JP3605958B2 - Quality inspection method for polymer resin particles - Google Patents
Quality inspection method for polymer resin particles Download PDFInfo
- Publication number
- JP3605958B2 JP3605958B2 JP23116396A JP23116396A JP3605958B2 JP 3605958 B2 JP3605958 B2 JP 3605958B2 JP 23116396 A JP23116396 A JP 23116396A JP 23116396 A JP23116396 A JP 23116396A JP 3605958 B2 JP3605958 B2 JP 3605958B2
- Authority
- JP
- Japan
- Prior art keywords
- resin particles
- polymer resin
- sample
- polymer
- quality inspection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Sampling And Sample Adjustment (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、高分子樹脂粒子の品質検査方法に関する。
【0002】
【従来の技術】
従来、機能性高分子材料に代表される合成高分子材料の展開は著しく、電子機器デバイス、OA機器、家庭機器、建築、輸送機器、医療、生体関連高分子などにみられるように合成高分子の用途は多種多様で、必要不可欠な工業材料となっている。多種多様で、必要不可欠な高分子材料はこのため様々な機能、形態、物性が要求されている。特に機能性高分子材料は軽量化・薄膜化・微細化・高い経済性が追及されるようになってから、1つの材料に性格の異なる複数の機能・物性を兼ね備えさせた多機能の高分子材料が重要視されかつ求められるようになった。
そして、異なる複数の機能・物性を兼ね備えさせつときも、単純に複合高分子材料とするほか、その組成を連続的に変化させた傾斜組成、構造を連続的に変化させた傾斜構造を形成させる、いわゆる傾斜機能高分子材料とすることが求められるようになっている。
【0003】
【発明が解決しようとする課題】
その高分子材料の傾斜機能化や複合化において重要なことは、製品が所定の傾斜機能や複合構造となっているか否かについて、高分子材料内部の詳細な品質を確認することである。
【0004】
従来、内部状態を計測、分析する手段としては、X線光電子分光分析(XPS)やフーリエ変換赤外分光分析(FT−IR)のほかに、ラマン散乱分光分析、2次イオン質量分析(SIMS)などが一般的に用いられている。
【0005】
高分子材料の形状が平板状であればイオンエッチング、機械的な研磨加工と上記の分析機器を併用すれば詳細な内部状態の計測、分析は不可能ではない。しかしこれらの手法では分析によって得られる情報や分析可能な深さ範囲が1〜2μmに制限されるため、大きさがミリオーダーの高分子材料の品質管理技術には非効率的であった。形状が球状又は粒子状の高分子樹脂粒子については、それ以上に内部状態の計測、分析が困難であった。
このため、傾斜機能構造や複合構造の高分子樹脂粒子については、全体を計測、分析して得られた高分子樹脂粒子全体の平均値を得るにとどまり、傾斜機能構造や複合構造に成り得ているかなどの詳細な状態を確認することは極めて困難であった。
本発明は、かかる、高分子樹脂粒子について、詳細に計測又は分析する方法を提供しようとするものである。
【0006】
【課題を解決するための手段】
本発明は、高分子樹脂粒子の側面部分を中心軸方向に沿って直径が2/3以下となるように削除して柱状に加工して得られた柱状体を、前記高分子樹脂粒子の表面に該当する部分から中心点まで一定の厚さに分割し、得られた試料について計測分析することを特徴とする高分子樹脂粒子の品質検査方法である。
【0007】
すなわち、高分子樹脂粒子(以下樹脂粒子とする)の側面部分を中心軸方向に沿って削除して柱状に加工して得られた柱状体を、この樹脂粒子の表面に該当する部分から中心点まで適宜分割し、分割した試料の各々について計測又は分析する。
【0008】
ここで、樹脂粒子の側面部分とは、樹脂粒子の任意の中心軸を決めた場合、同一中心軸の円柱又は多角柱を仮想した際の円柱又は多角柱以外の部分を意味する。
【0009】
【発明の実施の形態】
樹脂粒子の形態については、球状、粒子状、円柱状、多角柱状、タブレット状、ペレット状及び不定形の塊状いずれでもよく特に制限はない。
【0010】
計測又は分析する内容としては、組成、分子量、構成元素、構成物質、化学構造、モルフォロジーなどが挙げられる。
【0011】
形態が粒子状又は球状である材料について、そのまま中心軸方向に分割すると、分割後の1試料中に表面側と中心側が共存してしまい、分割したことにならず、正確な計測、分析データが得にくい。このため側面部分は測定誤差を生じる原因と考え、その側面部分を削除する割合と計測、分析データの誤差量の関係を検計し、好適な範囲を求めた。
その結果、柱状体の直径が樹脂粒子直径の約2/3以下になるようにすればよいこと、約2/5以下とするのがさらに好ましく、約1/3以下になるようにするのが特に好ましいことが分かった。
【0012】
柱状体を、前記樹脂粒子の表面に該当する部分から中心点まで一定の厚さに分割するとき、その厚さ及び間隔は、分割した試料について、どのような内容について、どのような手段によって計測又は分析するかによって異なるが、それぞれの計測又は分析手段に必要な、厚さ、面積、体積、質量があればよく、他に制限はない。
【0013】
樹脂粒子の側面部分を削除して柱状体に加工する方法及び一定の厚さで一定の間隔に分割する方法については、目的の加工ないし分割が可能な方法であれば特に制限しないが、精密切断機、精密フライス盤、精密旋盤、精密マシニングセンタ、フォーカスドイオンビーム(FIB)、精密マニュピレータ、精密レーザーメス、精密高圧ウオータメス、ミクロトーム等の精密工作機械などが加工するのに好適である。ただし、加工の際、高熱を発生するものは樹脂粒子を劣化させ、正確な計測、分析データが得られなくなるおそれがあるので、加工ないし分割するときの試料温度に留意する必要がある。
【0014】
分割した該樹脂粒子試料の、組成、分子量、構成元素、構成物質、化学構造、モルフォロジーなどを計測、分析する手段としては、種々の計測、分析機器があり、また新規あるいは現行装置を改善した高分解能計測、分析機器が登場すれば、より高精細な品質管理の情報が得られやすいので、計測、分析の目的によって適宜に選択すればよい。
【0015】
現在公知の計測、分析機器を例示すると、組成、構成元素、構成物質の分析については、原子吸光分光分析(AAS)、ガスクロマトグラフィー(GC)、X線マイクロアナリシス(XMA)、電子線マイクロアナリシス(EPMA)、2次イオン質量分析(SIMS)及びX線光電子分光分析(XPS)などが挙げられ、分子量の測定については、サイズ排除クロマトグラフィー(SEC)などが挙げられ、化学構造の解析については、核磁気共鳴分光分析(NMR)、赤外分光分析(IR)及び質量分析法(MS)などが挙げられ、モルフォロジーについては走査型プローブ顕微鏡(SPM)、走査型電子顕微鏡(SEM)及び透過型電子顕微鏡(TEM)などが挙げられる。
【0016】
本発明が対象とする樹脂粒子としては、一般的に高分子材料と呼ばれている樹脂の粒子が挙げられる。例えば、プラスチック粒子(ポリブタジエン、ポリイソプレン等のジエン、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、フッ素樹脂、ポリ酢酸ビニル、ポリビニールアルコール、メタクリル酸エステル重合体、ポリアクリロニトリル、ポリアミド、ポリエーテル、ポリカーボネート、熱可塑性ポリエステル、不飽和ポリエステル、ポリウレタン、フェノール樹脂、アミノ樹脂、エポキシ樹脂、ポリオルガノシロキサン、ポリイミド、ポリサルホン、ポリアリレート等)、ゴム粒子(天然ゴム、クロロプレン、アクリルゴム、ニトリルゴム、多硫化ゴム、フッ素ゴム、シリコーンゴム、ポリウレタンなど)などが挙げられる。また、これらの高分子材料1種と無機材料や金属材料を用いた複合材料、及び傾斜機能材料、又はこれらの高分子材料2種以上用いた複合材料、及び傾斜機能材料などであってもよい。
【0017】
【実施例】
直径が1.0mmで、潤滑剤として、マグネシウムを含む高級脂肪酸を配合し、その含有量が外側から中心になるにしたがい少なくなるように傾斜組成を有するAAS樹脂バイタックスV6700HF(日立化成工業株式会社商品名)の粒子(以下AAS樹脂粒子という)を用意した。
【0018】
実施例1
AAS樹脂粒子を2.5×4×10mmの試料台(アクリル樹脂製)に固定した後、ミクロトームに設置した。ミクロトームのガラスナイフでAAS樹脂粒子の中心軸方向に沿って半球側だけ側面部分を削除して0.3mm角の四角柱状に微細加工した後、ミクロトームのダイヤモンドナイフによって角柱部分を表面から中心まで10等分し、各々の箔状試料をAAS法で分析し、試料中(添加剤;潤滑剤の高級脂肪酸成分に含まれる)に含まれるマグネシウムの含有率を塩化マグネシウム換算で求めた。また、該AAS樹脂粒子を同様に10等分し、さらに分割した試料を大きさ厚さ共に20nmの箔状にスライスした。その後、各箔状試料をオスミウム酸2質量%の水溶液で染色後、TEMで観察し、モルフォロジー(ポリブタジエンゴムの分散状態)からポリブタジエンゴム含有率(面積率)を調べた。その結果を表1(マグネシウムの含有量)及び表2(ポリブタジエンゴム含有率)に示す。
なお、表中の試料番号は、1(表面)→10(中心)である。
【0019】
比軟例l
実施例1で調べたものと同様のAAS樹脂粒子について、側面部分の削除なしで表面から中心まで一定間隔(厚さ50μm)に10分割した以外は実施例1と同様にして、マグネシウムの含有率及びポリブタジエンゴム含有率(面積率)を調べた。その結果を表1(マグネシウムの含有量)及び表2(ポリブタジエンゴム含有率)に示す。
【0020】
比軟例2
実施例1で調べたものと同様のAAS樹脂粒子について、側面部分の削除も分割もしないで、実施例1と同様にして、マグネシウムの含有率及びポリブタジエンゴム含有率(面積率)を調べた。その結果を表1(マグネシウムの含有量)及び表2(ポリブタジエンゴム含有率)に示す。
【0021】
【表1】
【0022】
【表2】
【0023】
【発明の効果】
本発明によれば、樹脂粒子について表面から内部にいたる内部の情報(組成、分子量、構成元素、構成物質、化学構造、モルフォロジーなど)を正確かつ詳細に把握でき、該樹脂粒子の品質の安定及び向上を図る上で好適である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a quality inspection method for polymer resin particles.
[0002]
[Prior art]
Conventionally, the development of synthetic polymer materials typified by functional polymer materials has been remarkable, and synthetic polymer materials such as electronic equipment devices, OA equipment, household equipment, architecture, transportation equipment, medical care, and bio-related polymers have been seen. Has a wide variety of uses and is an indispensable industrial material. A wide variety of indispensable polymer materials are required to have various functions, forms and physical properties. In particular, functional polymer materials have been pursued for their weight reduction, thinning, miniaturization, and high economic efficiency. Materials have become more important and demanding.
When combining different functions and physical properties, simply use a composite polymer material, form a gradient composition whose composition is continuously changed, and form a gradient structure whose structure is continuously changed. Therefore, there is a demand for a so-called functionally graded polymer material.
[0003]
[Problems to be solved by the invention]
It is important to check the detailed quality inside the polymer material to determine whether or not the product has a predetermined tilting function or a composite structure when the polymer material has a gradient function or a composite structure.
[0004]
Conventionally, means for measuring and analyzing the internal state include X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR), as well as Raman scattering spectroscopy and secondary ion mass spectroscopy (SIMS). Are generally used.
[0005]
If the shape of the polymer material is flat, it is not impossible to perform detailed measurement and analysis of the internal state by using ion etching, mechanical polishing, and the above-described analysis device together. However, in these methods, the information obtained by the analysis and the depth range in which the information can be analyzed are limited to 1 to 2 μm, so that it is inefficient for quality control technology of a polymer material having a size on the order of millimeters. For the polymer resin particles having a spherical or particulate shape, it was more difficult to measure and analyze the internal state.
For this reason, for polymer resin particles having a functionally graded structure or composite structure, only the average value of the entire polymer resin particles obtained by measuring and analyzing the whole can be obtained, and a functionally graded structure or composite structure can be obtained. It was extremely difficult to check the detailed state, such as whether or not the person
An object of the present invention is to provide a method for measuring or analyzing such polymer resin particles in detail.
[0006]
[Means for Solving the Problems]
The present invention provides a columnar body obtained by removing a side portion of a polymer resin particle along a central axis direction so as to have a diameter of 2/3 or less and processing the columnar body into a columnar shape. A method for inspecting quality of polymer resin particles, comprising dividing the sample into a certain thickness from a portion corresponding to the above to a central point, and measuring and analyzing the obtained sample.
[0007]
That is, the columnar body obtained by processing the side surfaces of the polymer resin particles (hereinafter referred to as resin particles) in a columnar shape by removing the side portions along the central axis direction is moved from the portion corresponding to the surface of the resin particles to the center point. And then measure or analyze each of the divided samples.
[0008]
Here, the side surface portion of the resin particle means a portion other than a cylinder or a polygonal column when a cylinder or a polygonal column having the same central axis is imagined when an arbitrary central axis of the resin particle is determined.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The form of the resin particles is not particularly limited, and may be spherical, particulate, cylindrical, polygonal, tablet, pellet, or irregular mass.
[0010]
The contents to be measured or analyzed include a composition, a molecular weight, a constituent element, a constituent substance, a chemical structure, a morphology, and the like.
[0011]
If a material that is in the form of particles or spheres is divided in the central axis direction as it is, the surface side and the center side will coexist in one sample after division, and it will not be divided, and accurate measurement and analysis data will not be obtained. Difficult to get. For this reason, the side portion was considered to be a cause of measurement error, and the relationship between the ratio of deletion of the side portion and the amount of error in measurement and analysis data was measured to find a suitable range.
As a result, the diameter of the columnar body should be about 2/3 or less of the diameter of the resin particles, more preferably about 2/5 or less, and more preferably about 1/3 or less. It turned out to be particularly preferred.
[0012]
When the columnar body is divided into a certain thickness from the portion corresponding to the surface of the resin particles to the center point, the thickness and the interval are measured for the divided sample, what kind of content, and what means. Alternatively, the thickness, area, volume, and mass necessary for each measurement or analysis means may be used, and there is no other limitation.
[0013]
There is no particular limitation on the method of removing the side portions of the resin particles to form a columnar body and the method of dividing the resin particles into a column with a constant thickness, as long as the desired processing or division is possible. Machines, precision milling machines, precision lathes, precision machining centers, focused ion beams (FIB), precision manipulators, precision laser scalpels, precision high pressure water scalpels, microtome, and other precision machine tools are suitable for processing. However, during processing, those that generate high heat may degrade the resin particles and prevent accurate measurement and analysis data from being obtained. Therefore, it is necessary to pay attention to the sample temperature when processing or dividing.
[0014]
As a means for measuring and analyzing the composition, molecular weight, constituent elements, constituent substances, chemical structure, morphology, etc. of the divided resin particle sample, there are various measuring and analyzing instruments, and a new or existing apparatus has been improved. With the emergence of resolution measurement and analysis equipment, it is easier to obtain higher-definition quality control information, so that it can be selected appropriately according to the purpose of measurement and analysis.
[0015]
Examples of currently known measurement and analysis instruments include, for analysis of composition, constituent elements, and constituent substances, atomic absorption spectroscopy (AAS), gas chromatography (GC), X-ray microanalysis (XMA), and electron beam microanalysis. (EPMA), secondary ion mass spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS), and the like. For molecular weight measurement, size exclusion chromatography (SEC), etc., and for chemical structure analysis, , Nuclear magnetic resonance spectroscopy (NMR), infrared spectroscopy (IR), and mass spectroscopy (MS). The morphology is described as a scanning probe microscope (SPM), a scanning electron microscope (SEM), and a transmission type. An electron microscope (TEM) may be used.
[0016]
Examples of the resin particles targeted by the present invention include resin particles generally called polymer materials. For example, plastic particles (polybutadiene, diene such as polyisoprene, polyethylene, polyolefin such as polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, fluororesin, polyvinyl acetate, polyvinyl alcohol, methacrylate polymer, polyacrylonitrile, Polyamide, polyether, polycarbonate, thermoplastic polyester, unsaturated polyester, polyurethane, phenolic resin, amino resin, epoxy resin, polyorganosiloxane, polyimide, polysulfone, polyarylate, etc.), rubber particles (natural rubber, chloroprene, acrylic rubber, Nitrile rubber, polysulfide rubber, fluorine rubber, silicone rubber, polyurethane, etc.). Further, a composite material using one kind of these polymer materials and an inorganic material or a metal material, and a functionally gradient material, or a composite material using two or more kinds of these polymer materials, a functionally graded material, or the like may be used. .
[0017]
【Example】
AAS resin VITAX V6700HF (Hitachi Chemical Industries, Ltd.) having a diameter of 1.0 mm, blended with a higher fatty acid containing magnesium as a lubricant, and having a gradient composition such that its content decreases from the outside toward the center. (Trade name) (hereinafter referred to as AAS resin particles).
[0018]
Example 1
The AAS resin particles were fixed on a sample stand (made of acrylic resin) of 2.5 × 4 × 10 mm, and then set on a microtome. After removing the side portion only on the hemisphere side along the center axis direction of the AAS resin particles with a microtome glass knife and finely processing it into a 0.3 mm square quadratic prism, the prism portion from the surface to the center is 10 mm from the microtome diamond knife. Equally divided, each foil sample was analyzed by AAS method, and the content of magnesium contained in the sample (additive; contained in the higher fatty acid component of the lubricant) was determined in terms of magnesium chloride. The AAS resin particles were similarly divided into ten equal parts, and the divided samples were sliced into foils each having a size and thickness of 20 nm. Thereafter, each foil sample was stained with an aqueous solution of 2% by mass of osmic acid, and then observed with a TEM to determine the polybutadiene rubber content (area ratio) from morphology (dispersion state of the polybutadiene rubber). The results are shown in Table 1 (magnesium content) and Table 2 (polybutadiene rubber content).
The sample numbers in the table are 1 (front) → 10 (center).
[0019]
Specific soft l
About the same AAS resin particles as those examined in Example 1, the magnesium content was determined in the same manner as in Example 1 except that the AAS resin particles were divided into 10 portions at a constant interval (thickness: 50 μm) from the surface to the center without removing the side portions. And the polybutadiene rubber content (area ratio) were examined. The results are shown in Table 1 (magnesium content) and Table 2 (polybutadiene rubber content).
[0020]
Comparative example 2
With respect to the same AAS resin particles as those examined in Example 1, the magnesium content and the polybutadiene rubber content (area ratio) were examined in the same manner as in Example 1 without deleting or dividing the side portions. The results are shown in Table 1 (magnesium content) and Table 2 (polybutadiene rubber content).
[0021]
[Table 1]
[0022]
[Table 2]
[0023]
【The invention's effect】
According to the present invention, internal information (composition, molecular weight, constituent elements, constituents, chemical structure, morphology, etc.) from the surface to the inside of the resin particles can be grasped accurately and in detail, thereby stabilizing the quality of the resin particles and It is suitable for improvement.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23116396A JP3605958B2 (en) | 1996-08-30 | 1996-08-30 | Quality inspection method for polymer resin particles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23116396A JP3605958B2 (en) | 1996-08-30 | 1996-08-30 | Quality inspection method for polymer resin particles |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1073588A JPH1073588A (en) | 1998-03-17 |
JP3605958B2 true JP3605958B2 (en) | 2004-12-22 |
Family
ID=16919304
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23116396A Expired - Fee Related JP3605958B2 (en) | 1996-08-30 | 1996-08-30 | Quality inspection method for polymer resin particles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3605958B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005116625A1 (en) * | 2004-05-25 | 2005-12-08 | Sumitomo Chemical Company, Limited | Process for producing sample for matrix assisted laser desorption/ionization mass spectrometry |
-
1996
- 1996-08-30 JP JP23116396A patent/JP3605958B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1073588A (en) | 1998-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Babick | Suspensions of colloidal particles and aggregates | |
Hemsley | Applied polymer light microscopy | |
EP1144989B1 (en) | Nanotomography | |
Mayhew | Stereological approach to the study of synapse morphometry with particular regard to estimating number in a volume and on a surface | |
Bushell et al. | On techniques for the measurement of the mass fractal dimension of aggregates | |
Diggins et al. | The wetting of angular quartz particles: capillary pressure and contact angles | |
Johnson et al. | State of the art review on membrane surface characterisation: Visualisation, verification and quantification of membrane properties | |
Farruggia et al. | Microscopic tensile tests in the transverse plane of earlywood and latewood parts of spruce | |
Mech et al. | The NanoDefine methods manual | |
Exner | Stereology and 3D microscopy: useful alternatives or competitors in the quantitative analysis of microstructures? | |
JP2016526689A (en) | Particle suspension used as a low-contrast standard for liquid testing | |
Randle et al. | A comparison between three-dimensional and two-dimensional grain boundary plane analysis | |
Ferguson et al. | The dependence of the measured surface energy of graphene on nanosheet size | |
CN112362536A (en) | Evaluation method of sandstone surface micro-wettability based on atomic force microscope | |
JP3605958B2 (en) | Quality inspection method for polymer resin particles | |
Ma et al. | Measurement and characterization of bulk nanobubbles by nanoparticle tracking analysis method | |
Ompala et al. | Stability and dispersibility of microplastics in experimental exposure medium and their dimensional characterization by SMLS, SAXS, Raman microscopy, and SEM | |
Heller et al. | EXPERIMENTAL INVESTIGATIONS ON THE LIGHT SCATTERING OF COLLOIDAL SPHERES. V. DETERMINATION OF SIZE DISTRIBUTION CURVES BY MEANS OF SPECTRA OF THE SCATTERING RATIO1, 2 | |
Mech et al. | The NanoDefine Methods Manual-Part 2: Evaluation of methods | |
CN105403488A (en) | Method for detecting diameter-to-thickness ratio of flake alumina particles | |
KR101371663B1 (en) | Method and apparatus for quantitative measuring the particles | |
Leschonski | Particle characterization, present state and possible future trends | |
CN114746737A (en) | Shape analysis apparatus | |
Hodoroaba et al. | Techniques evaluation report for selection of characterisation methods | |
Zupanc et al. | A new approach to analyse effects of nanoparticles on lipid vesicles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040615 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040715 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20040820 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040914 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040927 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071015 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081015 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091015 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091015 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101015 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111015 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |