しないときに比べ、修理までの溶解回数が増え、鋳型の寿命が長くなった。また、溶解鋳型底部径(D)に対するガイド筒出口内径(d)の比(d/D)は、0.1〜1.0の範囲が好ましい。前記比(d/D)が0.1未満となると冷却水の圧力損失が大きくなり、鋳型底の冷却に十分な冷却水を流すことが難しい。一方、比(d/D)が1.0を超えると、鋳型底壁に当たる冷却水の流速が低下して冷却効率が低下し、鋳型底変形を防止する上で好ましくない。
【0031】
更に、溶解鋳型1の底部3の直径(D)に対するガイド筒20の先端21から溶解鋳型底部3までの距離(M)の比(M/D)は、M/Dが0.1〜1.0、好ましくは0.3〜0.5の範囲とされる。
【0032】
ガイド筒20は、溶解鋳型1を変更する際に、その高さ(h)が異なるものを設置することもできるが、図4に示すように、ガイド筒20を1段式、或いは、複数段に分割した入れ子式のガイド筒とすることができる。本実施例では1段式とされる2個の入れ子式のガイド筒20A、20Bにて構成した。
【0033】
又、ガイド筒20の断面は、出口が一つの単一管のみならず、内部が複数に仕切られ、複数の出口を設けた構成とすることもできる。このような構成とすることで溶解鋳型底面に均一に冷却水を供給できる。
【0034】
又、ガイド筒を配置することにより溶解鋳型1の寿命が格段に延びることも確認された。これは、溶解鋳型底部3の下方領域に冷却水10の淀みRが発生することのないように冷却水を流動させたことにより改善されたためである。このことから、溶解鋳型1の底部3のインゴット側の温度は200〜300℃以下に保持されているものと推定される。
【0035】
つまり、実施例に記載するガイド筒を配置した構成の高融点金属溶解装置を使用し、冷却水を、溶解鋳型底部3に滞留しないように供給して溶解鋳型底部3の温度を200〜300℃に保持することにより、溶解鋳型1の変形或いは溶損等の問題を引き起こすことなく、鋳型修復の頻度を少なくして、極めて好適に高融点金属を溶解製造することができる。
【0036】
【発明の効果】
以上説明したように本発明は、溶解鋳型と、冷却水導入口及び冷却水排水口を備えた水冷容器とを有し、冷却水導入口が水冷容器の底壁に形成された高融点金属の溶解装置において、溶解鋳型底部と冷却水導入口との間に、冷却水導入口より導入された冷却水を溶解鋳型底部へと案内するガイド筒を配置する構成とされるので、冷却水の鋳型底部での淀みが解消され、結果として溶解中の溶解鋳型底部の温度を200〜300℃に保持することができ、
(1)溶解鋳型の変形或いは溶損等の問題を引き起こすことがなく、溶解鋳型の冷却を効率良く行わせることができる。
(2)鋳型修復の頻度が少なく、その結果として鋳型修理のためのコスト低減を可能とする。
という効果を奏し得る。
【図面の簡単な説明】
【図1】従来の高融点金属溶解装置の断面図である。
【図2】従来の高融点金属溶解装置の断面図である。
【図3】本発明に係る高融点金属溶解装置の一実施例の断面図である。
【図4】本発明に係る高融点金属溶解装置の他の実施例の断面図である。
【符号の説明】
1 溶解鋳型(銅ルツボ)
2 溶解鋳型本体
3 溶解鋳型底部(底板)
4 チタンブリケット(電極)
5 冷却水
11 水冷容器
12 水冷容器底壁
13 水冷容器周壁
14 冷却水導入口
15 冷却水排水口
20 ガイド筒[0001]
BACKGROUND OF THE INVENTION
The present invention generally includes titanium or a titanium alloy that melts a high melting point metal using a vacuum arc melting furnace (VAR melting furnace), an electron beam melting furnace (EB melting furnace), a plasma arc melting furnace (PB melting furnace), or the like. In particular, the present invention is characterized by a cooling technique for a melting mold installed in a melting furnace.
[0002]
[Prior art]
Conventionally, melting of refractory metals has been performed using a VAR melting furnace or an EB melting furnace in which the melting atmosphere can be evacuated, in particular, melting of extremely refractory metals such as Ti, Nb, and Ta. FIG. 1 shows a schematic configuration of a self-consumable VAR melting furnace 100 for producing a titanium ingot.
[0003]
A melting mold 1 for producing a titanium ingot is disposed in the VAR melting furnace 100, and the VAR furnace 100 is maintained at a vacuum of about 0.01 Torr. The melting mold 1 is a crucible made of copper having a predetermined shape, for example, a cylindrical main body 2 and a bottom plate 3 for closing the lower end opening of the main body 2.
[0004]
In a copper crucible 1 serving as a melting mold, a primary electrode 4 that is a cylindrical or prismatic lump formed by integrating a plurality of briquettes by using sponge titanium as a briquette is disposed. An arc is generated between the primary electrode 4 and the molten Ti pool 5 as a counter electrode, and the titanium briquette 4 constituting the primary electrode is melted by the heat.
[0005]
On the other hand, the copper crucible 1 is immersed in a water cooling container 11 composed of a bottom wall 12 and a peripheral wall 13 filled with cooling water 10, and the cooling water 10 is poured into the space between the water cooling container 11 and the copper crucible 1. By filling, the melted titanium briquette is cooled and solidified in the copper crucible 1 to produce a titanium ingot.
[0006]
The titanium ingot thus obtained, i.e., the primary ingot, is used again as an electrode and re-dissolved in the same procedure as described above to further improve the purity, whereby a titanium ingot is produced.
[0007]
[Problems to be solved by the invention]
However, since the primary ingot obtained by melting the primary electrode 4 formed by welding and bonding sponge titanium briquettes is denser than the primary electrode, the total length is shorter than that of the primary electrode. Therefore, a small melting mold is used as the melting mold used for secondary melting, that is, the copper crucible 1. Therefore, if the water-cooled container 11 used at the time of the primary melting is used at the time of the secondary melting, as shown in FIG. 2, the distance between the bottom (bottom plate) 3 of the melting mold 1 and the bottom wall 12 of the water-cooled container 11 is separated. (L) becomes large, and accordingly, stagnation R is easily generated in the flow of the cooling water 10. In particular, when the stagnation R occurs in the flow of the cooling water 10 in the lower region of the melting mold bottom 3, the cooling effect of the melting mold bottom 3 is reduced.
[0008]
In order to solve such a problem, it is conceivable to change the water-cooled container 11 to a smaller one in response to changing the dissolution mold 1 to a smaller one at the time of secondary melting. When the ingot is melted, the water cooling container 11 is installed on the ground. Therefore, it is difficult to change the water cooling container 11 according to the length of the ingot, which is not realistic.
[0009]
However, as described above, if the state in which the stagnation R of the cooling water 10 is generated at the bottom 3 of the melting mold (copper crucible) 1 is left as it is, there is a possibility that the melting mold 1 may be thermally deformed or melted.
[0010]
Further, when the melting mold bottom 3 is deformed, it is difficult to assemble with the mold side wall 2 and the function as the melting mold 1 cannot be maintained. For this reason, it is necessary to restore the original shape by means of cutting, forging or the like for a melted mold that is severely deformed. This repair work requires time and cost.
[0011]
Accordingly, an object of the present invention is to provide a refractory metal melting apparatus capable of efficiently cooling a melting mold without causing problems such as deformation or melting of the melting mold.
[0012]
Another object of the present invention is to provide a refractory metal melting apparatus that can reduce the cost of mold repair as a result of less frequent mold repair.
[0013]
[Means for Solving the Problems]
The above-mentioned objects are achieved by the refractory metal melting apparatus according to the present invention. In summary, according to the present invention, a melting mold, a water cooling vessel provided with a cooling water inlet and a cooling water drain, a high melting point formed on the bottom wall of the water cooling vessel. In the metal melting apparatus, a guide cylinder for guiding the cooling water introduced from the cooling water inlet to the melting mold bottom is disposed between the melting mold bottom and the cooling water inlet. This is a high melting point metal melting apparatus.
[0014]
According to one embodiment of the present invention, the guide cylinder is adjustable in height.
[0015]
According to another embodiment of the present invention, the guide tube has an outlet divided into a plurality.
[0016]
According to another embodiment of the present invention, the ratio (M / D) of the distance (M) from the bottom of the melting mold to the top of the guide tube with respect to the diameter (D) of the bottom of the melting mold is 0.1 to 1. 0.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the refractory metal melting apparatus according to the present invention will be described in more detail with reference to the drawings. The present invention is applied to a high melting point metal melting apparatus that melts a high melting point metal using a vacuum arc melting furnace (VAR melting furnace), an electron beam melting furnace (EB melting furnace), a plasma arc melting furnace (PB melting furnace), or the like. However, in the following examples, a melting apparatus for melting and manufacturing a titanium ingot using a self-consumable VAR melting furnace will be described.
[0018]
FIG. 3 shows an embodiment of a refractory metal melting apparatus for producing a titanium ingot according to the present invention. In this embodiment, the melting mold 1 and the water-cooled vessel 11 constituting the melting apparatus are a VAR melting furnace (not shown) maintained at a vacuum of about 0.01 Torr, as in the conventional apparatus described with reference to FIG. ).
[0019]
First, primary melting was performed using a refractory metal melting apparatus shown in FIG.
[0020]
The melting mold 1 is a crucible made of copper having a predetermined shape, for example, a cylindrical main body 2 and a bottom plate 3 for closing the lower end opening of the main body 2, and is water-cooled filled with cooling water 10. It is immersed in the container 11. The water cooling container 11 has a cooling water inlet 14 at the center of the bottom wall, and has a plurality of cooling water drains 15 adjacent to the upper end of the peripheral wall 13.
[0021]
In a copper crucible 1 serving as a melting mold, a primary electrode 4 that is a cylindrical lump formed by integrating sponge titanium as a briquette and welding and joining the plurality of briquettes is disposed. An arc is generated between the primary electrode 4 and the molten Ti pool 5 as a counter electrode, and the titanium briquettes constituting the primary electrode 4 are melted by the heat. The melted Ti pool 5 is cooled and solidified in the copper crucible 1 by flowing the cooling water 10 through the space between the water-cooled vessel 11 and the copper crucible 1 and becomes a primary titanium ingot. The cooling water 10 is supplied from the cooling water inlet 14 of the water cooling vessel 11 into the water cooling vessel 11 at a predetermined flow rate, for example, 3 to 5 m 3 / min, and a flow rate, for example, 1 to 100 cm / sec. The water flows around and rises, and flows out from the cooling water drain 15 at the top of the water-cooled vessel 11.
[0022]
The primary ingot thus obtained was used as a secondary electrode and subjected to secondary melting with a refractory metal melting apparatus shown in FIG.
[0023]
In the secondary melting, since a small melting mold is used, the cooling water 10 introduced from the cooling water inlet 14 is guided to the melting mold bottom 3 between the melting mold bottom 3 and the water cooling vessel bottom wall 12. For this purpose, a guide cylinder 20 having a diameter smaller than the inner diameter of the water-cooled container 11 is arranged.
[0024]
That is, in this embodiment, a guide tube 20 having a diameter smaller than the inner diameter of the water cooling vessel 11 is provided on the bottom wall 12 of the water cooling vessel 11 so as to be aligned with the cooling water introduction port 14. Is positioned adjacent to the bottom 3 of the dissolution mold 11. By adopting such a configuration, it is possible to eliminate the stagnation of the cooling water 10 below the dissolution mold bottom 3.
[0025]
Therefore, the relationship between the ratio (M / D) of the distance (M) from the bottom of the melting mold to the upper end of the guide cylinder with respect to the diameter (D) of the bottom of the casting mold and the number of times of melting until the mold bottom was repaired was examined. Table 1 shows the test results at this time. As the ratio (M / D) of the distance (M) from the bottom of the melting mold to the upper end of the guide cylinder with respect to the diameter (D) of the bottom of the melting mold decreases from 1.2, the number of times of dissolution tends to increase. Show.
[0026]
Next, the relationship between the ratio (d / D) of the inner diameter (d) of the outlet 21 of the guide cylinder 20 to the diameter (D) of the bottom 3 of the melting mold 1 and the number of times of melting until the mold bottom was repaired was examined. Table 2 shows the test results at this time. In this test, the diameter (D) of the melting mold 1 was 130 cm, and the inner diameter (d) of the outlet 21 of the guide tube 20 was variously changed.
[0027]
The ratio (L / D) of the distance (L) from the bottom 3 of the melting mold 1 to the bottom wall 12 of the water-cooled vessel 11 to the outer diameter (D) of the melting mold 1 is 0.8, and the guide to the outer diameter (D) When the ratio (M / D) of the distance (M) from the tip 21 of the cylinder 20 to the melting mold bottom 3 is 0.3, the outlet inner diameter (d) of the guide cylinder 20 with respect to the outer diameter (D) of the melting mold 1 When the ratio was changed, the number of times of dissolution before sending out for repair was investigated.
[0028]
[Table 1]
Figure 0003607610
[0029]
[Table 2]
Figure 0003607610
[0030]
As can be seen from Table 2, when the guide tube was arranged, the number of times of dissolution until repair increased and the life of the mold became longer than when the guide cylinder was not arranged. The ratio (d / D) of the guide tube outlet inner diameter (d) to the dissolution mold bottom diameter (D) is preferably in the range of 0.1 to 1.0. When the ratio (d / D) is less than 0.1, the pressure loss of the cooling water increases, and it is difficult to flow cooling water sufficient for cooling the mold bottom. On the other hand, when the ratio (d / D) exceeds 1.0, the flow rate of the cooling water hitting the mold bottom wall is lowered, the cooling efficiency is lowered, and this is not preferable for preventing the mold bottom deformation.
[0031]
Furthermore, the ratio (M / D) of the distance (M) from the tip 21 of the guide tube 20 to the bottom 3 of the melting mold with respect to the diameter (D) of the bottom 3 of the melting mold 1 is such that M / D is 0.1 to 1. It is 0, preferably in the range of 0.3 to 0.5.
[0032]
As the guide cylinder 20, when the melting mold 1 is changed, ones having different heights (h) can be installed. However, as shown in FIG. 4, the guide cylinder 20 is a one-stage type or a plurality of stages. It is possible to provide a nested guide cylinder divided into two. In this embodiment, it is constituted by two nested guide cylinders 20A and 20B which are of a single stage type.
[0033]
Further, the cross section of the guide tube 20 may have a configuration in which not only a single tube having one outlet but also a plurality of outlets are provided in the interior. With such a configuration, the cooling water can be uniformly supplied to the bottom surface of the dissolution mold.
[0034]
It was also confirmed that the service life of the melting mold 1 was greatly extended by arranging the guide tube. This is because the cooling water is made to flow so that the stagnation R of the cooling water 10 does not occur in the lower region of the dissolution mold bottom 3. From this, it is presumed that the temperature on the ingot side of the bottom 3 of the melting mold 1 is maintained at 200 to 300 ° C. or lower.
[0035]
That is, using a refractory metal melting apparatus having a configuration in which the guide cylinder described in the example is arranged, the cooling water is supplied so as not to stay in the melting mold bottom 3 and the temperature of the melting mold bottom 3 is set to 200 to 300 ° C. Therefore, the high-melting-point metal can be melted and manufactured very suitably by reducing the frequency of mold repair without causing problems such as deformation or erosion of the melted mold 1.
[0036]
【The invention's effect】
As described above, the present invention has a melting mold, a water cooling container having a cooling water inlet and a cooling water drain, and the cooling water inlet is formed of a refractory metal formed on the bottom wall of the water cooling container. In the melting apparatus, a guide cylinder for guiding the cooling water introduced from the cooling water inlet to the melting mold bottom is arranged between the bottom of the melting mold and the cooling water inlet. The stagnation at the bottom is eliminated, and as a result, the temperature of the melting mold bottom during melting can be maintained at 200 to 300 ° C.,
(1) The melting mold can be efficiently cooled without causing problems such as deformation or melting of the melting mold.
(2) The frequency of mold repair is low, and as a result, the cost for mold repair can be reduced.
It can have the effect.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a conventional refractory metal melting apparatus.
FIG. 2 is a cross-sectional view of a conventional refractory metal melting apparatus.
FIG. 3 is a cross-sectional view of an embodiment of a refractory metal melting apparatus according to the present invention.
FIG. 4 is a cross-sectional view of another embodiment of the refractory metal melting apparatus according to the present invention.
[Explanation of symbols]
1 Melting mold (copper crucible)
2 Dissolving mold body 3 Dissolving mold bottom (bottom plate)
4 Titanium briquette (electrode)
5 Cooling water 11 Water cooling vessel 12 Water cooling vessel bottom wall 13 Water cooling vessel peripheral wall 14 Cooling water inlet 15 Cooling water drain 20 Guide tube

Claims (4)

溶解鋳型と、冷却水導入口及び冷却水排水口を備えた水冷容器とを有し、冷却水導入口が前記水冷容器の底壁に形成された高融点金属の溶解装置において、前記溶解鋳型底部と前記冷却水導入口との間に、前記冷却水導入口より導入された冷却水を前記溶解鋳型底部へと案内するガイド筒を配置することを特徴とする高融点金属溶解装置。A melting mold, and a water-cooled container having a cooling water introduction port and a cooling water drain port, wherein the cooling water introduction port is formed on the bottom wall of the water-cooling vessel. A refractory metal melting apparatus, wherein a guide tube for guiding cooling water introduced from the cooling water introduction port to the bottom of the melting mold is disposed between the cooling water introduction port and the cooling water introduction port. 前記ガイド筒は、高さが調整自在とされることを特徴とする請求項1の高融点金属溶解装置。The refractory metal melting apparatus according to claim 1, wherein the guide cylinder is adjustable in height. 前記ガイド筒は、出口が複数に分割されていることを特徴とする請求項1又は2の高融点金属溶解装置。The refractory metal melting apparatus according to claim 1 or 2, wherein the guide tube has a plurality of outlets divided. 前記溶解鋳型底部の直径(D)に対する前記溶解鋳型底部から前記ガイド筒上端までの距離(M)の比(M/D)が0.1〜1.0であることを特徴とする請求項1、2又は3の高融点金属溶解装置。The ratio (M / D) of the distance (M) from the bottom of the melting mold to the upper end of the guide cylinder with respect to the diameter (D) of the bottom of the melting mold is 0.1 to 1.0. 2 or 3 high melting point metal melting apparatus.
JP2000401756A 2000-12-28 2000-12-28 High melting point metal melting equipment Expired - Lifetime JP3607610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000401756A JP3607610B2 (en) 2000-12-28 2000-12-28 High melting point metal melting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000401756A JP3607610B2 (en) 2000-12-28 2000-12-28 High melting point metal melting equipment

Publications (2)

Publication Number Publication Date
JP2002206869A JP2002206869A (en) 2002-07-26
JP3607610B2 true JP3607610B2 (en) 2005-01-05

Family

ID=18866145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000401756A Expired - Lifetime JP3607610B2 (en) 2000-12-28 2000-12-28 High melting point metal melting equipment

Country Status (1)

Country Link
JP (1) JP3607610B2 (en)

Also Published As

Publication number Publication date
JP2002206869A (en) 2002-07-26

Similar Documents

Publication Publication Date Title
US2085450A (en) Apparatus for producing metallic ingots
US8668760B2 (en) Method for the production of a β-γ-TiAl base alloy
JP3003914B2 (en) Method for producing copper alloy containing active metal
US3998264A (en) Apparatus for producing metallic castings by progressively melting a solid charge
JP5048222B2 (en) Method for producing long ingots of active refractory metal alloys
CN106839762A (en) The Cold crucible induction melting method of superelevation smelting temperature
WO2002052051A2 (en) Methods of melting titanium and other metals and alloys by plasma arc or electron beam
JPH04504981A (en) Induced skull spinning of reactive alloys
JP5788691B2 (en) Melting furnace for melting metal and method for melting metal using the same
JP3607610B2 (en) High melting point metal melting equipment
US4641704A (en) Continuous casting method and ingot produced thereby
US9156081B2 (en) Mold for continuous casting of titanium or titanium alloy ingot, and continuous casting device provided with same
CN115505746A (en) Smelting method of electroslag remelting ultra-clean steel
JP5006161B2 (en) Ingot manufacturing method for TiAl-based alloy
CN110484742B (en) Method for preparing Fe-W intermediate alloy by electron beam melting and high purification
JP5444109B2 (en) Method for melting long ingots
KR102649755B1 (en) Ingot cooling device
CN217383746U (en) Device for induction melting of titanium and titanium alloy with self-lining function
CN110512090B (en) Treatment method of multi-material universal skull of electron beam cold bed smelting furnace
JPS6163342A (en) Method and device for producing hollow steel ingot
CN109055772B (en) Electroslag remelting process method
CN117187581A (en) Consumable electrode preparation method and electroslag remelting method
US3381073A (en) Process for casting articles
US20050067129A1 (en) Method for the production of hollow ingots of a metallic material or of a plurality of metallic materials
JP2021134427A (en) Method for suppressing temperature change of refractory, method for operating vacuum degassing facility, and method for producing molten steel

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041007

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3607610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071015

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term