JP3607374B2 - Drilling bit with ultrasonic sensor and edge wear amount detection device - Google Patents

Drilling bit with ultrasonic sensor and edge wear amount detection device Download PDF

Info

Publication number
JP3607374B2
JP3607374B2 JP21004695A JP21004695A JP3607374B2 JP 3607374 B2 JP3607374 B2 JP 3607374B2 JP 21004695 A JP21004695 A JP 21004695A JP 21004695 A JP21004695 A JP 21004695A JP 3607374 B2 JP3607374 B2 JP 3607374B2
Authority
JP
Japan
Prior art keywords
excavation
ultrasonic
bit
cutting edge
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21004695A
Other languages
Japanese (ja)
Other versions
JPH0941865A (en
Inventor
幹夫 福原
好博 三井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Tungaloy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tungaloy Corp filed Critical Tungaloy Corp
Priority to JP21004695A priority Critical patent/JP3607374B2/en
Publication of JPH0941865A publication Critical patent/JPH0941865A/en
Application granted granted Critical
Publication of JP3607374B2 publication Critical patent/JP3607374B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、摩耗検知可能な掘削ビット及び刃先摩耗検出装置に関し、特に、掘削チップの刃先摩耗量がリアルタイムで、しかも精度よく測定できるようにしたものである。
【0002】
【従来の技術】
従来、掘削ビットにおける刃先摩耗の検出は、例えば、ビット本体内に埋め込まれた絶縁電線の絶縁状況を確認するようにした実公平2−23674号公報に開示された方法、ビット本体内の密閉空間内に特定ガスを封入し、摩耗状況によるガス減少からの電気抵抗変化を検出するようにした特開昭59−210187号公報に開示された方法、ビット本体の摩耗限界点までの装填穴内に設けられた導線の電流値の変化を検出するようにした実開昭62−190787号公報に開示された方法、超音波による検出法などがある。
【0003】
【発明が解決しようとする課題】
しかしながら、超音波以外の検出方法は、感知精度が悪く、そのため信頼性に欠けるとともに、安全性や取扱いの点でも問題点があった。
【0004】
また、従来の超音波による検出方法は、機器寸法上の制約から、摩耗量の最大箇所に照射できず、また、市販の縦波超音波を用いた板厚計で代替していたことから、反射面で縦波−横波変換による不必要なエコ−の出現による誤読や、周波数が温度上昇に伴って減衰しやすいものに限定されているなどの問題点があった。さらに、精密計測の観点からは、効果をほとんど挙げていないという問題点もあった。
【0005】
このようなことから、本発明では、超音波による屈折モ−ド変換方式を採用し、刃先摩耗部分に横波超音波が直接照射できるように改善したものである。
【0006】
【課題を解決するための手段】
本発明は、上述の点に鑑みなされたもので、摩耗量の検出可能な超音波センサー付き掘削ビットは、掘削チップの他端部に接触するくさび状部材を介して横波超音波プロ−ブが設けられたものであり、この横波超音波プロ−ブは、入射した横波超音波が刃先先端から反射してくるように設定されているものである。この場合、くさび状部材は、屈折機能を有する耐熱性樹脂で構成されることが好ましい。また、刃先摩耗の検出装置は、横波超音波プロ−ブの刃先部分から帰還した超音波エコ−を精密に時間計測する計測器が備えられるように構成したものである。この場合、超音波は、横波の超音波で、周波数が0.5〜10MHz望ましくは1〜5MHzが好適する。
【0007】
【作用】
本発明の超音波センサ−付きの掘削ビット及び刃先摩耗量検出装置は、掘削チップには、屈折機能を有するくさび状部材を介して超音波プロ−ブから横波超音波が照射され、入射されるものである。したがって、照射された超音波は、掘削チップの刃先部分から反射して帰還することになり、この帰還エコ−が外部に接続された計測器によって、精密に時間計測される。この結果、刃先部分の摩耗量の変化がリアルタイムで、しかも精度よく検知できる。これは、入射角が縦波の屈折臨界角以上にとってあるため、ビット本体内での縦波の入射角はありえず、従って掘削チップの摩耗各所における反射時の縦波−横波モ−ド変換が起り得ず、誤読の懸念が全くない。
【0008】
【実施例】
以下、本発明超音波センサ−付き掘削ビット及び刃先摩耗検出装置の一実施例について、図を参照しながら説明する。
【0009】
図1は、刃先摩耗を検知できる超音波センサ−付き掘削ビットを概念的に示した断面図であり、棒状をなす掘削ビット1のビット本体2が掘削機(図示せず)のカッタ面板3に図示しないボルトなどによって取付けられるようになっている。そして、掘削ビット1の一端に設けられた切欠段部4内では、超硬合金からなる掘削チップ5がろう付けされ、この掘削チップ5の刃先摩耗量が横波超音波の反射によって、リアルタイムに測定される。
【0010】
また、この掘削ビット1は、前記掘削チップ5の刃先部分に対する他端側には、横波超音波プロ−ブ6及び超音波屈折機能を有するくさび状部材7が組込まれている。要約すれば、前記切欠段部4の底面の奥側には、受入れ穴8が設けられ、この受入れ穴8の掘削チップ5側には、前記くさび状部材7及び横波超音波プロ−ブ6が位置するようになっている。この場合、くさび状部材7は、〜300℃の耐熱性があり、1,000〜1,500m/sである耐熱性樹脂例えばポリマ−が最適である。くさび角は、掘削チップ5の形状によって種々変えなければならない。その際、掘削チップ5の音速及びくさび状部材7の音速により、スネルの法則から入射角が計算される。
【0011】
前記横波超音波プロ−ブ6は、取付けピン9の上部にあって、前記くさび状部材7を介して掘削チップ5と接触する。この取付けピン9は、受入れ穴8の下部にあるねじ穴部分10に外周ねじ部分11がねじ込まれることにより固定される。
【0012】
なお、掘削チップ5及びくさび状部材7の間には、横波超音波の伝播を円滑にするため、耐熱性のある接触媒体例えば、ギリセリン系の粘性流動体、あるいは蜂蜜などを介在させるとよい。また、横波超音波プロ−ブ6は、くさび状部材7に対する超音波の指向性を配慮すれば、くさび状部材7の形状に合わせた例えば四角形の鍔付き形状が好ましい。
【0013】
しかして、掘削ビット1内に組込まれた横波超音波プロ−ブ6は、掘削チップ5の刃先部分に向って0.5〜10MHz望ましくは1〜5MHzの横波超音波を照射する。これは、0.5MHzよりも低いとエコ−ピ−クが拡がることから測定精度が低下し、10MHzよりも大きいと減衰が大きくなって、エコ−ピ−クが消失する可能性を配慮したものである。したがって、横波超音波プロ−ブ6から照射された超音波は、矢印で示されているように、前記くさび状部材7の存在により屈折して刃先部分に照射され、刃先部分から反射して帰還する。この場合、帰還したエコ−に対しては、横波超音波プロ−ブ6に備えられたケ−ブル12がケ−ブル穴13内に導かれ、コネクタ14を介して掘削機外に配置された計測器15に接続される。
【0014】
したがって、本発明の掘削ビットの刃先摩耗検出装置は、前記計測器13及び感知センサ−としての役割をなす耐熱性のあるくさび状部材7を備えた前記横波超音波プロ−ブ6によって構成される。この結果、前記計測器15は、掘削チップ5の刃先摩耗量として、発信から受信までのエコ−の到達時間を計測することになる。
【0015】
図2は、ビットの摩耗量とエコ−時間の相関関係を明らかにするため、縦軸には、刃先先端までの距離(mm)をとり、横軸には、パルスエコ−間隔の時間幅をとったものである。この結果、摩耗量Oの場合から、約14mm摩耗した場合では、時間幅が短くなり、摩耗量として検出できる。
【0016】
図3は、掘削ビット1の他の実施例を概念的に示したもので、ビット本体2には、2つの掘削チップ5が備えられ、両頭形式になっているものである。これに伴って、横波超音波プロ−ブ6及びくさび状部材7は、ビット本体2内で2組配置されている。
【0017】
【発明の効果】
本発明は、以上説明したように、超音波センサ−付き掘削ビット1は、ビット本体2内では、掘削チップ5に接触するように、くさび状部材7及び横波超音波プロ−ブ6が組込まれるように構成されているものである。したがって、超音波が刃先摩耗部分に直接照射されることから、精度よく摩耗量を検出できる。
【0018】
また、掘削ビットの刃先摩耗検出装置は、外部に配置された計測器15で超音波の発信から受信までのエコ−を精密に時間計測できるものである。したがって、掘削ビット1の刃先摩耗量が超音波エコ−の精密時間計測でリアルタイムの測定ができるという利点を有する。
【図面の簡単な説明】
【図1】本発明超音波センサ−付き掘削ビット及び刃先摩耗量検出装置における一実施例を示す概念面、
【図2】刃先摩耗に対するエコ−時間の関係を示した説明図、
【図3】本発明超音波センサ−付き掘削ビットの他の実施例を示す概念図。
【符号の説明】
1 掘削ビット
2 ビット本体
5 掘削チップ
6 超音波プロ−ブ
7 くさび状部材
12 ケ−ブル
15 計測器
[0001]
[Industrial application fields]
The present invention relates to an excavation bit capable of detecting wear and a cutting edge wear detection device, and more particularly, can measure the cutting edge wear amount of an excavation tip in real time and with high accuracy.
[0002]
[Prior art]
Conventionally, detection of cutting edge wear in a drilling bit is, for example, a method disclosed in Japanese Utility Model Publication No. 2-36734 in which an insulation state of an insulated wire embedded in a bit body is confirmed, and a sealed space in a bit body A method disclosed in Japanese Patent Application Laid-Open No. 59-210187, in which a specific gas is sealed in and a change in electric resistance due to gas reduction due to wear is detected, provided in the loading hole up to the wear limit point of the bit body There are a method disclosed in Japanese Utility Model Laid-Open No. 62-190787, a detection method using ultrasonic waves, and the like which detect a change in the current value of the conducting wire.
[0003]
[Problems to be solved by the invention]
However, detection methods other than ultrasonic waves have poor sensing accuracy and thus lack reliability, and have problems in terms of safety and handling.
[0004]
In addition, because the conventional ultrasonic detection method could not irradiate the maximum amount of wear due to restrictions on equipment dimensions, and was replaced by a commercially available plate thickness meter using longitudinal ultrasonic waves, There are problems such as misreading due to the appearance of unnecessary ecology due to longitudinal-transverse wave conversion on the reflecting surface, and being limited to the one whose frequency is easily attenuated as the temperature rises. Furthermore, from the viewpoint of precision measurement, there was also a problem that almost no effect was given.
[0005]
For this reason, in the present invention, a refraction mode conversion method using ultrasonic waves is adopted, and improvement is made so that the transverse wave ultrasonic waves can be directly irradiated onto the worn portion of the blade edge.
[0006]
[Means for Solving the Problems]
The present invention has been made in view of the above points, and the excavation bit with an ultrasonic sensor capable of detecting the amount of wear has a transverse wave ultrasonic probe via a wedge-shaped member contacting the other end of the excavation tip. This transverse wave ultrasonic probe is provided so that the incident transverse wave ultrasonic wave is reflected from the tip of the blade edge. In this case, the wedge-shaped member is preferably made of a heat resistant resin having a refractive function. Further, the blade edge wear detection device is configured to include a measuring instrument for accurately measuring the ultrasonic echo returned from the blade edge portion of the transverse wave ultrasonic probe. In this case, the ultrasonic wave is a transverse ultrasonic wave, and the frequency is preferably 0.5 to 10 MHz, and more preferably 1 to 5 MHz.
[0007]
[Action]
In the excavation bit and the cutting edge wear amount detecting device with an ultrasonic sensor according to the present invention, the excavation tip is irradiated with a transverse wave ultrasonic wave from an ultrasonic probe via a wedge-shaped member having a refractive function. Is. Therefore, the irradiated ultrasonic wave is reflected from the cutting edge portion of the excavation tip and returned, and this feedback echo is accurately measured by a measuring instrument connected to the outside. As a result, a change in the amount of wear at the cutting edge can be detected in real time and with high accuracy. This is because there is no incident angle of the longitudinal wave in the bit body because the incident angle is greater than the critical angle of refraction of the longitudinal wave, and therefore the longitudinal wave-transverse wave mode conversion at the time of reflection at the wear parts of the drilling tip is not possible. It cannot happen and there is no fear of misreading.
[0008]
【Example】
Hereinafter, an embodiment of a drilling bit with an ultrasonic sensor and a cutting edge wear detection device of the present invention will be described with reference to the drawings.
[0009]
FIG. 1 is a cross-sectional view conceptually showing an excavation bit with an ultrasonic sensor capable of detecting edge wear, and a bit main body 2 of a bar-shaped excavation bit 1 is attached to a cutter face plate 3 of an excavator (not shown). It can be attached by bolts (not shown). And in the notch step part 4 provided in the end of the excavation bit 1, the excavation tip 5 which consists of a cemented carbide is brazed, and the amount of wear of the edge of this excavation tip 5 is measured in real time by reflection of a transverse wave ultrasonic wave. Is done.
[0010]
Further, the excavation bit 1 has a transverse wave ultrasonic probe 6 and a wedge-shaped member 7 having an ultrasonic refraction function incorporated in the other end side of the cutting edge portion of the excavation tip 5. In summary, a receiving hole 8 is provided on the back side of the bottom surface of the notch step portion 4, and the wedge-shaped member 7 and the transverse ultrasonic probe 6 are provided on the side of the excavation tip 5 of the receiving hole 8. It is supposed to be located. In this case, the wedge-shaped member 7 has a heat resistance of .about.300.degree. The wedge angle must be variously changed depending on the shape of the excavation tip 5. At that time, the incident angle is calculated from Snell's law based on the sound speed of the excavation tip 5 and the sound speed of the wedge-shaped member 7.
[0011]
The transverse wave ultrasonic probe 6 is above the mounting pin 9 and contacts the excavation tip 5 via the wedge-shaped member 7. The mounting pin 9 is fixed by screwing the outer peripheral screw portion 11 into the screw hole portion 10 below the receiving hole 8.
[0012]
Note that a heat-resistant contact medium such as a glycerin-based viscous fluid or honey is preferably interposed between the excavation tip 5 and the wedge-shaped member 7 in order to facilitate the propagation of the transverse ultrasonic waves. In addition, the transverse wave ultrasonic probe 6 preferably has a quadrangular shape with a shape corresponding to the shape of the wedge-shaped member 7 in consideration of the directivity of the ultrasonic wave with respect to the wedge-shaped member 7.
[0013]
Accordingly, the transverse wave ultrasonic probe 6 incorporated in the excavation bit 1 irradiates the cutting edge portion of the excavation tip 5 with transverse wave ultrasonic waves of 0.5 to 10 MHz, preferably 1 to 5 MHz. This is because the eco-peak expands when the frequency is lower than 0.5 MHz, and the measurement accuracy is lowered. When the frequency is higher than 10 MHz, the attenuation increases and the eco-peak may be lost. It is. Therefore, the ultrasonic wave irradiated from the transverse wave ultrasonic probe 6 is refracted by the presence of the wedge-shaped member 7 and irradiated to the blade edge part as indicated by an arrow, and is reflected from the blade edge part and returned. To do. In this case, the cable 12 provided in the transverse wave ultrasonic probe 6 is led into the cable hole 13 and arranged outside the excavator via the connector 14 for the returned eco. Connected to the measuring instrument 15.
[0014]
Therefore, the cutting edge wear detecting device for a drill bit according to the present invention is constituted by the transverse wave ultrasonic probe 6 provided with the measuring instrument 13 and a heat-resistant wedge-shaped member 7 serving as a sensing sensor. . As a result, the measuring device 15 measures the arrival time of the echo from transmission to reception as the cutting edge wear amount of the excavation tip 5.
[0015]
In order to clarify the correlation between the bit wear amount and the eco-time, Fig. 2 shows the distance (mm) to the tip of the blade on the vertical axis and the time width of the pulse eco-interval on the horizontal axis. It is a thing. As a result, when the wear amount is about 14 mm from the wear amount O, the time width is shortened and can be detected as the wear amount.
[0016]
FIG. 3 conceptually shows another embodiment of the excavation bit 1, and the bit body 2 is provided with two excavation tips 5 and has a double-headed form. Along with this, two sets of the transverse ultrasonic probe 6 and the wedge-shaped member 7 are arranged in the bit body 2.
[0017]
【The invention's effect】
In the present invention, as described above, the excavation bit 1 with an ultrasonic sensor has the wedge-shaped member 7 and the transverse wave ultrasonic probe 6 incorporated in the bit body 2 so as to contact the excavation tip 5. It is comprised as follows. Therefore, since the ultrasonic wave is directly applied to the blade wear part, the wear amount can be detected with high accuracy.
[0018]
Further, the cutting edge wear detecting device of the excavation bit can accurately measure the time from the transmission to the reception of the ultrasonic wave by the measuring instrument 15 arranged outside. Therefore, there is an advantage that the wear amount of the cutting edge of the excavation bit 1 can be measured in real time by the precise time measurement of the ultrasonic echo.
[Brief description of the drawings]
FIG. 1 is a conceptual view showing an embodiment of an excavation bit with an ultrasonic sensor and a cutting edge wear amount detection device according to the present invention;
FIG. 2 is an explanatory diagram showing the relationship of eco-time to cutting edge wear;
FIG. 3 is a conceptual diagram showing another embodiment of the excavation bit with an ultrasonic sensor according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Drilling bit 2 Bit main body 5 Drilling tip 6 Ultrasonic probe 7 Wedge-shaped member 12 Cable 15 Measuring instrument

Claims (4)

ビット本体2に備えられた掘削チップ5の刃先摩耗を超音波センサ−を利用して測定できるようにした摩耗検知可能な掘削ビットであって、前記超音波センサ−は、横波超音波プロ−ブ6が備えられ、この横波超音波プロ−ブ6は、前記掘削チップ5の刃先部分に対する他端部側では、接触媒体を介してる屈折機能材からなるくさび状部材7が備えられるように、ビット本体2内に組込まれるとともに、外部の計測器15に接続するためのケ−ブル12が備えられていることを特徴とする超音波センサ−付き掘削ビット。An excavation bit capable of detecting wear of a cutting edge of an excavation tip 5 provided in the bit body 2 using an ultrasonic sensor, wherein the ultrasonic sensor includes a transverse wave ultrasonic probe. 6, and this transverse wave ultrasonic probe 6 is provided with a wedge-shaped member 7 made of a refractive function material through a contact medium on the other end side of the cutting edge portion of the excavation tip 5. An excavation bit with an ultrasonic sensor, which is incorporated in the main body 2 and is provided with a cable 12 for connecting to an external measuring instrument 15. 請求項1に記載されたくさび状部材7は、耐熱性樹脂から構成されている請求項1記載の超音波センサ−付き掘削ビット。The wedge-shaped member according to claim 1 is an excavation bit with an ultrasonic sensor according to claim 1, which is made of a heat-resistant resin. ビット本体内に組込まれた横波超音波プロ−ブ6及びこの横波超音波プロ−ブ6に備えられたケ−ブル12に接続された計測器15からなる掘削ビットの刃先摩耗検出装置であって、
前記横波超音波プロ−ブ6は、掘削チップ5の刃先部分に対する他端部側で接触する屈折機能を有するくさび状部材7を介して、照射された横波超音波が掘削チップの先端部から反射して帰還するように、入射角度が設定されており、
前記計測器15は、ケ−ブル12及びコネクタ14を介して超音波プロ−ブ6に接続され、掘削チップ5の先端部から反射して帰還したエコ−間隔を精密に時間計測して、刃先摩耗量として検出することを特徴とする超音波センサ−付き掘削ビットの刃先摩耗量検出装置。
A cutting edge wear detecting device for a drill bit comprising a transverse wave ultrasonic probe 6 incorporated in a bit body and a measuring instrument 15 connected to a cable 12 provided in the transverse wave ultrasonic probe 6. ,
In the transverse wave ultrasonic probe 6, the irradiated transverse wave ultrasonic wave is reflected from the tip of the excavation tip through the wedge-shaped member 7 having a refractive function that comes into contact with the cutting edge portion of the excavation tip 5 on the other end side. The incident angle is set so that
The measuring instrument 15 is connected to the ultrasonic probe 6 via the cable 12 and the connector 14 and precisely measures the echo interval reflected and returned from the tip of the excavation tip 5 to measure the cutting edge. An apparatus for detecting the wear amount of a cutting edge of an excavation bit with an ultrasonic sensor, wherein the wear amount is detected as a wear amount.
請求項3に記載された超音波は、横波の超音波で、周波数が0.5〜10MHz望ましくは1〜5MHzである請求項1記載の超音波センサー付き掘削ビットの刃先摩耗量検出装置。The ultrasonic wave described in claim 3 is a transverse ultrasonic wave, and the frequency is 0.5 to 10 MHz, preferably 1 to 5 MHz.
JP21004695A 1995-07-26 1995-07-26 Drilling bit with ultrasonic sensor and edge wear amount detection device Expired - Fee Related JP3607374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21004695A JP3607374B2 (en) 1995-07-26 1995-07-26 Drilling bit with ultrasonic sensor and edge wear amount detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21004695A JP3607374B2 (en) 1995-07-26 1995-07-26 Drilling bit with ultrasonic sensor and edge wear amount detection device

Publications (2)

Publication Number Publication Date
JPH0941865A JPH0941865A (en) 1997-02-10
JP3607374B2 true JP3607374B2 (en) 2005-01-05

Family

ID=16582915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21004695A Expired - Fee Related JP3607374B2 (en) 1995-07-26 1995-07-26 Drilling bit with ultrasonic sensor and edge wear amount detection device

Country Status (1)

Country Link
JP (1) JP3607374B2 (en)

Also Published As

Publication number Publication date
JPH0941865A (en) 1997-02-10

Similar Documents

Publication Publication Date Title
KR101804484B1 (en) Sensor device and residual stress detection system employing same
US4890490A (en) Liquid level monitoring
US20150107371A1 (en) Method and system for determining characteristics of an acoustic signal
EP2982942A1 (en) High temperature ultrasonic sensor and manufacturing method therefor
CN108613644A (en) A kind of ultrasonic probe that extreme environment wall thickness reduction measures
JP3607374B2 (en) Drilling bit with ultrasonic sensor and edge wear amount detection device
EP0382977B1 (en) Fluid level gauge
KR940002516B1 (en) Apparatus for determining surface fissures
JPH0210261A (en) Measurement of intercrystalline corrosion
US4038629A (en) Propagation delay meter
JP5053959B2 (en) Electrode tip contact area ratio evaluation method, workpiece internal resistance evaluation method, ultrasonic attenuation rate evaluation method, and electrode tip tilt state determination method
CN109406318A (en) A kind of experimental provision and method capturing the toe of weld multiple cracks germinating time and position
CN108802198A (en) A kind of on-line measuring device of laser cladding process crackle
JP2003130851A (en) Elastic parameter measuring device for material surface and coating layer
KR102192615B1 (en) Probe Device for Phased Array Ultrasonic Testing for Circumferential Inspection
CN209311245U (en) A kind of experimental provision capturing the toe of weld multiple cracks germinating time and position
US6497151B1 (en) Non-destructive testing method and apparatus to determine microstructure of ferrous metal objects
JPS6431048A (en) Method for measuring surface opening crack depth of concrete by ultrasonic wave
JP4553888B2 (en) Life casting method for continuous casting mold
CN215178125U (en) Detection apparatus for ultrasonic wave sound velocity
CN109959708A (en) A kind of re-melt deposit welding detection device
JP3905978B2 (en) Ultrasonic flaw detector
JP2009139188A (en) Ultrasonic apparatus for measuring surface roughness and method therefor
RU2010180C1 (en) Acoustic level indicator
CN214384487U (en) Polycrystal focusing ultrasonic probe for measuring oxide skin on inner wall of small-diameter pipe

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041007

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees