JP3605787B2 - Method for dissolving powdery polymer compound - Google Patents

Method for dissolving powdery polymer compound Download PDF

Info

Publication number
JP3605787B2
JP3605787B2 JP01032798A JP1032798A JP3605787B2 JP 3605787 B2 JP3605787 B2 JP 3605787B2 JP 01032798 A JP01032798 A JP 01032798A JP 1032798 A JP1032798 A JP 1032798A JP 3605787 B2 JP3605787 B2 JP 3605787B2
Authority
JP
Japan
Prior art keywords
polymer compound
powdery polymer
dissolving
stirring
gelatin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01032798A
Other languages
Japanese (ja)
Other versions
JPH11209476A (en
Inventor
泰男 西
英之 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP01032798A priority Critical patent/JP3605787B2/en
Publication of JPH11209476A publication Critical patent/JPH11209476A/en
Application granted granted Critical
Publication of JP3605787B2 publication Critical patent/JP3605787B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • B01F21/02Methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • B01F21/10Dissolving using driven stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/85Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with two or more stirrers on separate shafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/90Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with paddles or arms 
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • B01F35/92Heating or cooling systems for heating the outside of the receptacle, e.g. heated jackets or burners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • B01F2035/99Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/2805Mixing plastics, polymer material ingredients, monomers or oligomers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Jellies, Jams, And Syrups (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、粉体状高分子化合物の溶解方法に関し、詳しくはハロゲン化銀写真感光材料の製造工程における親水性コロイド、例えばゼラチンの効率的な溶解方法に関する。
【0002】
【従来の技術】
従来、高分子化合物の粉体を溶解する場合に、いわゆる「ママコ」とか「ダマ」が発生するという問題があった。「ママコ」あるいは「ダマ」は、粉体が凝集した塊状物であって、粉体状高分子、例えばゼラチン等を溶解する際、粉体に溶媒である水が十分浸透しない間に高温にさらされた場合、該粉体の表面のみが溶解してゲル状の高濃度の薄層となり、内部が粉体のままで溶解しない状態になることである。
【0003】
このため、粉体状高分子化合物の溶解にあたっては、内部まで十分に溶媒を浸透させてから温度を上げ溶解することが必要となり、できれば該高分子化合物を溶媒で膨潤してから溶解することが望ましい。しかしながらこのような方法では、時間がかかり、かつ膨潤した高分子化合物の撹拌にも多大な動力が必要となり、工業的に実施するには問題が多い。
【0004】
また、溶解中に泡が発生し、効率的な溶解ができないという問題、泡による故障(例えば、ハロゲン化銀写真感光材料の塗布の際、泡による塗布ムラ)が生じた。
【0005】
そのため、従来よりこの問題に対していくつかの対策が提案されている。例えば低温の溶媒に粉体を添加、分散させた後、強力な撹拌のもとに昇温、溶解させる方法であるが、なお、時間的に十分短縮されていない。
【0006】
また、高分子化合物の溶解温度以上の溶媒温度を用いる方法についても提案されている。例えば特開昭50−97587号、同62−234534号、特開平4−150933号等に記載されており、超音波照射による方法、あるいは脱泡との併用等種々提案されているが、作業効率、費用あるいは確実性の点でいずれも十分満足できるものではない。また特開平2−275290号の方法では、撹拌動力エネルギー密度が5〜15kwh/lであって、撹拌動力エネルギー密度から判断すると十分満足できる効率ではない。
【0007】
【発明が解決しようとする課題】
上記のような問題に対して、本発明の課題は、粉体状高分子化合物、特にゼラチンについて、溶解が単時間で行え、設備費ならびにランニングコストも安く、しかもママコ、泡を発生することのない粉体状高分子化合物の溶解方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明の上記課題は、下記手段により達成される。
【0009】
1.溶媒を撹拌機を有する恒温ジャケット付きタンク内に投入して温度30〜39℃で、撹拌レイノルズ数が2.0×10以上となる様に撹拌しつつ、高分子化合物の粉体を投入して、分散後、40℃までは1℃/min以上の速度で昇温し、さらに50〜60℃まで昇温することを特徴とする粉体状高分子化合物の溶解方法。
【0010】
2.溶媒として脱気水を使用することを特徴とする前記1に記載の粉体状高分子化合物の溶解方法。
【0011】
3.減圧状態で溶解することを特徴とする前記1又は2に記載の粉体状高分子化合物の溶解方法。
【0012】
4.粉体状高分子化合物の溶解濃度が10〜30%の範囲にあることを特徴とする前記1、2又は3に記載の粉体状高分子化合物の溶解方法。
【0013】
5.前記粉体状高分子化合物がゼラチンであることを特徴とする前記1〜4のいずれか1項に記載の粉体状高分子化合物の溶解方法。
【0014】
6.前記撹拌機が、撹拌翼径がタンク内径の1/3以上である4枚ピッチドパドル、又はTKコンビミックスであることを特徴とする前記1〜5のいずれか1項に記載の粉体状高分子化合物の溶解方法。
【0015】
以下、本発明について具体的に説明する。
【0016】
本発明でいうママコを発生する粉体状高分子化合物としては、例えば次のようなものの粉体が挙げられる。ゼラチン、ゼラチン誘導体、アラビアゴム、ガム、澱粉、ポリビニルアルコール、カルボキシメチルセルロース、ポリアクリルアミド、ポリアクリル酸ナトリウム等溶解度の熱依存性が高く、吸湿膨潤性のものである。
【0017】
本発明では特にハロゲン化銀写真感光材料用バインダーとして用いられるゼラチンを主たる対象とするがこれに限定されるものではない。
【0018】
本発明における脱気水とは、使用温度における飽和溶存酸素量に対して70%以下の溶存酸素量である水をいい、溶存酸素が少なければ少ない程好ましい。溶存酸素量はDOメーターmodel58(日科機装[株]製)測定器により測定したものとする。脱気水を溶媒として用いることにより撹拌により混入または発生する泡を溶解し、泡として顕在化することによる故障の発生を防止することができる。
【0019】
本発明においては、減圧状態で溶解することが好ましいが、減圧することにより溶媒の溶存酸素を低下させることでゼラチン水溶液の脱泡が可能となり、さらに脱泡効果が期待できる。このことは特にハロゲン化銀写真感光材料のように塗布に際して気泡の発生が大きな塗布故障を誘発する場合には極めて重要な問題となる。
【0020】
本発明における減圧状態とは、300Torr以下で一定減圧値で減圧する状態をいう。
【0021】
本発明において溶解する粉体状高分子化合物の溶解濃度は、本発明を効果より奏する点で、10〜30%であることが好ましい。。
【0022】
本発明に用いられる撹拌装置は粉体状高分子化合物を投入する撹拌翼付近の撹拌レイノルズ数が2.0×10以上であれば得に限定しないが、撹拌翼径がタンク内径1/3以上である4枚ピッチドパドル又はTKコンビミックスであることが好ましい。
【0023】
図1はこれらの撹拌装置を装着した恒温ジャケット付きタンクの断面図である。図1において、1は溶解槽、2は恒温ジャケット、5は温度センサーである。
【0024】
図1(a)は4枚ピッチドパドル撹拌機を装着した例であって、3dは撹拌機を示す。4は邪魔板である。
【0025】
図1(b)はTKコンビミックス撹拌機を装着した例である。TKコンビミックスはアンカーミキサー(3c)+TKホモミキサー(3a)+TKホモディスパー(3b)から構成されている。
【0026】
本発明において、撹拌レイノルズ数とは撹拌翼近傍の液の流動状態を示すパラメータで、撹拌レイノルズ数Rは下記式により算出することができる。
【0027】
R=μd/υ
μ:翼回転数、d:翼径、υ:液の動粘度
本発明における溶解槽中の撹拌レイノルズ数2.0×10以上が必要である。本発明の技術的な制約からして自ずと上限はある。
【0028】
本発明の粉体状高分子化合物をタンク内に添加するには、まず前記撹拌装置を有するタンク中の好ましくは脱気された溶媒の温度を30〜39℃、好ましくは30〜35℃とし、投入位置とその周辺の撹拌機の撹拌レイノルズ数2.0×10以上になるように撹拌する。この中に粉体状高分子化合物を添加するに当たっては、ママコの発生を防ぎ、分散した状態にするために、当然のことながら撹拌速度の速い撹拌羽根の翼端付近に徐々に添加することが好ましく、工業的には翼端部分のできるだけ広い面積に分散して、徐々に(10kg/min以下)添加することが望ましい。粉体状高分子化合物の添加、分散後、急速(1℃/min)に温度を40℃まで上げ、さらに45〜60℃まで上げ、溶解後40℃まで下げる。
【0029】
本発明により、膨潤速度と溶解速度のバランスを効率よく取ることができるのである。
【0030】
【実施例】
以下、実施例により本発明の効果を例証する。
【0031】
実施例1
図1は恒温ジャケット付きタンクであって、タンク直径は1000mmである。図1(a)には4枚ピッチドパドル撹拌機(直径400mm)、図1(b)にはTKコンビミックス撹拌機(アンカーミキサーの直径880mm、ホモディスパーの直径200mm、ホモミキサーの直径150mm)(特殊機化[株]製)の例を示した。
【0032】
上記それぞれの撹拌機を装着したタンクに、溶媒として35℃に温めた水又は脱気水(溶存酸素量2ppm)800lを投入し、投入後、投入付近の撹拌翼付近の撹拌レイノルズ数が4.7×10になるように回転させ、その後高分子化合物の粉末としてゼラチンをエアー搬送により投入した。タンク内の撹拌動力のエネルギー密度は1.4kwh/l、ゼラチン投入期間は10kg/minとした。
【0033】
ゼラチン投入終了後より恒温ジャケットの温水を調節してタンク内の温度を1℃/minの上昇速度で40℃まで急速昇温させた。その後、そのままの場合とタンク内を300Torrで減圧した場合について、30分かけて50℃まで昇温させ、ゼラチン投入後40分で溶解させた。
【0034】
その時のタンク内の温度を温度センサーで測定した状態を図2に示す。40分後、溶解したゼラチン液を濾過し、未溶解物を調査したがいずれの撹拌機を用いた場合にも未溶解物は確認されず完全に溶解された。
【0035】
また、溶解したゼラチン液をサンプリングして泡の量を測定した。上記、常圧かつ通常の溶解水を用いた場合はゼラチン溶液1000ml中に泡量が30mlあったのに対して、常圧で溶解水に脱気水を用いた場合は、0.01mlであり、脱気水と減圧を併用した場合には、泡量は0.001mlであった。これにより、脱気水及び/又は減圧した場合の効果は明らかである。
【0036】
実施例2
実施例1で下記条件を変更した以外は実施例1と同様に行った。
【0037】
溶媒としては39℃の温水を使用し、撹拌レイノルズ数を7.3×10とした。溶解時間は35分で、実施例1と同様に溶解したゼラチン液を濾過した結果、未溶解のゼラチンは認められず、完全に溶解されていた。
【0038】
比較例1
実施例1で下記条件を変更した以外は実施例1と同様に行った。
【0039】
溶媒として25℃の温水を使用し、撹拌レイノルズ数は1.0×10とした。ゼラチン投入後80分後に実施例1と同様にしてチェックしたところ未溶解物が散見された。
【0040】
比較例2
実施例1で下記条件を変更した以外は実施例1と同様に行った。
【0041】
溶媒として60℃の温水を使用し、撹拌レイノルズ数は1.5×10とした。ゼラチン投入後80分後に実施例1と同様にしてチェックしたところ未溶解物が散見された。
【0042】
【発明の効果】
本発明により粉体状高分子化合物、特にゼラチンについて、溶解が単時間で行え、設備費ならびにランニングコストも安く、しかもママコ、泡を発生することのない粉体状高分子化合物の溶解方法を提供することができた。
【図面の簡単な説明】
【図1】本発明の恒温ジャケット付きのタンクの1例を示す断面図である。
【図2】タンク内の温度を温度センサーで測定した状態を示す図である。
【符号の説明】
1 溶解槽
2 恒温ジャケット
4 邪魔板
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for dissolving a powdery polymer compound, and more particularly, to a method for efficiently dissolving a hydrophilic colloid, for example, gelatin in a process for producing a silver halide photographic light-sensitive material.
[0002]
[Prior art]
Heretofore, there has been a problem that when a powder of a polymer compound is dissolved, a so-called “mamako” or “dama” is generated. "Mamako" or "Dama" is a lump of agglomerated powder and is exposed to a high temperature while dissolving a powdery polymer, for example, gelatin, etc., while water as a solvent does not sufficiently penetrate the powder. In this case, only the surface of the powder is dissolved to form a gel-like high-concentration thin layer, and the inside is in a state where the powder remains undissolved.
[0003]
Therefore, in dissolving the powdery polymer compound, it is necessary to sufficiently dissolve the solvent into the inside and then raise the temperature to dissolve the polymer compound. desirable. However, such a method is time-consuming and requires a large amount of power to stir the swollen polymer compound, which is problematic for industrial implementation.
[0004]
In addition, bubbles were generated during dissolution, resulting in a problem that efficient dissolution was not possible, and failure due to bubbles (for example, coating unevenness due to bubbles when applying a silver halide photographic light-sensitive material) occurred.
[0005]
Therefore, several countermeasures have been proposed for this problem. For example, a method of adding and dispersing a powder in a low-temperature solvent and then raising and dissolving the temperature under vigorous stirring has not yet been sufficiently shortened in terms of time.
[0006]
Further, a method using a solvent temperature equal to or higher than the dissolution temperature of the polymer compound has also been proposed. For example, it is described in JP-A-50-97587, JP-A-62-234534, JP-A-4-150933, etc., and various methods such as a method by ultrasonic irradiation or a combined use with defoaming have been proposed. Neither cost nor reliability is satisfactory. Further, in the method disclosed in JP-A-2-275290, the stirring power energy density is 5 to 15 kwh / l, and the efficiency is not sufficiently satisfactory when judged from the stirring power energy density.
[0007]
[Problems to be solved by the invention]
In view of the above-mentioned problems, an object of the present invention is to dissolve a powdery polymer compound, particularly gelatin, in a single hour, reduce equipment costs and running costs, and generate mamako and bubbles. To provide a method for dissolving a powdery polymer compound.
[0008]
[Means for Solving the Problems]
The above object of the present invention is achieved by the following means.
[0009]
1. The solvent is charged into a tank with a thermostat jacket having a stirrer, and the polymer compound powder is charged while stirring at a temperature of 30 to 39 ° C. so that the stirring Reynolds number becomes 2.0 × 10 5 or more. A method of dissolving the powdery polymer compound, wherein after dispersing, the temperature is increased at a rate of 1 ° C./min or more to 40 ° C., and further increased to 50 to 60 ° C.
[0010]
2. 2. The method for dissolving a powdery polymer compound according to the above 1, wherein degassed water is used as a solvent.
[0011]
3. 3. The method for dissolving a powdery polymer compound according to the above 1 or 2, wherein the dissolving is performed under reduced pressure.
[0012]
4. 4. The method for dissolving a powdery polymer compound according to the above item 1, 2 or 3, wherein the dissolution concentration of the powdery polymer compound is in the range of 10 to 30%.
[0013]
5. The method for dissolving a powdery polymer compound according to any one of the above items 1 to 4, wherein the powdery polymer compound is gelatin.
[0014]
6. The powdery polymer according to any one of the above items 1 to 5, wherein the stirrer is a four-pitch paddle having a stirring blade diameter equal to or more than 1/3 of a tank inner diameter or a TK combination. Compound dissolution method.
[0015]
Hereinafter, the present invention will be described specifically.
[0016]
Examples of the powdery polymer compound that generates momako in the present invention include the following powders. Gelatin, gelatin derivatives, gum arabic, gum, starch, polyvinyl alcohol, carboxymethylcellulose, polyacrylamide, sodium polyacrylate, and the like have a high heat dependence on solubility and are hygroscopic and swellable.
[0017]
In the present invention, gelatin mainly used as a binder for a silver halide photographic light-sensitive material is mainly used, but the present invention is not limited thereto.
[0018]
The degassed water in the present invention refers to water having a dissolved oxygen amount of 70% or less with respect to a saturated dissolved oxygen amount at a use temperature, and the smaller the dissolved oxygen, the better. The dissolved oxygen amount is measured by a DO meter model 58 (manufactured by Nikkakiso Co., Ltd.) measuring device. By using degassed water as a solvent, bubbles mixed or generated by agitation can be dissolved, and the occurrence of a failure due to manifestation as bubbles can be prevented.
[0019]
In the present invention, it is preferable to dissolve in a reduced pressure state, but by reducing the dissolved oxygen in the solvent by reducing the pressure, the gelatin aqueous solution can be defoamed, and a defoaming effect can be expected. This is a very important problem particularly when the generation of bubbles induces a large coating failure as in the case of a silver halide photographic light-sensitive material.
[0020]
The reduced pressure state in the present invention refers to a state where the pressure is reduced at a constant reduced pressure value at 300 Torr or less.
[0021]
The dissolution concentration of the powdery polymer compound dissolved in the present invention is preferably 10 to 30% from the viewpoint of achieving the effects of the present invention. .
[0022]
The stirring device used in the present invention is not particularly limited as long as the stirring Reynolds number near the stirring blade into which the powdery polymer compound is charged is 2.0 × 10 5 or more. The above-mentioned four-pitch paddle or TK combination is preferable.
[0023]
FIG. 1 is a cross-sectional view of a tank with a constant temperature jacket equipped with these stirring devices. In FIG. 1, 1 is a melting tank, 2 is a constant temperature jacket, and 5 is a temperature sensor.
[0024]
FIG. 1A shows an example in which a four-pitch paddle stirrer is mounted, and 3d shows a stirrer. 4 is a baffle board.
[0025]
FIG. 1B shows an example in which a TK combination mixer is mounted. The TK combimix is composed of an anchor mixer (3c) + TK homomixer (3a) + TK homodisper (3b).
[0026]
In the present invention, the stirring Reynolds number is a parameter indicating the flow state of the liquid near the stirring blade, and the stirring Reynolds number R can be calculated by the following equation.
[0027]
R = μd 2 / υ
μ: blade rotation speed, d: blade diameter, Δ: kinematic viscosity of liquid A stirring Reynolds number of 2.0 × 10 5 or more in the dissolution tank in the present invention is required. There is naturally an upper limit due to technical restrictions of the present invention.
[0028]
To add the powdery polymer compound of the present invention into the tank, first, the temperature of the preferably degassed solvent in the tank having the stirring device is 30 to 39 ° C, preferably 30 to 35 ° C, Stirring is performed so that the Reynolds number of the stirrer at the charging position and its surroundings is 2.0 × 10 5 or more. When adding the powdery polymer compound to this, naturally, it is necessary to gradually add it to the vicinity of the tip of the stirring blade with a high stirring speed in order to prevent the generation of mamako and to make the dispersed state. Preferably, industrially, it is desirable to disperse it over as large an area as possible at the tip of the blade and gradually add (10 kg / min or less). After the addition and dispersion of the powdery polymer compound, the temperature is rapidly (1 ° C / min) raised to 40 ° C, further raised to 45 to 60 ° C, and lowered to 40 ° C after dissolution.
[0029]
According to the present invention, the swelling rate and the dissolution rate can be efficiently balanced.
[0030]
【Example】
Hereinafter, the effects of the present invention will be illustrated by examples.
[0031]
Example 1
FIG. 1 shows a tank with a constant temperature jacket, and the tank diameter is 1000 mm. FIG. 1 (a) shows a 4-pitch paddle stirrer (400 mm in diameter), and FIG. 1 (b) shows a TK combimix stirrer (880 mm in diameter of anchor mixer, 200 mm in diameter of homodisper, 150 mm in diameter of homomixer) (special An example of this is shown below.
[0032]
800 l of water or degassed water (dissolved oxygen content: 2 ppm) warmed to 35 ° C. as a solvent is introduced into a tank equipped with each of the above stirrers, and after the introduction, the stirring Reynolds number near the stirring blade near the introduction is 4. It was rotated to 7 × 10 5 , and then gelatin as a powder of a polymer compound was introduced by air conveyance. The energy density of the stirring power in the tank was 1.4 kwh / l, and the gelatin injection period was 10 kg / min.
[0033]
After the completion of the addition of gelatin, the temperature in the tank was rapidly increased to 40 ° C. at a rate of 1 ° C./min by adjusting warm water in a constant temperature jacket. Thereafter, the temperature was raised to 50 ° C. over 30 minutes in the case where the pressure was maintained as it was and the case where the pressure in the tank was reduced at 300 Torr, and dissolved 40 minutes after the gelatin was charged.
[0034]
FIG. 2 shows a state where the temperature in the tank at that time was measured by the temperature sensor. After 40 minutes, the dissolved gelatin solution was filtered and undissolved matter was examined. However, no undissolved matter was confirmed using any of the agitators, and the dissolved matter was completely dissolved.
[0035]
Further, the dissolved gelatin solution was sampled to measure the amount of foam. Above, when using normal pressure and normal dissolved water, the foam amount was 30 ml in 1000 ml of gelatin solution, whereas when using degassed water as dissolved water at normal pressure, it was 0.01 ml. When degassed water and reduced pressure were used together, the foam amount was 0.001 ml. Thereby, the effect of degassed water and / or reduced pressure is clear.
[0036]
Example 2
Example 1 was repeated, except that the following conditions were changed.
[0037]
Hot water at 39 ° C. was used as a solvent, and the stirring Reynolds number was 7.3 × 10 5 . The dissolution time was 35 minutes, and the gelatin solution dissolved in the same manner as in Example 1 was filtered. As a result, no undissolved gelatin was observed and the gelatin was completely dissolved.
[0038]
Comparative Example 1
Example 1 was repeated, except that the following conditions were changed.
[0039]
Warm water at 25 ° C. was used as a solvent, and the stirring Reynolds number was 1.0 × 10 5 . When checked in the same manner as in Example 1 80 minutes after the addition of gelatin, undissolved substances were found.
[0040]
Comparative Example 2
Example 1 was repeated, except that the following conditions were changed.
[0041]
Warm water at 60 ° C. was used as the solvent, and the stirring Reynolds number was 1.5 × 10 5 . When checked in the same manner as in Example 1 80 minutes after the addition of gelatin, undissolved substances were found.
[0042]
【The invention's effect】
According to the present invention, there is provided a method for dissolving a powdery polymer compound, particularly gelatin, which can be dissolved in a single hour, equipment costs and running costs are low, and mamako and bubbles are not generated. We were able to.
[Brief description of the drawings]
FIG. 1 is a sectional view showing an example of a tank with a constant temperature jacket according to the present invention.
FIG. 2 is a diagram showing a state where the temperature in a tank is measured by a temperature sensor.
[Explanation of symbols]
1 melting tank 2 constant temperature jacket 4 baffle plate

Claims (6)

溶媒を撹拌機を有する恒温ジャケット付きタンク内に投入して温度30〜39℃で、撹拌レイノルズ数が2.0×10以上となる様に撹拌しつつ、高分子化合物の粉体を投入して、分散後、40℃までは1℃/min以上の速度で昇温し、さらに50〜60℃まで昇温することを特徴とする粉体状高分子化合物の溶解方法。The solvent is charged into a tank with a thermostat jacket having a stirrer, and the polymer compound powder is charged while stirring at a temperature of 30 to 39 ° C. so that the stirring Reynolds number becomes 2.0 × 10 5 or more. A method of dissolving the powdery polymer compound, wherein after dispersing, the temperature is increased at a rate of 1 ° C./min or more to 40 ° C., and further increased to 50 to 60 ° C. 溶媒として脱気水を使用することを特徴とする請求項1に記載の粉体状高分子化合物の溶解方法。The method for dissolving a powdery polymer compound according to claim 1, wherein deaerated water is used as a solvent. 減圧状態で溶解することを特徴とする請求項1又は2に記載の粉体状高分子化合物の溶解方法。The method for dissolving a powdery polymer compound according to claim 1 or 2, wherein the dissolution is performed under reduced pressure. 粉体状高分子化合物の溶解濃度が10〜30%の範囲にあることを特徴とする請求項1、2又は3に記載の粉体状高分子化合物の溶解方法。4. The method for dissolving a powdery polymer compound according to claim 1, wherein the dissolution concentration of the powdery polymer compound is in the range of 10 to 30%. 前記粉体状高分子化合物がゼラチンであることを特徴とする請求項1〜4のいずれか1項に記載の粉体状高分子化合物の溶解方法。The method for dissolving a powdery polymer compound according to any one of claims 1 to 4, wherein the powdery polymer compound is gelatin. 前記撹拌機が、撹拌翼径がタンク内径の1/3以上である4枚ピッチドパドル、又はTKコンビミックスであることを特徴とする請求項1〜5のいずれか1項に記載の粉体状高分子化合物の溶解方法。The powdery height according to any one of claims 1 to 5, wherein the stirrer is a four-pitch paddle or a TK combination having a stirring blade diameter of 1/3 or more of the tank inner diameter. A method for dissolving a molecular compound.
JP01032798A 1998-01-22 1998-01-22 Method for dissolving powdery polymer compound Expired - Fee Related JP3605787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01032798A JP3605787B2 (en) 1998-01-22 1998-01-22 Method for dissolving powdery polymer compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01032798A JP3605787B2 (en) 1998-01-22 1998-01-22 Method for dissolving powdery polymer compound

Publications (2)

Publication Number Publication Date
JPH11209476A JPH11209476A (en) 1999-08-03
JP3605787B2 true JP3605787B2 (en) 2004-12-22

Family

ID=11747130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01032798A Expired - Fee Related JP3605787B2 (en) 1998-01-22 1998-01-22 Method for dissolving powdery polymer compound

Country Status (1)

Country Link
JP (1) JP3605787B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008184344A (en) * 2007-01-29 2008-08-14 Grace Chemicals Kk Segregation-resistant cement admixture
JP5212630B2 (en) * 2008-08-13 2013-06-19 花王株式会社 Analytical method of fluid flow state in combined stirred tank
JP2010204306A (en) * 2009-03-02 2010-09-16 Jsr Corp Method for producing resin solution for photoresist
JP2011195457A (en) * 2010-03-17 2011-10-06 Denki Kagaku Kogyo Kk Method for deaerating liquid containing hyaluronic acid and/or salt thereof
JP5690497B2 (en) * 2010-03-17 2015-03-25 電気化学工業株式会社 Method for producing liquid containing high purity hyaluronic acid and / or salt thereof
JP6024091B2 (en) * 2011-10-18 2016-11-09 三菱レイヨン株式会社 Method for dissolving powdered water-soluble polymer compound
CN106975419A (en) * 2017-03-27 2017-07-25 成都蒲江珂贤科技有限公司 A kind of pharmaceutical raw material stirring integratedization equipment
CN109200838A (en) * 2018-09-20 2019-01-15 佛山市海天(江苏)调味食品有限公司 Continuous colloidal sol system

Also Published As

Publication number Publication date
JPH11209476A (en) 1999-08-03

Similar Documents

Publication Publication Date Title
JP3605787B2 (en) Method for dissolving powdery polymer compound
JPH0321306A (en) Dissolution and defoaming process
CN103079730B (en) Argentum powder and manufacture method thereof
Srinatha et al. Ionic cross-linked chitosan beads for extended release of ciprofloxacin: in vitro characterization
CN103429535B (en) For feeding Tin monoxide powder and the autofrettage thereof of Sn composition to Sn alloy electroplating bath
CN102199381A (en) Low temperature sinterable metal nanoparticle composition and electronic article formed using the composition
JP2007021357A (en) Polymer powder dissolving apparatus and manufacturing method of polymer solution
CN103897221A (en) Chitosan/phosphorylated silicon dioxide particle hybrid film as well as preparation and application thereof
CN106042705A (en) High-viscosity low-surface-tension fountain solution containing k-carrageenan and preparation method of high-viscosity low-surface-tension fountain solution
CN106493389A (en) A kind of preparation method of composite-grain diameter nano silver paste
Alfassi et al. Cellulose emulsions and their hydrolysis
CN1379285A (en) Manufacturing device and method of refined developing liquid
JP2700676B2 (en) Method for producing silver halide grains
JPWO2008084823A1 (en) Brown film composition and method for preparing the same
CN110343516A (en) A kind of shale gas is dedicated to prevent swollen cleanup additive and preparation method thereof
CN215388887U (en) Aerogel preparation is with even agitating unit
CN108786545A (en) A kind of gelatin solution blender
CN201125221Y (en) Emulsifying explosive preparing and charging serialization equipment system
CN211754031U (en) Chemotherapy medicine dispensing device
JP2010024403A (en) Dispersion liquid of microcapsulated water-soluble phase transition material in chlorofluorocarbon solvent, cooling liquid and heat transfer medium
CN105902485B (en) A kind of Norcantharidin injection temperature sensitive type in-situ gel preparation and its preparation method and application
CN214346108U (en) Mixing arrangement for soil remediation medicament
CN213507923U (en) Emulsified asphalt production device
CN210934965U (en) Neutralization tank for aluminum sulfate production
CN220143193U (en) Mixing equipment for chemical pharmaceutical production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040924

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees