JP3607448B2 - Rotating electric machine and insulation method of rotating electric machine winding - Google Patents

Rotating electric machine and insulation method of rotating electric machine winding Download PDF

Info

Publication number
JP3607448B2
JP3607448B2 JP05332597A JP5332597A JP3607448B2 JP 3607448 B2 JP3607448 B2 JP 3607448B2 JP 05332597 A JP05332597 A JP 05332597A JP 5332597 A JP5332597 A JP 5332597A JP 3607448 B2 JP3607448 B2 JP 3607448B2
Authority
JP
Japan
Prior art keywords
electrical machine
rotating electrical
machine winding
resin
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05332597A
Other languages
Japanese (ja)
Other versions
JPH10257726A (en
Inventor
敏朗 厚地
久安 三井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP05332597A priority Critical patent/JP3607448B2/en
Publication of JPH10257726A publication Critical patent/JPH10257726A/en
Application granted granted Critical
Publication of JP3607448B2 publication Critical patent/JP3607448B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、自動車などに使用されるかご形多相誘導電動機等の回転電機および回転電機巻線の絶縁方法に関するものである。
【0002】
【従来の技術】
自動車には、電気制動装置と呼ばれ、例えば、かご形多相誘導電動機等の回転電機を用いたものがある。この電気制動装置は、自動車の制動時に回転電機から発生する電気エネルギーを抵抗器により消費させることで、高い制動力を維持するものである。
【0003】
そして、この電気制動装置に使用される回転電機は、与えられた狭い空間で可能な限り高密度の磁束を得るため、その巻線には、エナメル線を多数回巻回した、いわゆる乱巻方式のものが最適とされている。また、このような巻線としては、走行時の振動や回転時の電磁振動で、巻線が変形したり、疲労により電線が断線する事のないように、また外気に含まれる湿気や雨水からエナメル線を保護する必要があり、このためエポキシ等の樹脂を含浸・硬化する絶縁方式が知られている(特願平2−92033号明細書、特願平3−286605号明細書)。
【0004】
【発明が解決しようとする課題】
ところが、このような回転電機の巻線に適用される通常の含浸・硬化による絶縁方法によると、せっかく巻線内に含浸した樹脂が、硬化時に重力や粘度の低下により巻線内から流出してしまい、回転電機内部の鉄心内や巻線内に不要の空隙を形成することがある。また、樹脂の流出は、エナメル線のエナメル皮膜上に形成される絶縁層の膜厚が薄くなることで、エナメル皮膜が外部環境の影響を受け易くなって、湿気や雨水に原因する絶縁低下を引き起こすおそれがあり、また、熱放散性も悪くなって、巻線の温度上昇を招き、熱劣化により絶縁の寿命が短くなるという問題点があった。
本発明は、熱放散性および耐湿・耐水性に優れ、特に自動車用回転電機として好適な回転電機および回転電機巻線の絶縁方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
請求項1に対応する発明は、回転電機巻線を予め加熱し、該予熱した回転電機巻線に対し、エポキシ樹脂、酸無水物およびマイクロカプセル化潜在硬化促進剤から成るエポキシ樹脂組成物を滴下含浸し、予熱した回転電機巻線の熱でエポキシ樹脂組成物を硬化するようにしている。
【0006】
請求項2に対応する発明は、請求項1に対応する発明の回転電機巻線の絶縁方法において、エポキシ樹脂組成物中のマイクロカプセル化潜在硬化促進剤の含有量をエポキシ樹脂および酸無水物の総和に対して0.1〜5phrとしている。
【0007】
請求項3に対応する発明は、請求項2に対応する発明の回転電機巻線の絶縁方法において、エポキシ樹脂組成物は表面調整剤を添加し、該表面調整剤の量をエポキシ樹脂および酸無水物の総和に対して0.1〜1phr含ませている。
【0008】
請求項4に対応する発明は、請求項1に対応する発明の回転電機巻線の絶縁方法において、エポキシ樹脂組成物の滴下含浸は、回転電機巻線を加熱しながら行うようにしている。
請求項5に対応する発明は、請求項4に対応する発明の回転電機巻線の絶縁方法において、エポキシ回転電機巻線の加熱に遠赤外線ヒータを用いている。
【0010】
請求項6に対応する発明は、請求項1に対応する発明の回転電機巻線の絶縁方法において、エポキシ樹脂組成物の回転電機巻線への滴下含浸は、回転電機巻線を回転させながら行う。
【0011】
この結果、請求項1に対応する発明によれば、エポキシ樹脂と酸無水物から成る樹脂に予めマイクロカプセル化潜在硬化促進剤を加えているため、加熱によりマイクロカプセルの皮膜が溶解した時点からカプセル内の硬化促進剤がエポキシおよび酸無水物に作用して急速に酸化反応が進むようになるため、樹脂が流出することがなくなり、回転電機内部の鉄心内や巻線内の空隙を塞ぐようににして樹脂を充填することができる。
【0012】
請求項2に対応する発明によれば、十分な硬化促進効果が得られ、また硬化した樹脂が満足できる分子構造を形成し十分な特性が得られる。
請求項3に対応する発明によれば、十分な濡れ性改善の効果が得られ、また、適切な樹脂の硬化により十分な特性が得られる。
【0013】
請求項4に対応する発明によれば、滴下された樹脂が加熱された回転電機巻線と接触することにより暖められ、粘度が低下し、鉄心の内部にある巻線内に容易に浸透し、かつ浸透した樹脂がスムースに硬化するようにできる。
【0014】
請求項5に対応する発明によれば、遠赤外線により樹脂の内部から暖めることができるので、樹脂の低粘度化による落下がより少なく効率的に樹脂の加熱硬化を行うことができる。
【0016】
請求項6に対応する発明によれば、回転電機巻線を回転させながら樹脂の含浸および硬化を行うことにより、静置していると重力で落下してしまう樹脂を回転電機巻線を360°回転し樹脂に作用する重力の方向を逆転させることで落下を防止でき、また、鉄心内部の巻線内の空間および鉄心外の巻線表面をも樹脂で緻密に充填することができ、絶縁特性の優れた巻線絶縁得られる。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態を図面に従い説明する。
(第1の実施の形態)
図1は、本発明の第1の実施の形態の回転電機巻線の絶縁方法を説明するための図である。図において、1は回転電機で、この回転電機1は、鉄心2と、この鉄心2に巻装される回転電機巻線3を有している。
【0019】
そして、このような回転電機巻線3に対し、以下述べる方法により絶縁処理が施される。まず、回転電機巻線3をオーブンなどで130℃に予熱し、この予熱された回転電機巻線3の上方から複数本のプラスチック製のチューブ4を通して樹脂5を滴下しながら、この滴下樹脂5を回転電機巻線3内に含浸させる。なお、この樹脂5を滴下する際に、鉄心2を傾けておけば、重力の助けを得て鉄心2内への樹脂5の流入を、さらに容易にすることができる。
【0020】
樹脂5は、エポキシ樹脂と酸無水物を有し、さらにマイクロカプセル化潜在硬化促進剤を含有させたエポキシ樹脂組成物からなるもので、加熱により厚さが0.01〜0.1μm程度の高分子から成るマイクロカプセルの皮膜が溶解しカプセル内の平均粒径が数μm程度の硬化促進剤がエポキシおよび酸無水物に作用し急速に硬化反応が進むようにしている。
【0021】
また、樹脂5を構成するエポキシ樹脂としては、ビスフェノールA形、ビスフェノールF形、ノボラック形、環状脂肪族形、グリシジルエステル形、グリシジルアミン形、複素環形や多官能エポキシ樹脂などが含まれ、酸無水物としては、脂肪族酸無水物、脂環式酸無水物、ハロゲン系酸無水物などが含まれる。
【0022】
また、樹脂5中のマイクロカプセル化潜在硬化促進剤の含有量は、エポキシ樹脂および酸無水物の総和に対して0.1〜5phr(per hundredresin)としている。さらに、このようなマイクロカプセル化潜在硬化促進剤のマイクロカプセル皮膜には、イソシアネート基をフェノール、アルコール、カプロラクタム等と反応させてマスクしたブロックイソシアネートのように低温では化学的に不活性であるが加熱するとウレタン結合が開裂して皮膜が破れ中の硬化促進剤が樹脂と反応するようになるものが用いられ、また、硬化促進剤には、例えば2−メチルイミダゾール、2−エチル−4メチルイミダゾール、2−フェニルイミダゾール等から成るイミダゾール変性品やジシアンジアミドとイミダゾール変性品のブレンドが用いられる。
【0023】
なお、マイクロカプセル化潜在硬化促進剤の市販品されている代表的なものとして、旭化成工業株式会社製商品名ノバキュアHX−3742、HX−3741等がある。
【0024】
しかして、かかる第1の実施の形態では、樹脂5として、エピコート828 (シェル社商品名)75重量部、DEN431(ダウケミカル社商品名)25重量部、QH200(日本ゼオン社商品名)70重量部、マイクロカプセル化潜在硬化促進剤としてHX−3742(旭化成工業社商品名)0.1〜5phr、表面調整剤としてディスパロン1970(楠本化成社商品名)0.1〜1phrから成るエポキシ樹脂組成物が用いられる。
【0025】
このような樹脂5は、チューブ4を通して滴下され回転電機巻線3内に含浸されていくが、この過程で、マイクロカプセル化潜在硬化促進剤のマイクロカプセルが融解する温度以下では、マイクロカプセル内の硬化促進剤とエポキシ樹脂および酸無水物と接触できず硬化がゆっくりと進み、マイクロカプセルが融解すると急激に反応が進むようになる。つまり、樹脂5がチューブ4を通して滴下され、予熱された回転電機巻線3に接触しても、樹脂5には熱容量があるため、すぐには樹脂5の温度は上がらず、まず樹脂5が暖められて低粘度化し、鉄心2内にも樹脂が十分浸透した段階になってマイクロカプセルが融解し、ゲル化・硬化するようになり、これにより鉄心2内を含めた回転電機巻線3の空隙は、樹脂5で埋められた状態でゲル化・硬化される。
【0026】
この場合、エポキシ樹脂組成物に表面調整剤を添加することにより樹脂5のエナメル皮膜、スロット絶縁物や巻線固定用の糸等の絶縁物に対する濡れ性が向上し、樹脂5を十分密着させ、同時に硬化時の発泡を防ぐ消泡剤としての役目を果たすことができるようにもしている。この表面調整剤としては例えばアクリルのポリリン酸エステルであるモダフロー(モンサント社商品名)、アクリル系のディスパロン1970,230,L−1984−50,L−1985−50(楠本化成社商品名)、シリコーン系のTSA720(東芝シリコーン社商品名)などが用いられる。
【0027】
なお、マイクロカプセル含有量をエポキシ樹脂および酸無水物の総和に対して0.1〜5phrとしたのは、マイクロカプセルの量が0.1phr未満では十分な硬化促進効果を得られず、また5phr超過では急激な反応が起き、満足な分子構造が形成されず十分な特性が得られないためである。
【0028】
また、表面調整剤を添加したのはエナメル皮膜、スロット絶縁物や巻線固定用の糸等の絶縁物に対する樹脂の濡れ性を向上し、樹脂が十分密着するようにしたものである。そして、エポキシ樹脂および酸無水物の総和に対して表面調整剤の量を0.1〜1phr含むようにしたのは、表面調整剤の量が0.1phr未満では十分な濡れ性改善の効果が得られないためで、また1phr超過では適切な樹脂の硬化が起きず十分な特性が得られないためである。
【0029】
(第2の実施の形態)
図2は、本発明の第2の実施の形態の回転電機巻線の絶縁方法を説明するための図で、図1と同一部分には、同符号を付している。
【0030】
この場合、回転電機1の鉄心2に巻装される回転電機巻線3の周囲を複数個の遠赤外線ヒータ6で加熱しながら、第1の実施の形態で述べたと同様にして、回転電機巻線3の上方から複数本のプラスチック製のチューブ4を通して樹脂5を滴下含浸する。ここで、遠赤外線ヒータ6を用いて回転電機巻線3を加熱しながら樹脂5を滴下含浸するのは、遠赤外線ヒータ6による遠赤外線により樹脂5を内部から暖めることができるためで、これにより効率的に樹脂5の加熱を行うようにしている。つまり、回転電機巻線3を遠赤外線ヒータ6による加熱しながら樹脂5を滴下含浸すると、滴下された樹脂5が加熱された回転電機巻線3と接触することにより暖められ、粘度が低下し、鉄心2内部にある回転電機巻線3内に容易に浸透し、かつ浸透した樹脂5をスムースに硬化させることができる。
【0031】
このようにすると、熱容量が小さく冷え易い鉄心2外部の回転電機巻線3を加熱することで、鉄心2内部にも熱伝導され、この鉄心2内部の回転電機巻線3も加熱できるようになり、これにより、鉄心2外部の回転電機巻線3に滴下した樹脂5は、この回転電機巻線3を伝わって鉄心2内部の回転電機巻線3の空隙にも十分浸透され、この状態でゲル化し硬化するようにできる。また、鉄心2外を加熱しながら樹脂5を滴下するため、鉄心2外の回転電機巻線3に滴下した樹脂も完全に硬化させることができ、厚い塗膜を得ることができる。
【0032】
なお、オーブンで予熱した回転電機巻線3をオーブンから取り出し後に、遠赤外線ヒータ6を用いて加熱しながら、樹脂5を滴下含浸すると、遠赤外線ヒータ6単独の加熱に比べ短時間に所望の温度まで上げることができ、遠赤外線ヒータ6を効率よく活用できるメリットがある。また、この第2の実施の形態では、遠赤外線ヒータ6による加熱の例を示したが、加熱の方法として、赤外線ランプ、電熱ヒータ等他のヒータ、熱風、通電およびこれらの併用による加熱方法を用いてもよい。
(第3の実施の形態)
図3は、本発明の第3の実施の形態の回転電機巻線の絶縁方法を説明するための図で、図2と同一部分には、同符号を付している。
【0033】
この場合、回転電機巻線3が巻装される鉄心2に治具7を取り付けている。この治具7は、鉄心2に回転電機巻線3を巻装してなる回転電機1全体を鉄心2の中心軸201を中心に回転させるもので、鉄心2とともに回転電機巻線3を回転させながら樹脂5の含浸・硬化を行うようにしたものである。
【0034】
このようにすれば、回転電機巻線3を回転させ樹脂5に作用する重力の方向を逆転させることにより、重力で落下するおそれがある樹脂5の落下を防止することができる。つまり、回転電機巻線3を回転させながら樹脂5の含浸および硬化を行うことにより、静置していると重力で落下してしまう樹脂5を回転電機巻線3の360°の回転で樹脂5に作用する重力の方向を逆転させるようにして、落下を防ぐことができる。これにより鉄心2内部の回転電機巻線3内の空間および鉄心2外の回転電機巻線3表面をも樹脂5で緻密に充填することができ、絶縁特性の優れた巻線絶縁を得ることができる。
【0035】
また、回転電機巻線3を回転させると同時に、遠赤外線ヒータ6で鉄心2外の回転電機巻線3を加熱しながら樹脂5を滴下含浸すると、さらに第2の実施の形態の効果も加わり、つまり、鉄心2内部の回転電機巻線3内の空間および鉄心2外の回転電機巻線3表面にも樹脂5を緻密に充填することができ、絶縁特性の優れた巻線絶縁を得られる。
(第4の実施の形態)
図4は、本発明の第4の実施の形態の概略構成を示している。この第4の実施の形態は、第1乃至第3の実施の形態による回転電機巻線の絶縁方法を採用した回転電機を実際に自動車用回転電機として用いた例を示すもので、ここでは、回転電機を自動車の電気制動および補助加速を行うために、内燃機関の主軸に直結して用いる自動車の電気制動および補助加速装置を示している。
【0036】
この場合、自動車の内燃機関10には、例えば、かご形多相誘導機からなる回転電機1の回転子部を直結している。この回転電機1には、上述した第1の実施の形態で述べた回転電機巻線の絶縁方法を採用したものが適用され、鉄心内および鉄心外の表面を樹脂で十分に充填可能にして、熱放散性が優れ電流密度を高くとれるような構成になっている。
【0037】
また、このような回転電機1には、制御装置11と抵抗器12を接続し、この制御装置11に二次電池回路13を接続している。
このような電気制動および補助加速装置では、自動車の制動時の過剰な電気エネルギーを抵抗器12で消散させて、高い制動力を維持することができ、また低いコストで補助的な駆動手段としても動作させることができ、また、回転速度の広い範囲にわたり、また長時間にわたり、大きいブレーキトルクを有効に発生させる実用的な形態を得ることができる。
【0038】
ところで、このような電気制動および補助加速装置に使用される回転電機1の巻線としては、与えられた狭い空間で可能な限り密度の磁束を得るために、エナメル線を多数回巻回するいわゆる乱巻方式が最適である。そして、この回転電機の巻線は、走行時の振動や回転時の電磁振動で、巻線が変形したり、絶縁が破壊したり、疲労によって電線が断線することのないように、また外気に含まれる湿気や雨水からエナメル線を保護するために、エポキシ等の樹脂輪含浸し硬化して固定することが必要である。特に、自動車の車軸の狭い空間に取り付けられるので、出力を大きくするには電流密度を高くする必要があり、同時に雨水に対する絶縁の信頼性が必要である。
【0039】
しかして、このような回転電機1について、第1の実施の形態で述べたと同じ組成の樹脂を用いて従来法で含浸硬化させた回転電機巻線をA、第1の実施の形態で述べたと絶縁方法により樹脂を滴下含浸硬化した回転電機巻線をBとし、これら回転電機巻線を用いた回転電機1について、100℃と200℃の間をヒートサイクル試験した際の100℃から同一電流を通電し200℃で通電を止めた場合の温度と時間の関係を調べたところ、図5に示す結果が得られ、従来法によるものAは、本発明のBに比べ熱伝導性が悪いために早く高温になり、また冷えにくいことが分かる。一方、本発明の絶縁方法によれば、絶縁皮膜が厚くできるので、回転電機1内に雨水等が浸入しても絶縁性能が低下しにくいことが確認できた。
【0040】
【発明の効果】
以上述べたように、本発明によれば、熱放散性およびおよび耐湿・耐水性に優れ、特に自動車用回転電機として好適な回転電機および回転電機巻線の絶縁方法を得られる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の回転電機巻線の絶縁方法を示す説明図。
【図2】本発明の第2の実施の形態の回転電機巻線の絶縁方法を示す説明図。
【図3】本発明の第3の実施の形態の回転電機巻線の絶縁方法を示す説明図。
【図4】本発明の回転電機巻線の絶縁方法を適用した回転電機を自動車の電気制動および補助加速装置に用いた例の概略構成を示す図。
【図5】本発明の第4の実施の形態に用いられる回転電機をヒートサイクル試験した際の、本発明と従来法による絶縁での温度変化を示す比較図。
【符号の説明】
1…回転電機、
2…鉄心、
3…回転電機巻線、
4…チューブ、
5…樹脂、
6…遠赤外線ヒータ、
7…治具、
10…内燃機関、
11…制御装置、
12…抵抗器、
13…二次電池回路。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rotating electrical machine such as a squirrel-cage multiphase induction motor used for automobiles and the like, and a method for insulating a rotating electrical machine winding.
[0002]
[Prior art]
Some automobiles are called electric braking devices and use, for example, a rotating electric machine such as a cage-type multiphase induction motor. This electric braking device maintains a high braking force by consuming electric energy generated from a rotating electric machine during braking of an automobile by a resistor.
[0003]
And the rotating electrical machine used for this electric braking device is a so-called turbulent winding system in which enameled wire is wound many times in its winding to obtain the highest possible magnetic flux in a given narrow space The ones are considered optimal. In addition, such windings are designed to prevent the windings from being deformed or broken due to fatigue due to vibration during driving or electromagnetic vibration during rotation, or from moisture or rainwater contained in the outside air. It is necessary to protect the enameled wire, and for this reason, an insulation system in which a resin such as epoxy is impregnated and cured is known (Japanese Patent Application No. 2-92033, Japanese Patent Application No. 3-286605).
[0004]
[Problems to be solved by the invention]
However, according to the normal impregnation / curing insulation method applied to the windings of such rotating electrical machines, the resin impregnated in the windings flows out of the windings due to a decrease in gravity and viscosity during curing. In other words, unnecessary gaps may be formed in the iron core or windings inside the rotating electrical machine. In addition, the resin flow-out causes the enamel film to be easily affected by the external environment because the film thickness of the insulating layer formed on the enamel film of the enamel wire becomes thin, and the insulation deterioration caused by moisture and rainwater is reduced. In addition, there is a problem that the heat dissipation property is deteriorated, the temperature of the winding is increased, and the life of insulation is shortened due to thermal deterioration.
An object of the present invention is to provide a rotating electrical machine that is excellent in heat dissipation, moisture resistance, and water resistance, and that is particularly suitable as a rotating electrical machine for automobiles, and a method for insulating a rotating electrical machine winding.
[0005]
[Means for Solving the Problems]
The invention corresponding to claim 1 preliminarily heats the rotating electrical machine winding and drops an epoxy resin composition comprising an epoxy resin, an acid anhydride and a microencapsulated latent curing accelerator on the preheated rotating electrical machine winding. The epoxy resin composition is cured by the heat of the impregnated and preheated rotating electrical machine winding .
[0006]
The invention corresponding to claim 2 is the method for insulating a rotating electrical machine winding according to claim 1 , wherein the content of the microencapsulated latent curing accelerator in the epoxy resin composition is changed between the epoxy resin and the acid anhydride. It is 0.1-5 phr with respect to the sum total.
[0007]
The invention corresponding to claim 3 is the method of insulating a rotating electrical machine winding according to claim 2 , wherein the epoxy resin composition is added with a surface conditioner, and the amount of the surface conditioner is adjusted with the epoxy resin and the acid anhydride. 0.1 to 1 phr is included with respect to the total product.
[0008]
According to a fourth aspect of the present invention, in the method for insulating a rotating electrical machine winding according to the first aspect of the invention, the dripping impregnation of the epoxy resin composition is performed while heating the rotating electrical machine winding.
The invention corresponding to claim 5 uses the far-infrared heater for heating the epoxy rotating electrical machine winding in the method for insulating a rotating electrical machine winding of the invention corresponding to claim 4.
[0010]
The invention corresponding to claim 6 is the insulating method for a rotating electrical machine winding according to claim 1, wherein the dripping impregnation of the epoxy resin composition into the rotating electrical machine winding is performed while rotating the rotating electrical machine winding. .
[0011]
As a result, according to the invention corresponding to claim 1 , since the microencapsulated latent curing accelerator is added in advance to the resin composed of the epoxy resin and the acid anhydride, the capsule from the time when the film of the microcapsule is dissolved by heating. Because the hardening accelerator acts on the epoxy and acid anhydride and the oxidation reaction proceeds rapidly, the resin does not flow out, and the voids in the iron core and windings inside the rotating electrical machine are blocked. Thus, the resin can be filled.
[0012]
According to the invention corresponding to claim 2, a sufficient curing accelerating effect can be obtained, and a cured resin can form a satisfactory molecular structure and sufficient characteristics can be obtained.
According to the invention corresponding to claim 3, a sufficient wettability improvement effect can be obtained, and sufficient characteristics can be obtained by appropriate curing of the resin.
[0013]
According to the invention corresponding to claim 4, the dropped resin is warmed by contact with the heated rotating electrical machine winding, the viscosity decreases, and easily penetrates into the winding inside the iron core, In addition, the penetrated resin can be cured smoothly.
[0014]
According to the invention corresponding to claim 5 , since it is possible to warm from the inside of the resin by far-infrared rays, the resin can be efficiently cured by heating with less dropping due to the low viscosity of the resin.
[0016]
According to the invention corresponding to claim 6, by rotating and rotating the rotary electric machine winding, the resin impregnation and curing is performed so that the resin that falls due to gravity when left standing is rotated by 360 °. By rotating the direction of gravity acting on the resin by reversing the rotation, the fall can be prevented, and the space inside the winding inside the iron core and the surface of the winding outside the iron core can be densely filled with resin. excellent winding insulation is obtained.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 is a diagram for explaining a method for insulating a rotating electrical machine winding according to a first embodiment of the present invention. In the figure, reference numeral 1 denotes a rotating electrical machine. The rotating electrical machine 1 has an iron core 2 and a rotating electrical machine winding 3 wound around the iron core 2.
[0019]
The rotating electrical machine winding 3 is insulated by the method described below. First, the rotating electrical machine winding 3 is preheated to 130 ° C. in an oven or the like, and while dropping the resin 5 through a plurality of plastic tubes 4 from above the preheated rotating electrical machine winding 3, Impregnation into the rotating electrical machine winding 3. In addition, if the iron core 2 is tilted when the resin 5 is dropped, the flow of the resin 5 into the iron core 2 can be further facilitated with the help of gravity.
[0020]
Resin 5 is composed of an epoxy resin composition containing an epoxy resin and an acid anhydride and further containing a microencapsulated latent curing accelerator, and has a thickness of about 0.01 to 0.1 μm by heating. The film of the microcapsule composed of molecules is dissolved, and a curing accelerator having an average particle size of about several μm in the capsule acts on the epoxy and the acid anhydride so that the curing reaction proceeds rapidly.
[0021]
The epoxy resin constituting the resin 5 includes bisphenol A form, bisphenol F form, novolac form, cycloaliphatic form, glycidyl ester form, glycidylamine form, heterocyclic form and polyfunctional epoxy resin. Examples of the product include aliphatic acid anhydrides, alicyclic acid anhydrides, halogen acid anhydrides, and the like.
[0022]
Further, the content of the microencapsulated latent curing accelerator in the resin 5 is 0.1 to 5 phr (per hundredresin) with respect to the total of the epoxy resin and the acid anhydride. Furthermore, such microencapsulated latent curing accelerator microcapsule films are chemically inactive at low temperatures, such as blocked isocyanate masked by reacting isocyanate groups with phenol, alcohol, caprolactam, etc., but heated. Then, the urethane bond is cleaved and the coating is broken, and the curing accelerator that reacts with the resin is used. Examples of the curing accelerator include 2-methylimidazole, 2-ethyl-4methylimidazole, An imidazole modified product such as 2-phenylimidazole or a blend of dicyandiamide and an imidazole modified product is used.
[0023]
Typical examples of commercially available microencapsulated latent curing accelerators include Asahi Kasei Kogyo Co., Ltd. trade names Novacure HX-3742, HX-3741 and the like.
[0024]
Thus, in the first embodiment, as the resin 5, Epicoat 828 (trade name of Shell) 75 parts by weight, DEN431 (trade name of Dow Chemical) 25 parts by weight, QH200 (trade name of Nippon Zeon) 70 weights Epoxy resin composition comprising HX-3742 (trade name of Asahi Kasei Kogyo Co., Ltd.) 0.1 to 5 phr as a microencapsulated latent curing accelerator and 0.1 to 1 phr of Disparon 1970 (trade name of Enomoto Kasei Co., Ltd.) as a surface conditioner Is used.
[0025]
Such a resin 5 is dropped through the tube 4 and impregnated in the rotating electrical machine winding 3, but in this process, the temperature within the microcapsule is below the temperature at which the microcapsules of the microencapsulated latent curing accelerator melt. Since the curing accelerator cannot be brought into contact with the epoxy resin and the acid anhydride, the curing proceeds slowly, and when the microcapsules melt, the reaction rapidly proceeds. That is, even if the resin 5 is dropped through the tube 4 and contacts the preheated rotating electrical machine winding 3, the resin 5 has a heat capacity, so the temperature of the resin 5 does not rise immediately, and the resin 5 is first warmed. As a result, the viscosity is lowered and the microcapsule melts and gels and hardens when the resin sufficiently penetrates into the iron core 2, whereby the gap of the rotating electrical machine winding 3 including the inside of the iron core 2. Is gelled and cured in a state of being filled with the resin 5.
[0026]
In this case, by adding a surface conditioner to the epoxy resin composition, the wettability of the resin 5 with respect to the enamel film, the insulator such as the slot insulator and the winding fixing thread is improved, and the resin 5 is sufficiently adhered, At the same time, it also serves as an antifoaming agent that prevents foaming during curing. Examples of the surface conditioner include modaflow (trade name of Monsanto) which is an acrylic polyphosphate ester, acrylic disparons 1970, 230, L-1984-50, L-1985-50 (trade name of Enomoto Kasei), silicone System TSA720 (trade name of Toshiba Silicone Co., Ltd.) is used.
[0027]
The microcapsule content was set to 0.1 to 5 phr with respect to the total of the epoxy resin and the acid anhydride. If the amount of microcapsule was less than 0.1 phr, a sufficient curing accelerating effect could not be obtained. If the amount is too high, a rapid reaction occurs, and a satisfactory molecular structure is not formed, so that sufficient characteristics cannot be obtained.
[0028]
In addition, the surface conditioner is added to improve the wettability of the resin with respect to an insulator such as an enamel film, a slot insulator, and a wire for fixing a winding so that the resin is sufficiently adhered. And, the amount of the surface adjusting agent is 0.1 to 1 phr with respect to the total of the epoxy resin and the acid anhydride because the effect of improving the wettability is sufficient when the amount of the surface adjusting agent is less than 0.1 phr. This is because the resin cannot be obtained, and if it exceeds 1 phr, adequate curing of the resin does not occur and sufficient characteristics cannot be obtained.
[0029]
(Second Embodiment)
FIG. 2 is a diagram for explaining a method of insulating a rotating electrical machine winding according to a second embodiment of the present invention, and the same parts as those in FIG.
[0030]
In this case, while rotating the periphery of the rotating electrical machine winding 3 wound around the iron core 2 of the rotating electrical machine 1 with a plurality of far infrared heaters 6, the rotating electrical machine winding is performed in the same manner as described in the first embodiment. The resin 5 is dropped and impregnated from above the wire 3 through a plurality of plastic tubes 4. Here, the reason why the resin 5 is dropped and impregnated while heating the rotating electrical machine winding 3 using the far-infrared heater 6 is that the far-infrared heater 6 can warm the resin 5 from the inside, thereby The resin 5 is efficiently heated. That is, when the rotating electrical machine winding 3 is heated by the far-infrared heater 6 and the resin 5 is dropped and impregnated, the dropped resin 5 is warmed by contact with the heated rotating electrical machine winding 3, and the viscosity is reduced. It is possible to easily penetrate into the rotating electrical machine winding 3 inside the iron core 2 and to smoothly cure the penetrated resin 5.
[0031]
In this way, by heating the rotating electrical machine winding 3 outside the iron core 2 that has a small heat capacity and is easy to cool, heat is also conducted inside the iron core 2, and the rotating electrical machine winding 3 inside the iron core 2 can also be heated. As a result, the resin 5 dripped onto the rotating electrical machine winding 3 outside the iron core 2 is sufficiently penetrated into the gap of the rotating electrical machine winding 3 inside the iron core 2 through this rotating electrical machine winding 3, and in this state the gel Can be cured. Further, since the resin 5 is dropped while heating the outside of the iron core 2, the resin dripped onto the rotating electrical machine winding 3 outside the iron core 2 can be completely cured, and a thick coating film can be obtained.
[0032]
When the rotary electric machine winding 3 preheated in the oven is taken out of the oven and then heated with the far infrared heater 6 while being dripped and impregnated with the resin 5, the desired temperature is shortened in a shorter time than the heating of the far infrared heater 6 alone. The far-infrared heater 6 can be used efficiently. In the second embodiment, an example of heating by the far-infrared heater 6 has been shown. However, as a heating method, other heaters such as an infrared lamp and an electric heater, hot air, energization, and a heating method using these in combination are used. It may be used.
(Third embodiment)
FIG. 3 is a diagram for explaining a method of insulating a rotating electrical machine winding according to a third embodiment of the present invention. The same reference numerals are given to the same portions as those in FIG.
[0033]
In this case, the jig 7 is attached to the iron core 2 around which the rotating electrical machine winding 3 is wound. This jig 7 rotates the entire rotating electrical machine 1 formed by winding the rotating electrical machine winding 3 around the iron core 2 around the central axis 201 of the iron core 2, and rotates the rotating electrical machine winding 3 together with the iron core 2. However, the resin 5 is impregnated and cured.
[0034]
In this way, by rotating the rotating electrical machine winding 3 and reversing the direction of the gravity acting on the resin 5, it is possible to prevent the resin 5 that may fall due to gravity from falling. That is, by impregnating and curing the resin 5 while rotating the rotating electrical machine winding 3, the resin 5 that falls due to gravity when left standing is rotated by 360 ° rotation of the rotating electrical machine winding 3. It is possible to prevent the fall by reversing the direction of gravity acting on the. As a result, the space inside the rotating electrical machine winding 3 inside the iron core 2 and the surface of the rotating electrical machine winding 3 outside the iron core 2 can be densely filled with the resin 5, and winding insulation with excellent insulation characteristics can be obtained. it can.
[0035]
Further, when the rotary electric machine winding 3 is rotated and at the same time the resin 5 is dropped and impregnated while heating the rotary electric machine winding 3 outside the iron core 2 with the far infrared heater 6, the effect of the second embodiment is further added, That is, the space in the rotary electric machine winding 3 inside the iron core 2 and the surface of the rotary electric machine winding 3 outside the iron core 2 can be densely filled with the resin 5, and winding insulation having excellent insulation characteristics can be obtained.
(Fourth embodiment)
FIG. 4 shows a schematic configuration of the fourth embodiment of the present invention. This fourth embodiment shows an example in which a rotating electrical machine that employs the method for insulating a rotating electrical machine winding according to the first to third embodiments is actually used as an automotive rotating electrical machine. Here, 1 shows an electric braking and auxiliary acceleration device for an automobile that is directly connected to a main shaft of an internal combustion engine in order to perform electric braking and auxiliary acceleration of the automobile with a rotating electrical machine.
[0036]
In this case, the internal combustion engine 10 of the automobile is directly connected to the rotor portion of the rotating electrical machine 1 composed of, for example, a cage multiphase induction machine. This rotating electrical machine 1 is applied with the insulating method for the rotating electrical machine winding described in the first embodiment, and the surfaces inside and outside the core can be sufficiently filled with resin, The heat dissipation is excellent and the current density can be increased.
[0037]
In addition, a controller 11 and a resistor 12 are connected to the rotating electrical machine 1, and a secondary battery circuit 13 is connected to the controller 11.
In such an electric braking and auxiliary acceleration device, excessive electric energy at the time of braking of the automobile can be dissipated by the resistor 12 to maintain a high braking force, and also as an auxiliary driving means at a low cost. It is possible to obtain a practical form that can be operated and that effectively generates a large brake torque over a wide range of rotational speed and for a long time.
[0038]
By the way, as a winding of the rotating electrical machine 1 used in such an electric braking and auxiliary acceleration device, in order to obtain a magnetic flux having a density as much as possible in a given narrow space, a so-called winding of an enamel wire is performed many times. The turbulent winding method is optimal. The windings of this rotating electrical machine are not exposed to the outside air so that the windings are not deformed, the insulation is broken, or the wires are not disconnected due to fatigue due to vibration during running or electromagnetic vibration during rotation. In order to protect the enameled wire from moisture and rainwater contained therein, it is necessary to impregnate a resin ring such as epoxy and cure and fix it. In particular, since it is mounted in a narrow space on the axle of an automobile, it is necessary to increase the current density in order to increase the output, and at the same time, it is necessary to have insulation reliability against rainwater.
[0039]
Thus, with regard to such a rotating electrical machine 1, the rotating electrical machine winding that has been impregnated and cured by a conventional method using a resin having the same composition as described in the first embodiment is described in A, the first embodiment. A rotating electrical machine winding in which resin is dropped and impregnated and cured by an insulating method is designated as B, and the rotating machine 1 using these rotating electrical machine windings has the same current from 100 ° C. when a heat cycle test is performed between 100 ° C. and 200 ° C. When investigating the relationship between temperature and time when energized and stopped at 200 ° C., the result shown in FIG. 5 was obtained, and the conventional method A has a lower thermal conductivity than B of the present invention. It turns out that it gets hot quickly and is hard to cool down. On the other hand, according to the insulation method of the present invention, since the insulation film can be made thick, it was confirmed that the insulation performance is not easily lowered even if rainwater or the like enters the rotary electric machine 1.
[0040]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain a rotating electrical machine and a method for insulating a rotating electrical machine coil that are excellent in heat dissipation, moisture resistance, and water resistance, and are particularly suitable as a rotating electrical machine for automobiles.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a method for insulating a rotating electrical machine winding according to a first embodiment of the present invention.
FIG. 2 is an explanatory view showing a method of insulating a rotating electrical machine winding according to a second embodiment of the present invention.
FIG. 3 is an explanatory diagram showing a method for insulating a rotating electrical machine winding according to a third embodiment of the present invention.
FIG. 4 is a diagram showing a schematic configuration of an example in which a rotating electrical machine to which the method for insulating a rotating electrical machine winding according to the present invention is applied is used in an electric braking and auxiliary acceleration device for an automobile.
FIG. 5 is a comparative diagram showing a temperature change in insulation according to the present invention and a conventional method when a rotating electrical machine used in the fourth embodiment of the present invention is subjected to a heat cycle test.
[Explanation of symbols]
1 ... rotating electric machine,
2 ... Iron core,
3 ... rotating electrical machine winding,
4 ... Tube,
5 ... resin,
6 ... Far infrared heater,
7 ... Jig,
10 ... an internal combustion engine,
11 ... Control device,
12 ... resistor,
13 ... Secondary battery circuit.

Claims (6)

回転電機巻線を予め加熱し、該予熱した回転電機巻線に対し、エポキシ樹脂、酸無水物およびマイクロカプセル化潜在硬化促進剤から成るエポキシ樹脂組成物を滴下含浸し、予熱した回転電機巻線の熱でエポキシ樹脂組成物を硬化することを特徴とする回転電機巻線の絶縁方法。Pre-heated rotating electrical machine winding by pre-heating the rotating electrical machine winding, dripping and impregnating the pre-heated rotating electrical machine winding with an epoxy resin composition comprising an epoxy resin, an acid anhydride and a microencapsulated latent curing accelerator A method of insulating a rotating electrical machine winding, wherein the epoxy resin composition is cured by the heat of エポキシ樹脂組成物中のマイクロカプセル化潜在硬化促進剤の含有量をエポキシ樹脂および酸無水物の総和に対して0.1〜5phrとしたことを特徴とする請求項1記載の回転電機巻線の絶縁方法。2. The rotating electrical machine winding according to claim 1, wherein the content of the microencapsulated latent curing accelerator in the epoxy resin composition is 0.1 to 5 phr with respect to the total of the epoxy resin and the acid anhydride. Insulation method. エポキシ樹脂組成物は、表面調整剤を添加し、該表面調整剤の量をエポキシ樹脂および酸無水物の総和に対して0.1〜1phr含ませることを特徴とする請求項2記載の回転電機巻線の絶縁方法。The rotating electrical machine according to claim 2, wherein the epoxy resin composition is added with a surface conditioner, and the amount of the surface conditioner is included in an amount of 0.1 to 1 phr with respect to the sum of the epoxy resin and the acid anhydride. Winding insulation method. エポキシ樹脂組成物の滴下含浸は、回転電機巻線を加熱しながら行うことを特徴とする請求項1記載の回転電機巻線の絶縁方法。2. The method for insulating a rotating electrical machine winding according to claim 1, wherein the dripping impregnation of the epoxy resin composition is performed while heating the rotating electrical machine winding. 回転電機巻線の加熱に遠赤外線ヒータを用いたことを特徴とする請求項4記載の回転電機巻線の絶縁方法。5. The insulation method for a rotating electrical machine winding according to claim 4, wherein a far-infrared heater is used for heating the rotating electrical machine winding. エポキシ樹脂組成物の回転電機巻線への滴下含浸は、回転電機巻線を回転させながら行うことを特徴とする請求項1記載の回転電機巻線の絶縁方法。The method for insulating a rotating electrical machine winding according to claim 1, wherein the dripping impregnation of the epoxy resin composition into the rotating electrical machine winding is performed while rotating the rotating electrical machine winding.
JP05332597A 1997-03-07 1997-03-07 Rotating electric machine and insulation method of rotating electric machine winding Expired - Lifetime JP3607448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05332597A JP3607448B2 (en) 1997-03-07 1997-03-07 Rotating electric machine and insulation method of rotating electric machine winding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05332597A JP3607448B2 (en) 1997-03-07 1997-03-07 Rotating electric machine and insulation method of rotating electric machine winding

Publications (2)

Publication Number Publication Date
JPH10257726A JPH10257726A (en) 1998-09-25
JP3607448B2 true JP3607448B2 (en) 2005-01-05

Family

ID=12939581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05332597A Expired - Lifetime JP3607448B2 (en) 1997-03-07 1997-03-07 Rotating electric machine and insulation method of rotating electric machine winding

Country Status (1)

Country Link
JP (1) JP3607448B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102570743A (en) * 2011-12-13 2012-07-11 哈尔滨东安发动机(集团)有限公司 Insulating method for motor stator
JP7163421B2 (en) * 2019-02-07 2022-10-31 日立Astemo株式会社 Stator manufacturing method and stator core

Also Published As

Publication number Publication date
JPH10257726A (en) 1998-09-25

Similar Documents

Publication Publication Date Title
US4624884A (en) Heat radiating insulation for coil
US6297484B1 (en) Magnetic heater
US5122704A (en) Composite rotor sleeve
JP4593291B2 (en) Manufacturing method of stator of rotating electric machine
JP2003284277A (en) Electric rotating machine and its manufacturing method
JPH03273845A (en) Vibration absorbing structure in stepping motor
JP3607448B2 (en) Rotating electric machine and insulation method of rotating electric machine winding
US5416373A (en) Electrically insulated coils and a method of manufacturing thereof
US6774511B2 (en) Rotary electric machine and method for making windings
JPH08322170A (en) Electric rotating machine
JP3497719B2 (en) Electric machine insulation coil and rotating electric machine using the same
JP2830647B2 (en) Electrically insulated wire and manufacturing method thereof
JP6871140B2 (en) Method for manufacturing thermosetting resin composition sheet, stator, stator
JPH03250704A (en) Manufacture of superconducting coil
WO2019082473A1 (en) Rotary electric machine, method for manufacturing rotary electric machine, and railway car
JPH04161037A (en) Commutatorless motor
JPH07250443A (en) Winding for rotary electric apparatus and manufacture thereof
JP3771235B2 (en) Coil manufacturing method and coil
JPH0767300A (en) Varnish treatment for winding of electric rotating machine
JP2019054657A (en) Stator and rotary electric machine
JPH08130854A (en) Ac power generator for motor vehicle
JPH0767302A (en) Insulation processing for winding of rotary electric machine
JPH0576148A (en) Electric rotating machine
JPH06141520A (en) Method of insulating rotating electric motor winding
WO2019224889A1 (en) Electric motor and ventilating fan

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040520

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040811

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041007

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

EXPY Cancellation because of completion of term