JP3606755B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP3606755B2
JP3606755B2 JP36833598A JP36833598A JP3606755B2 JP 3606755 B2 JP3606755 B2 JP 3606755B2 JP 36833598 A JP36833598 A JP 36833598A JP 36833598 A JP36833598 A JP 36833598A JP 3606755 B2 JP3606755 B2 JP 3606755B2
Authority
JP
Japan
Prior art keywords
compressor
voltage
power supply
output voltage
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36833598A
Other languages
Japanese (ja)
Other versions
JP2000193287A (en
Inventor
大輔 田畑
俊治 西塚
雄次 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP36833598A priority Critical patent/JP3606755B2/en
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to ES04016745.4T priority patent/ES2478617T3/en
Priority to EP04016746A priority patent/EP1467162A3/en
Priority to US09/719,964 priority patent/US6497109B1/en
Priority to EP04016745.4A priority patent/EP1467099B1/en
Priority to ES99922614T priority patent/ES2245102T3/en
Priority to EP99922614A priority patent/EP1094220B1/en
Priority to CN99807529A priority patent/CN1129713C/en
Priority to PCT/JP1999/002907 priority patent/WO1999066205A1/en
Priority to MYPI99002469A priority patent/MY119588A/en
Priority to MYPI20042013A priority patent/MY134218A/en
Priority to MYPI20042016A priority patent/MY127382A/en
Publication of JP2000193287A publication Critical patent/JP2000193287A/en
Priority to US10/196,366 priority patent/US6601400B2/en
Priority to US10/196,367 priority patent/US6644057B2/en
Application granted granted Critical
Publication of JP3606755B2 publication Critical patent/JP3606755B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Description

【0001】
【発明の属する技術分野】
本発明は、室内の空気調和を行う空気調和装置に関するものである。
【0002】
【従来の技術】
従来の冷暖房運転可能な分離型空気調和装置の電気回路は、図7に示すように、室内機1と、室外機2と、それらを互いに電気的に接続する内外接続電線3とで構成されている。この室内機1は、本体スイッチ4と、室内側電子制御装置5と、トランジスタモータなどの室内ファンモータ6と、室内上下羽根駆動用のルーバーモータ7とで構成されている。また、室外機2は、室外側電子制御装置8と、冷凍サイクルと加熱サイクルとに応じて冷媒の経路を切り換える四方弁9と、インダクションモータなどの室外ファンモータ10と、冷媒を圧縮する圧縮機11とで構成されている。
【0003】
この分離型空気調和装置の運転動作について以下に説明する。
【0004】
室内機1は商用電源12に接続されており、室内機1の本体スイッチ4が投入されると、室内側電子制御装置5に電力が供給されて制御動作を開始し、室内ファンモータ6とルーバーモータ7とを回転させ、室内熱交換器(図示せず)を通して室内空気の循環を開始する。ここで、使用者が動作開始を入力指示すると、室内側電子制御装置5はメインリレー(図示せず)を制御して接続状態とし、商用電源12を室外機2に供給する。この時、室外側電子制御装置8には商用電源12からの電力が供給されてこの室外側電子制御装置8は制御動作を開始し、圧縮機11に指示電圧を印加し回転を開始させるとともに、室外ファンモータ10にも商用電源12を接続し、結果、室外熱交換器(図示せず)に外気を送り込みを開始する。冷媒の流れる経路を切り換える四方弁9は、室外側電子制御装置8の指示により、商用電源12が接続されない時は冷媒を冷房サイクルの経路に流す位置にある。この状態では空気調和装置は冷房動作を開始する。
【0005】
つぎに、使用者が暖房動作を指定入力すると、室外側電子制御装置8は、四方弁9に商用電源12を接続する。この動作により冷媒の経路が加熱サイクル側に切り換えられて暖房動作が開始する。このとき、室外ファンモータ10により、外気が室外側熱交換器に送り込まれ、外気の熱が室外熱交換器により冷媒に取り入れられるので、冷媒は蒸発して気化し、圧縮機11により冷媒が圧縮されて室内熱交換器に送られる。
【0006】
いずれの場合も、圧縮機11には、室外側電子制御装置8によって商用電源12を圧縮機11の運転周波数に応じた比率に基づいて増幅あるいは減少させた指示電圧が印加される。
【0007】
【発明が解決しようとする課題】
しかしながら、従来の空気調和装置の構成では、商用電源の電圧のみにより圧縮機への出力電圧が決まるので、商用電源の電圧変動によって圧縮機への出力電圧が変動して圧縮機のトルクが変化し、圧縮機の起動失敗が発生する可能性がある。さらに、圧縮機の圧力バランスがとれていない再起動時には、最適な電圧が印加されておらず、直流モータの圧縮機では起動トルク不足により起動できないという問題がある。
【0008】
本発明は、商用電源の電圧変動による圧縮機への出力電圧の影響を低減するとともに起動時の圧縮機の負荷を考慮して起動実力を向上させる空気調和装置提供することを目的とするものである。
【0009】
【課題を解決するための手段】
本発明の空気調和装置起動時の商用電源の電圧値に応じて設定された電源信号を圧縮機の電源回路に印加して起動する空気調和装置であって、圧縮機のシェル温度を検出するシェル温度検出手段と、前記圧縮機の停止期間と前記シェル温度検出手段からの検出信号に基づいて、前記電源信号を補正して前記圧縮機への最適出力電圧を決定する電圧補正制御部と、を備え、前記電圧補正制御部は、前記シェル温度検出手段からの検出信号に基づいて前記電源信号の補正を行うとき、前記圧縮機内部のモータのオイルの粘度の温度特性と前記モータの発生磁力の温度特性とを用いた演算により補正を行うことを特徴とするものである。
【0010】
本発明によると、商用電源の電圧変動による圧縮機への出力電圧の影響を低減するとともに起動時の圧縮機の負荷を考慮して起動実力を向上させることができる。
【0011】
【発明の実施の形態】
本発明の請求項1に記載の発明は、起動時の商用電源の電圧値に応じて設定された電源信号を圧縮機の電源回路に印加して起動する空気調和装置であって、圧縮機のシェル温度を検出するシェル温度検出手段と、前記圧縮機の停止期間と前記シェル温度検出手段からの検出信号に基づいて、前記電源信号を補正して前記圧縮機への最適出力電圧を決定する電圧補正制御部と、を備え、前記電圧補正制御部は、前記シェル温度検出手段からの検出信号に基づいて前記電源信号の補正を行うとき、前記圧縮機内部のモータのオイルの粘度の温度特性と前記モータの発生磁力の温度特性とを用いた演算により補正を行うことを特徴とする空気調和装置としたものであり、商用電源の電圧変動による圧縮機への出力電圧の影響を低減するとともに起動時の圧縮機の負荷を考慮して起動実力を向上させることができる。
【0016】
以下、本発明の空気調和装置の起動制御方法と空気調和装置を具体的な実施の形態に基づいて説明する。
【0017】
(実施の形態1)
図1に示す実施の形態1の空気調和装置は、図7に示した従来例と同様に室外機1と室内機2とこれらを接続する内外接続電線3とで構成された分離型空気調和装置であって、電圧補正制御部としての電圧補正回路13と、圧縮機11の停止期間を測定する圧縮機停止時間カウンタ14とが追加されている点が従来例とは異なっている。
【0018】
電圧補正回路13は、起動時の商用電源12の電圧値に応じて設定された電源信号を圧縮機11の停止期間に基づいて補正して圧縮機11の電源回路に印加するもので、具体的には、図2に示すように、電圧検出回路15と受信手段16と演算回路17とで構成されている。圧縮機停止時間カウンタ14は、室内側電子制御装置5の内部に設けられている。
【0019】
ここで、この分離型空気調和装置の起動動作について以下に説明する。
【0020】
なお、圧縮機11の停止期間は十分に長くあって圧縮機11の圧力バランスがとれている状態で圧縮機11を起動させるものとする。
【0021】
図1に示すように、室内機1の本体スイッチ4が投入され、室内側電子制御装置5に商用電源12からの電力が供給され制御動作を開始している状態で、使用者によって動作開始が入力指示されると、商用電源12からの電力は、室内側電子制御装置5を介して室外側電子制御装置8に供給されて電圧補正回路13に供給される。
【0022】
図2に示すように、電圧検出回路15は、室外側電子制御装置8に供給された商用電源12からの起動時の入力電圧を検出する。すなわち、商用電源12の電圧変動を検出する。電圧検出回路15は、前記の検出した入力電圧を電源電圧信号S1として受信手段16に出力する。
【0023】
受信手段16は、電源電圧信号S1と、演算回路17からの指示で圧縮機停止時間カウンタ14から読み出された圧縮機11の停止期間を示す停止期間信号S2とを受信して演算回路17に出力する。
【0024】
演算回路17は、圧縮機11への出力電圧が定格域電圧印加時の各運転周波数に応じた最適出力電圧となるように、電源電圧信号S1に応じて商用電源12からの入力電圧のデューティ設定した最適出力電圧V1を圧縮機11の電源回路に印加して圧縮機11を起動させる。ここでは、演算回路17は、停止期間信号S2に基づいて圧縮機11の停止期間が十分に長かったことを検知し、圧縮機11の圧力バランスがとれているとして最適出力電圧V1の圧縮機11の停止期間による補正が不要であると判断している。
【0025】
圧縮機11は、圧力バランスがとれているので、最適出力電圧V1のみで正常に起動し、冷媒を圧縮する運転動作を開始する。
【0026】
圧縮機11の運転動作中に使用者によって動作停止が入力指示されると、室内側電子制御装置5は、メインリレー(図示せず)を制御して非接続状態とし、商用電源12からの電力の室外側電子制御装置8への供給を停止し、圧縮機11を停止させる。
【0027】
圧縮機11が停止すると、圧縮機停止時間カウンタ14は、圧縮機11の停止期間の測定を開始する。
【0028】
ここで、この分離型空気調和装置の再起動動作について以下に説明する。
【0029】
前記圧縮機11の停止から短時間(例えば、1分程度)以内にこの圧縮機11を再起動させようと使用者によって動作開始が入力指示されると、室内側電子制御装置5はメインリレー(図示せず)を制御して接続状態とし、商用電源12からの電力は、室内側電子制御装置5を介して室外側電子制御装置8に供給されて電圧補正回路13に供給される。
【0030】
電圧検出回路15は、前述と同様に、室外側電子制御装置8に供給された商用電源12からの入力電圧を検出して電源電圧信号S1を受信手段16に出力する。
【0031】
受信手段16は、電源電圧信号S1と、演算回路17からの指示で圧縮機停止時間カウンタ14から読み出された圧縮機11の停止期間を示す停止期間信号S2とを受信して演算回路17に出力する。
【0032】
演算回路17は、圧縮機11への出力電圧が定格域電圧印加時の各運転周波数に応じた最適出力電圧となるように電源電圧信号S1に応じて設定された最適出力電圧V1を、圧縮機停止時間カウンタ14からの停止期間信号S2に基づいて補正し、補正後の最適出力電圧V2を圧縮機11の電源回路に印加して圧縮機11を再起動させる。
【0033】
具体的には、圧縮機11の停止期間が短い場合(例えば、停止期間が1分以内である場合)には、圧縮機11の圧力バランスがとれておらず、電源電圧信号S1に応じて設定された最適出力電圧V1だけでは起動トルク不足であるため、この最適出力電圧V1の平均値を停止期間信号S2に基づいて増加させる補正(例えば、デューティを大きくして出力電圧の平均値を増加させる補正)を実行し、補正後の最適出力電圧V2を圧縮機11の電源回路に印加して圧縮機11を再起動させる。なお、停止期間信号S2に基づいて最適出力電圧V1の平均値を増加させる補正量は、例えば、停止期間が長くなるに従って減少するよう設定している。
【0034】
圧縮機11の停止期間が十分に長い場合には、圧縮機11の圧力バランスがとれているので、最適出力電圧V1のみで圧縮機11を起動させることができるため、この最適出力電圧V1の平均値を増加させる補正を実行しないよう設定している。
【0035】
なお、冷房、暖房いずれの場合も、圧縮機11には、電圧補正回路13によって決定された最適出力電圧が印加される。
【0036】
このように構成したため、商用電源12の電圧変動による圧縮機11への出力電圧の影響を低減するとともに、圧縮機11の停止期間に基づいて起動時の圧縮機11の負荷を考慮することができ、起動実力を向上させることができる。
【0037】
(実施の形態2)
本発明の実施の形態2の空気調和装置は、図3に示すように、前述の実施の形態1の分離型空気調和装置に、圧縮機11のシェル温度を検出する圧縮機シェル温度検知センサ18を設け、図4に示すように、電圧補正回路13を、起動時の商用電源12の電圧値に応じて設定された電源信号を圧縮機シェル温度検知センサ18からの検出信号S3に基づいて補正して圧縮機11への最適出力電圧を決定するよう構成している点が異なっている。
【0038】
電圧補正回路13は、電圧検出回路15と受信手段16aと演算回路17aとで構成されている。
【0039】
ここで、この分離型空気調和装置の再起動動作について以下に説明する。
【0040】
演算回路17aには、電圧検出回路15からの電源電圧信号S1と、圧縮機停止時間カウンタ14で測定した圧縮機11の停止期間信号S2と、圧縮機シェル温度検知センサ18で検出した圧縮機11のシェル温度に関する検出信号S3とが受信手段16aを介して入力される。
【0041】
演算回路17aは、圧縮機11への出力電圧が定格域電圧印加時の各運転周波数に応じた最適出力電圧となるように電源電圧信号S1に応じて設定された最適出力電圧V1を、圧縮機停止時間カウンタ14からの停止期間信号S2に基づいて補正して最適出力電圧V2を仮決定し、さらに、この仮決定した最適出力電圧V2を圧縮機シェル温度検知センサ18からの検出信号S3に基づいて補正して最終的な最適出力電圧V3を決定し、この最終的な最適出力電圧V3を圧縮機11の電源回路に印加して圧縮機11を再起動させる。
【0042】
具体的には、圧縮機11のシェル温度が低い場合(例えば、−15℃程度)には、圧縮機11のモータのオイルの粘度が高く起動トルク不足が生じるため、仮決定した最適出力電圧V2の平均値を圧縮機シェル温度検知センサ18からの検出信号S3に基づいて増加させる補正(例えば、デューティを大きくして出力電圧の平均値を増加させる補正)を実行して最終的な最適出力電圧V3を決定し、この最終的な最適出力電圧V3を圧縮機11の電源回路に印加して圧縮機11を再起動させる。検出信号S3に基づいて最適出力電圧V2の平均値を増加させる補正量は、例えば、シェル温度が高い場合に比べてシェル温度が低い場合の方が多く設定している。
【0043】
このように構成したため、圧縮機11のシェル温度を検知し、直流モータの磁力特性を考慮に入れて圧縮機11への最適出力電圧を補正することで更なる起動実力の向上が実現できる。
【0044】
(実施の形態3)
本発明の実施の形態3の空気調和装置は、図5に示すように、前述の実施の形態1の分離型空気調和装置に、室内温度を検出する室内温度検出手段としての吸込み温度センサ19と、外気温度を検出する外気温度検出手段としての外気温度センサ20とを設け、図6に示すように、電圧補正回路13を、吸込み温度センサ19からの室内温度検出信号S4と外気温度センサ20からの外気温度検出信号S5とに基づいて圧縮機11への最適出力電圧を補正し決定するよう構成している点が異なっている。
【0045】
電圧補正回路13は、電圧検出回路15と受信手段16bと演算回路17bとで構成されている。
【0046】
ここで、この分離型空気調和装置の再起動動作について以下に説明する。
【0047】
演算回路17bには、図6に示すように、電圧検出回路15からの電源電圧信号S1と、圧縮機停止時間カウンタ14で測定した圧縮機11の停止期間信号S2と、吸込み温度センサ19からの室内温度検出信号S4と、外気温度センサ20からの外気温度検出信号S5とが受信手段16bを介して入力される。
【0048】
この演算回路17bは、圧縮機11への出力電圧が定格域電圧印加時の各運転周波数に応じた最適出力電圧となるように、電源電圧信号S1に応じて設定された最適出力電圧V1を、圧縮機停止時間カウンタ14からの停止期間信号S2に基づいて補正し最適出力電圧V2を仮決定し、さらに、この仮決定した最適出力電圧V2を室内温度検出信号S4と外気温度検出信号S5とに基づいて補正して最終的な最適出力電圧V4を決定し、この最終的な最適出力電圧V4を圧縮機11に印加して圧縮機11を再起動させる。
【0049】
具体的には、室内温度検出信号S4と外気温度検出信号S5とに基づいて室内温度と外気温度との差が大きいことで圧縮機11の起動トルク不足が生じると判定した場合には、例えば、デューティを大きくして出力電圧の平均値を増加させる補正を行う。
【0050】
このように構成したため、室内温度検出信号S4と外気温度検出信号S5とに基づいて室内温度と外気温度との差から圧縮機11の負荷を起動直前に割り出すことができ、長時間停止後の起動時の冷媒の特性を考慮に入れて圧縮機11への最適出力電圧を補正することで圧縮機11への出力電圧の最適化を図ることができる。
【0051】
なお、前述の各実施の形態では、商用電源12からの入力電力をデューティ制御して補正しているが、商用電源12からの入力電力のピーク値を増減させて補正するなどデューティ制御以外の電力補正であっても、同様の効果を有する。
【0052】
【発明の効果】
以上のように本発明の請求項1に記載の発明によれば、起動時の商用電源の電圧値に応じて設定された電源信号を圧縮機の電源回路に印加して起動する空気調和装置であって、圧縮機のシェル温度を検出するシェル温度検出手段と、前記圧縮機の停止期間と前記シェル温度検出手段からの検出信号に基づいて、前記電源信号を補正して前記圧縮機への最適出力電圧を決定する電圧補正制御部と、を備え、前記電圧補正制御部は、前記シェル温度検出手段からの検出信号に基づいて前記電源信号の補正を行うとき、前記圧縮機内部のモータのオイルの粘度の温度特性と前記モータの発生磁力の温度特性とを用いた演算により補正を行うことにより、商用電源の電圧変動による圧縮機への出力電圧の影響を低減するとともに起動時の圧縮機の負荷を考慮して起動実力を向上させることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1の分離型空気調和装置の電気回路を示すブロック図
【図2】同実施の形態1の電圧補正回路の構成を示すブロック図
【図3】本発明の実施の形態2の分離型空気調和装置の電気回路を示すブロック図
【図4】同実施の形態2の電圧補正回路の構成を示すブロック図
【図5】本発明の実施の形態3の分離型空気調和装置の電気回路を示すブロック図
【図6】同実施の形態3の電圧補正回路の構成を示すブロック図
【図7】従来の分離型空気調和装置の電気回路を示すブロック図
【符号の説明】
13 電圧補正回路
14 圧縮機停止時間カウンタ
15 電圧検出手段
16 受信手段
17 演算回路
16a 受信手段
17a 演算回路
16b 受信手段
17b 演算回路
18 圧縮機シェル温度検出手段
19 吸込み温度センサ
20 外気温度センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air conditioner that performs indoor air conditioning.
[0002]
[Prior art]
As shown in FIG. 7, an electric circuit of a conventional separation-type air conditioner capable of cooling and heating is composed of an indoor unit 1, an outdoor unit 2, and an internal / external connection wire 3 that electrically connects them to each other. Yes. The indoor unit 1 includes a main body switch 4, an indoor electronic control unit 5, an indoor fan motor 6 such as a transistor motor, and a louver motor 7 for driving indoor upper and lower blades. The outdoor unit 2 includes an outdoor electronic control device 8, a four-way valve 9 that switches a refrigerant path according to a refrigeration cycle and a heating cycle, an outdoor fan motor 10 such as an induction motor, and a compressor that compresses the refrigerant. 11.
[0003]
The operation of the separation type air conditioner will be described below.
[0004]
The indoor unit 1 is connected to a commercial power source 12, and when the main body switch 4 of the indoor unit 1 is turned on, power is supplied to the indoor electronic control unit 5 to start the control operation, and the indoor fan motor 6 and the louver The motor 7 is rotated to start the circulation of room air through an indoor heat exchanger (not shown). Here, when the user instructs to start the operation, the indoor electronic control unit 5 controls the main relay (not shown) to be in a connected state, and supplies the commercial power supply 12 to the outdoor unit 2. At this time, electric power from the commercial power supply 12 is supplied to the outdoor electronic control device 8, and the outdoor electronic control device 8 starts a control operation, applies an instruction voltage to the compressor 11 to start rotation, The commercial power supply 12 is also connected to the outdoor fan motor 10, and as a result, the outside air is started to be sent to the outdoor heat exchanger (not shown). The four-way valve 9 that switches the refrigerant flow path is in a position to flow the refrigerant to the cooling cycle path when the commercial power supply 12 is not connected according to an instruction from the outdoor electronic control unit 8. In this state, the air conditioner starts a cooling operation.
[0005]
Next, when the user designates and inputs the heating operation, the outdoor electronic control device 8 connects the commercial power supply 12 to the four-way valve 9. By this operation, the refrigerant path is switched to the heating cycle side and the heating operation is started. At this time, outdoor air is sent to the outdoor heat exchanger by the outdoor fan motor 10 and heat of the outdoor air is taken into the refrigerant by the outdoor heat exchanger, so that the refrigerant evaporates and vaporizes, and the refrigerant is compressed by the compressor 11. And sent to the indoor heat exchanger.
[0006]
In any case, an instruction voltage obtained by amplifying or reducing the commercial power source 12 based on a ratio corresponding to the operating frequency of the compressor 11 by the outdoor electronic control device 8 is applied to the compressor 11.
[0007]
[Problems to be solved by the invention]
However, in the configuration of the conventional air conditioner, since the output voltage to the compressor is determined only by the voltage of the commercial power source, the output voltage to the compressor varies due to the voltage variation of the commercial power source, and the compressor torque changes. The compressor may fail to start. Furthermore, at the time of restart when the pressure balance of the compressor is not balanced, there is a problem that an optimum voltage is not applied and the compressor of the DC motor cannot be started due to insufficient starting torque.
[0008]
An object of the present invention is to provide an air conditioner that reduces the influence of the output voltage to the compressor due to voltage fluctuations of the commercial power supply and improves the starting ability in consideration of the load of the compressor at the time of starting. It is.
[0009]
[Means for Solving the Problems]
Air conditioner of the present invention is the air conditioning apparatus to start is applied to the power supply circuit of the compressor set power signal in accordance with the voltage value of the commercial power supply at startup, detecting the shell temperature of the compressor And a voltage correction control unit that determines the optimum output voltage to the compressor by correcting the power signal based on a stop period of the compressor and a detection signal from the shell temperature detection unit. The voltage correction control unit corrects the power supply signal based on the detection signal from the shell temperature detection means, and the temperature characteristics of the oil viscosity of the motor inside the compressor and the generation of the motor The correction is performed by calculation using the temperature characteristic of the magnetic force .
[0010]
According to the present invention, it is possible to reduce the influence of the output voltage to the compressor due to the voltage fluctuation of the commercial power supply and improve the starting ability in consideration of the load of the compressor at the time of starting.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to claim 1 of the present invention is an air conditioner that is activated by applying a power signal set in accordance with a voltage value of a commercial power source at the time of startup to a power circuit of the compressor. A shell temperature detecting means for detecting a shell temperature, and a voltage for correcting the power signal and determining an optimum output voltage to the compressor based on a stop period of the compressor and a detection signal from the shell temperature detecting means A correction control unit, and when the voltage correction control unit corrects the power supply signal based on a detection signal from the shell temperature detection means, a temperature characteristic of oil viscosity of a motor inside the compressor; is obtained by the air conditioner which is characterized in that the correction by calculation using the temperature characteristic of the generation force of the motor, starting with reducing the influence of the output voltage to the compressor by the voltage fluctuation of the commercial power supply The load of the compressor can be improved activation ability in consideration.
[0016]
Hereinafter, an activation control method for an air conditioner and an air conditioner according to the present invention will be described based on specific embodiments.
[0017]
(Embodiment 1)
The air conditioner of Embodiment 1 shown in FIG. 1 is a separation type air conditioner configured by an outdoor unit 1, an indoor unit 2, and an internal / external connection electric wire 3 that connects them as in the conventional example shown in FIG. 7. However, it is different from the conventional example in that a voltage correction circuit 13 as a voltage correction control unit and a compressor stop time counter 14 for measuring the stop period of the compressor 11 are added.
[0018]
The voltage correction circuit 13 corrects a power signal set according to the voltage value of the commercial power supply 12 at the time of start-up based on the stop period of the compressor 11 and applies it to the power supply circuit of the compressor 11. As shown in FIG. 2, the circuit includes a voltage detection circuit 15, receiving means 16, and an arithmetic circuit 17. The compressor stop time counter 14 is provided inside the indoor electronic control unit 5.
[0019]
Here, the starting operation of the separation type air conditioner will be described below.
[0020]
Note that the compressor 11 is started in a state in which the compressor 11 is stopped for a sufficiently long period and the pressure balance of the compressor 11 is maintained.
[0021]
As shown in FIG. 1, the main unit switch 4 of the indoor unit 1 is turned on, the electric power from the commercial power supply 12 is supplied to the indoor electronic control unit 5 and the control operation is started. When an input instruction is given, the electric power from the commercial power supply 12 is supplied to the outdoor electronic control device 8 via the indoor electronic control device 5 and supplied to the voltage correction circuit 13.
[0022]
As shown in FIG. 2, the voltage detection circuit 15 detects an input voltage at the time of startup from the commercial power supply 12 supplied to the outdoor electronic control device 8. That is, the voltage fluctuation of the commercial power supply 12 is detected. The voltage detection circuit 15 outputs the detected input voltage to the reception unit 16 as the power supply voltage signal S1.
[0023]
The receiving means 16 receives the power supply voltage signal S 1 and the stop period signal S 2 indicating the stop period of the compressor 11 read from the compressor stop time counter 14 in response to an instruction from the arithmetic circuit 17, and sends it to the arithmetic circuit 17. Output.
[0024]
The arithmetic circuit 17 sets the duty of the input voltage from the commercial power supply 12 according to the power supply voltage signal S1 so that the output voltage to the compressor 11 becomes the optimum output voltage corresponding to each operating frequency when the rated range voltage is applied. The optimum output voltage V1 thus applied is applied to the power supply circuit of the compressor 11 to start the compressor 11. Here, the arithmetic circuit 17 detects that the stop period of the compressor 11 has been sufficiently long based on the stop period signal S2, and assumes that the compressor 11 has the optimum output voltage V1 because the pressure balance of the compressor 11 is balanced. It is determined that no correction is required during the stop period.
[0025]
Since the compressor 11 is balanced in pressure, it starts normally with only the optimum output voltage V1 and starts the operation of compressing the refrigerant.
[0026]
When an operation stop instruction is input by the user during the operation of the compressor 11, the indoor electronic control unit 5 controls the main relay (not shown) to be in a disconnected state, and the electric power from the commercial power supply 12. The supply to the outdoor electronic control unit 8 is stopped, and the compressor 11 is stopped.
[0027]
When the compressor 11 stops, the compressor stop time counter 14 starts measuring the stop period of the compressor 11.
[0028]
Here, the restarting operation of the separation type air conditioner will be described below.
[0029]
When the user inputs an operation start instruction to restart the compressor 11 within a short period of time (for example, about 1 minute) after the compressor 11 is stopped, the indoor electronic control unit 5 causes the main relay ( The power from the commercial power supply 12 is supplied to the outdoor electronic control device 8 via the indoor electronic control device 5 and supplied to the voltage correction circuit 13.
[0030]
The voltage detection circuit 15 detects the input voltage from the commercial power supply 12 supplied to the outdoor electronic control device 8 and outputs the power supply voltage signal S1 to the receiving means 16 as described above.
[0031]
The receiving means 16 receives the power supply voltage signal S 1 and the stop period signal S 2 indicating the stop period of the compressor 11 read from the compressor stop time counter 14 in response to an instruction from the arithmetic circuit 17, and sends it to the arithmetic circuit 17. Output.
[0032]
The arithmetic circuit 17 uses the optimum output voltage V1 set according to the power supply voltage signal S1 so that the output voltage to the compressor 11 becomes the optimum output voltage corresponding to each operating frequency when the rated range voltage is applied. Correction is made based on the stop period signal S2 from the stop time counter 14, and the corrected optimum output voltage V2 is applied to the power supply circuit of the compressor 11 to restart the compressor 11.
[0033]
Specifically, when the stop period of the compressor 11 is short (for example, when the stop period is within one minute), the pressure balance of the compressor 11 is not balanced and is set according to the power supply voltage signal S1. Since the starting torque is insufficient only with the optimum output voltage V1 that has been set, correction for increasing the average value of the optimum output voltage V1 based on the stop period signal S2 (for example, increasing the duty value to increase the average value of the output voltage) Correction) is executed, the corrected optimum output voltage V2 is applied to the power supply circuit of the compressor 11, and the compressor 11 is restarted. The correction amount that increases the average value of the optimum output voltage V1 based on the stop period signal S2 is set to decrease as the stop period becomes longer, for example.
[0034]
When the stop period of the compressor 11 is sufficiently long, since the pressure balance of the compressor 11 is maintained, the compressor 11 can be started only by the optimum output voltage V1, and thus the average of the optimum output voltage V1. It is set not to execute correction to increase the value.
[0035]
In either case of cooling or heating, the optimum output voltage determined by the voltage correction circuit 13 is applied to the compressor 11.
[0036]
Since it comprised in this way, while being able to reduce the influence of the output voltage to the compressor 11 by the voltage fluctuation of the commercial power source 12, the load of the compressor 11 at the time of starting can be considered based on the stop period of the compressor 11. , Start ability can be improved.
[0037]
(Embodiment 2)
As shown in FIG. 3, the air conditioner according to the second embodiment of the present invention has a compressor shell temperature detection sensor 18 that detects the shell temperature of the compressor 11 in the separation type air conditioner according to the first embodiment described above. As shown in FIG. 4, the voltage correction circuit 13 corrects the power supply signal set according to the voltage value of the commercial power supply 12 at the start-up based on the detection signal S3 from the compressor shell temperature detection sensor 18. The difference is that the optimum output voltage to the compressor 11 is determined.
[0038]
The voltage correction circuit 13 includes a voltage detection circuit 15, a receiving unit 16a, and an arithmetic circuit 17a.
[0039]
Here, the restarting operation of the separation type air conditioner will be described below.
[0040]
The arithmetic circuit 17 a includes a power supply voltage signal S 1 from the voltage detection circuit 15, a compressor 11 stop period signal S 2 measured by the compressor stop time counter 14, and a compressor 11 detected by the compressor shell temperature detection sensor 18. The detection signal S3 related to the shell temperature is input via the receiving means 16a.
[0041]
The arithmetic circuit 17a uses an optimum output voltage V1 set according to the power supply voltage signal S1 so that the output voltage to the compressor 11 becomes an optimum output voltage corresponding to each operating frequency when the rated range voltage is applied. Correction is made based on the stop period signal S2 from the stop time counter 14 to tentatively determine the optimum output voltage V2, and this tentatively determined optimum output voltage V2 is further based on the detection signal S3 from the compressor shell temperature detection sensor 18. Thus, the final optimum output voltage V3 is determined, and this final optimum output voltage V3 is applied to the power supply circuit of the compressor 11 to restart the compressor 11.
[0042]
Specifically, when the shell temperature of the compressor 11 is low (for example, about −15 ° C.), the oil viscosity of the motor of the compressor 11 is high and the starting torque is insufficient. Is corrected based on the detection signal S3 from the compressor shell temperature detection sensor 18 (for example, correction for increasing the average value of the output voltage by increasing the duty) to obtain the final optimum output voltage V3 is determined, and this final optimum output voltage V3 is applied to the power supply circuit of the compressor 11 to restart the compressor 11. For example, the correction amount for increasing the average value of the optimum output voltage V2 based on the detection signal S3 is set to be larger when the shell temperature is lower than when the shell temperature is high.
[0043]
Since it comprised in this way, the further improvement of starting ability can be implement | achieved by detecting the shell temperature of the compressor 11 and correct | amending the optimal output voltage to the compressor 11 in consideration of the magnetic force characteristic of a DC motor.
[0044]
(Embodiment 3)
As shown in FIG. 5, an air conditioner according to Embodiment 3 of the present invention includes a suction temperature sensor 19 as an indoor temperature detecting means for detecting an indoor temperature in the separation type air conditioner according to Embodiment 1 described above. And an outside temperature sensor 20 as an outside temperature detecting means for detecting the outside temperature. As shown in FIG. 6, the voltage correction circuit 13 is connected to the indoor temperature detection signal S4 from the suction temperature sensor 19 and the outside temperature sensor 20. The difference is that the optimum output voltage to the compressor 11 is corrected and determined based on the outside air temperature detection signal S5.
[0045]
The voltage correction circuit 13 includes a voltage detection circuit 15, a receiving unit 16b, and an arithmetic circuit 17b.
[0046]
Here, the restarting operation of the separation type air conditioner will be described below.
[0047]
As shown in FIG. 6, the arithmetic circuit 17 b includes a power supply voltage signal S 1 from the voltage detection circuit 15, a compressor 11 stop period signal S 2 measured by the compressor stop time counter 14, and a suction temperature sensor 19. The room temperature detection signal S4 and the outside temperature detection signal S5 from the outside temperature sensor 20 are input via the receiving means 16b.
[0048]
The arithmetic circuit 17b uses the optimum output voltage V1 set according to the power supply voltage signal S1 so that the output voltage to the compressor 11 becomes the optimum output voltage corresponding to each operating frequency when the rated range voltage is applied. Correction is made based on the stop period signal S2 from the compressor stop time counter 14 to tentatively determine the optimum output voltage V2, and the tentatively determined optimum output voltage V2 is further converted into the indoor temperature detection signal S4 and the outside air temperature detection signal S5. The final optimum output voltage V4 is determined based on the correction, and the final optimum output voltage V4 is applied to the compressor 11 to restart the compressor 11.
[0049]
Specifically, when it is determined that the starting torque of the compressor 11 is insufficient due to the large difference between the room temperature and the outside air temperature based on the room temperature detection signal S4 and the outside air temperature detection signal S5, for example, Correction is performed to increase the average value of the output voltage by increasing the duty.
[0050]
Since it comprised in this way, based on indoor temperature detection signal S4 and outside temperature detection signal S5, the load of the compressor 11 can be calculated just before starting from the difference of indoor temperature and outside temperature, and starting after a long time stop The output voltage to the compressor 11 can be optimized by correcting the optimum output voltage to the compressor 11 in consideration of the characteristics of the refrigerant at the time.
[0051]
In each of the embodiments described above, the input power from the commercial power supply 12 is corrected by duty control, but power other than duty control such as correction by increasing or decreasing the peak value of the input power from the commercial power supply 12 is used. Even the correction has the same effect.
[0052]
【The invention's effect】
As described above, according to the first aspect of the present invention, an air conditioner that is activated by applying a power signal set in accordance with the voltage value of the commercial power source at the time of activation to the power circuit of the compressor. The shell temperature detecting means for detecting the shell temperature of the compressor, and the optimum power to the compressor by correcting the power supply signal based on the stop period of the compressor and the detection signal from the shell temperature detecting means. A voltage correction control unit for determining an output voltage, wherein the voltage correction control unit corrects the power supply signal based on a detection signal from the shell temperature detection means, and performs an oil of a motor inside the compressor. By correcting using the temperature characteristic of the viscosity of the motor and the temperature characteristic of the magnetic force generated by the motor, the influence of the output voltage to the compressor due to the voltage fluctuation of the commercial power supply is reduced and the compressor load It is possible to improve the starting ability in consideration.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an electric circuit of a separation-type air conditioner according to Embodiment 1 of the present invention. FIG. 2 is a block diagram showing a configuration of a voltage correction circuit according to Embodiment 1. FIG. FIG. 4 is a block diagram showing a configuration of a voltage correction circuit according to the second embodiment. FIG. 5 is a separation type according to the third embodiment of the present invention. FIG. 6 is a block diagram showing a configuration of a voltage correction circuit according to the third embodiment. FIG. 7 is a block diagram showing an electric circuit of a conventional separation-type air conditioner. Description】
13 Voltage correction circuit 14 Compressor stop time counter 15 Voltage detection means 16 Reception means 17 Operation circuit 16a Reception means 17a Operation circuit 16b Reception means 17b Operation circuit 18 Compressor shell temperature detection means 19 Suction temperature sensor 20 Outside air temperature sensor

Claims (1)

起動時の商用電源の電圧値に応じて設定された電源信号を圧縮機の電源回路に印加して起動する空気調和装置であって、An air conditioner that starts by applying a power signal set in accordance with a voltage value of a commercial power source at the time of startup to a power circuit of the compressor,
圧縮機のシェル温度を検出するシェル温度検出手段と、Shell temperature detecting means for detecting the shell temperature of the compressor;
前記圧縮機の停止期間と前記シェル温度検出手段からの検出信号に基づいて、前記電源信号を補正して前記圧縮機への最適出力電圧を決定する電圧補正制御部と、A voltage correction controller that corrects the power supply signal to determine an optimum output voltage to the compressor based on a stop period of the compressor and a detection signal from the shell temperature detection unit;
を備え、前記電圧補正制御部は、前記シェル温度検出手段からの検出信号に基づいて前記電源信号の補正を行うとき、前記圧縮機内部のモータのオイルの粘度の温度特性と前記モータの発生磁力の温度特性とを用いた演算により補正を行うことを特徴とする空気調和装置。And the voltage correction control unit corrects the power supply signal based on the detection signal from the shell temperature detection means, and the temperature characteristic of the oil viscosity of the motor inside the compressor and the generated magnetic force of the motor. An air conditioner that performs correction by calculation using the temperature characteristics of the air conditioner.
JP36833598A 1998-06-19 1998-12-25 Air conditioner Expired - Fee Related JP3606755B2 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
JP36833598A JP3606755B2 (en) 1998-12-25 1998-12-25 Air conditioner
EP04016746A EP1467162A3 (en) 1998-06-19 1999-05-31 Seperate type air conditioner
US09/719,964 US6497109B1 (en) 1998-06-19 1999-05-31 Air conditioner
EP04016745.4A EP1467099B1 (en) 1998-06-19 1999-05-31 Separate-type air conditioner
ES99922614T ES2245102T3 (en) 1998-06-19 1999-05-31 AIR CONDITIONER.
EP99922614A EP1094220B1 (en) 1998-06-19 1999-05-31 Air conditioner
CN99807529A CN1129713C (en) 1998-06-19 1999-05-31 Splitting air conditioner
PCT/JP1999/002907 WO1999066205A1 (en) 1998-06-19 1999-05-31 Air conditioner
ES04016745.4T ES2478617T3 (en) 1998-06-19 1999-05-31 Separate type air conditioner
MYPI99002469A MY119588A (en) 1998-06-19 1999-06-16 Separate-type air conditioner
MYPI20042013A MY134218A (en) 1998-06-19 1999-06-16 Separate-type air conditioner
MYPI20042016A MY127382A (en) 1998-06-19 1999-06-16 Air conditioner
US10/196,366 US6601400B2 (en) 1998-06-19 2002-07-17 Separate-type air conditioner
US10/196,367 US6644057B2 (en) 1998-06-19 2002-07-17 Separate-type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36833598A JP3606755B2 (en) 1998-12-25 1998-12-25 Air conditioner

Publications (2)

Publication Number Publication Date
JP2000193287A JP2000193287A (en) 2000-07-14
JP3606755B2 true JP3606755B2 (en) 2005-01-05

Family

ID=18491564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36833598A Expired - Fee Related JP3606755B2 (en) 1998-06-19 1998-12-25 Air conditioner

Country Status (1)

Country Link
JP (1) JP3606755B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5122366B2 (en) * 2008-05-09 2013-01-16 シャープ株式会社 Air conditioner

Also Published As

Publication number Publication date
JP2000193287A (en) 2000-07-14

Similar Documents

Publication Publication Date Title
JPH1114124A (en) Air conditioner
JP2002272167A (en) Air conditioner and its drive method
JP5407342B2 (en) Air conditioner
WO1999066205A1 (en) Air conditioner
JP3606755B2 (en) Air conditioner
JPS6349640Y2 (en)
JPH023093Y2 (en)
JP4190098B2 (en) Air conditioner control device
JPH07120049A (en) Air conditioner
JPH0618103A (en) Air conditioner
JPH11211253A (en) Controller for separation type air conditioning equipment
JPS6080046A (en) Air-conditioning device
JP2001065947A (en) Control method of air conditioner
JP2006207983A (en) Air conditioner
JPH062918A (en) Controller for air conditioner
JP2000234787A (en) Operation controlling method and apparatus for air conditioning
JP4404420B2 (en) Air conditioner control device
JPH0639981B2 (en) Air conditioner
JP4510964B2 (en) Air conditioner control device
US11588427B2 (en) Motor drive device and air conditioner
JP2001263759A (en) Separation type air-conditioning device
JPH04176B2 (en)
JP3353929B2 (en) Air conditioner
JP2009056840A (en) Vehicle air-conditioning device
JP2000009043A (en) Separation type air conditioner

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041005

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071015

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees