JP3605709B2 - Method and apparatus for producing fluidized soil - Google Patents

Method and apparatus for producing fluidized soil Download PDF

Info

Publication number
JP3605709B2
JP3605709B2 JP17129998A JP17129998A JP3605709B2 JP 3605709 B2 JP3605709 B2 JP 3605709B2 JP 17129998 A JP17129998 A JP 17129998A JP 17129998 A JP17129998 A JP 17129998A JP 3605709 B2 JP3605709 B2 JP 3605709B2
Authority
JP
Japan
Prior art keywords
muddy water
slurry
pump
section
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17129998A
Other languages
Japanese (ja)
Other versions
JP2000008406A (en
Inventor
靖平 柴田
利久 谷口
稔 外崎
淳二 大武
Original Assignee
不動建設株式会社
フドウ技研株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 不動建設株式会社, フドウ技研株式会社 filed Critical 不動建設株式会社
Priority to JP17129998A priority Critical patent/JP3605709B2/en
Publication of JP2000008406A publication Critical patent/JP2000008406A/en
Application granted granted Critical
Publication of JP3605709B2 publication Critical patent/JP3605709B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、流動化処理土のうち、特に泥水と固化材とを混合した流動化処理土の製造方法に関するものである。
【0002】
【従来の技術】
建築や土木工事では、従来から、施工現場で掘削等にて大量に発生する土をセメント等の固化材と混合し、流動化処理土として活用することにより、残土処理の経費削減及び資源の有効利用を図るようにしている。図6はそのような流動化処理土を作る従来の製造手順例を示している。
【0003】
施工現場には、製造装置として、泥水製造部60、混合処理部61、貯蔵用アジテータ部62が設けられる。このうち、泥水製造部60及び混合処理部61はバッチ式に操作される。すなわち、泥水製造部60は、槽内に土及び水を定量投入して品質的に管理(密度試験で管理)された泥水を製造する。手順的には、土及び水が1バッチに対応する量だけ槽内に投入された後、専用の混合手段により土を解泥処理し、岩石等の夾雑物を排出(分級処理)すると共に、設計品質になるよう調泥する。混合処理部61は、槽内に泥水製造部60にて作られた泥水及びセメント等の粉末状の固化材を定量投入して品質的に管理(密度試験及びフロー試験で管理)された流動化処理土を製造する。手順的には、調整後の泥水及び粉末状の固化材が1バッチに対応する量だけ槽内に投入された後、専用の混合手段により設計品質になるよう混練する。アジテータ部62は、混合処理部61でバッチ毎に製造される流動状態にあるモルタル材(以下、流動化処理土と称する)を貯蔵する箇所であり、槽内に設けられたアジテータ用の混合手段により流動化処理土が分離しないように維持する。そして、流動化処理土は、一時的にストックされているアジテータ部62から、アジテータ車に積み込まれて施工域へ搬送されたり、ポンプ及び供給配管を介し施工域へ圧送されて打設される。
【0004】
【発明が解決しようとする課題】
以上の従来方式では、製造方法及び装置的に次のようなことが問題になる。
第1に、この種の製造では、処理対象である発生土が都市開発等の如く大量になると、泥水製造部60及び混合処理部61が複数装備されると共に、貯蔵用アジテータ部62もそれに比例した大きさにしなければならない。このため、従来方式では、装置の設備費が大きく、製品の基礎価格が自ずと高くなっており、例えば、適用自体がコスト的に困難になる場合もある。
第2に、製造装置設置域や製品を使用する打設域は、極力その工事現場の近くにあることが輸送経費及び品質維持の観点から好ましい。ところが、従来方式では、泥水製造部60,混合処理部61,貯蔵用アジテータ部62が不可欠であり、例えば、流動化処理土を500m3/日の製造設備を確保するとなると、通常の実施態様において、装置設置域として少なくとも1000m2 程度を必要とし、装置設置面積上の制約を受けたり、必要供給量を確保できないことも起こる。
第3に、流動化処理土は、貯蔵用アジテータ部62にストックされてそこからアジテータ車に供給配管及び圧送用ポンプを利用して積み込まれて打設部まで搬送されることが多い。このような従来方式では、アジテータ車に積み込む時間に加え、積み込み過程で分離が進み品質変化を生じ易い。
【0005】
本発明は以上のような背景から開発されたものであり、その目的は、製造装置を大幅に簡易化でき、これにより製品の基礎価格を削減し、装置設置面積上の制約を構造的に解消可能にした流動化処理土の製造方法を提供することにある。他の目的は以下の内容説明の中で明らかにする。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明は次のような構成を工夫したものである。
請求項1の発明は、泥水製造部で密度を調整した泥水と、セメント等の固化材とを所定品質に混合して、供給配管を介しアジテータ機能付き運搬車又は打設部まで圧送する流動化処理土の製造方法において、前記供給配管が、前記泥水製造部と前記運搬車又は打設部側との間に配置されて、前記泥水製造部の泥水を圧送するポンプと、該ポンプで圧送される泥水の量を計測する流量計と、配管出口側に接続されている連続式混練器と、該混練器の手前側の配管に接続されてサイロ側の前記固化材をスクリュー機構により投入量を制御して配管内へ供給する導入部とを有し、流動化処理土の密度に応じて前記泥水製造部の泥水と前記サイロ側の固化材との配合比を決め、該配合比に基づいて、必要総量である前記泥水と固化材との各供給量を算出し、前記泥水製造部において前記算出供給量の泥水を圧送するのに要する圧送時間(t)を予測すると共に、前記サイロ側において前記算出供給量の固化材を前記導入部から全て排出する排出時間を前記泥水の圧送時間(t)と同じくなるよう前記スクリュー機構を設定した後、前記泥水製造部の泥水をポンプを介し前記供給配管を通じて圧送し、同時に、前記サイロ側の固化材を前記導入部から供給配管内に圧送して、前記混練器を介し混合しながら、前記運搬車又は打設部へ吐出するよう構成したものである。
【0007】
請求項2の発明は、泥水製造部で密度を調整した泥水と、セメント等の固化材とを所定品質に混合して、供給配管を介しアジテータ機能付き運搬車又は打設部まで圧送する流動化処理土の製造方法において、前記供給配管が、前記泥水製造部と前記運搬車又は打設部側との間に配置されて、前記泥水製造部の泥水を圧送する第1ポンプと、該第1ポンプで圧送される泥水の量を計測する流量計と、配管出口側に接続されている連続式混練器と、該混練器の手前側の配管に接続されて前記固化材に予め水を加えて調整するスラリー製造部から、調整後のスラリーを、第2ポンプにより投入量を制御して配管内へ供給する導入部とを有し、流動化処理土の密度に応じて前記泥水製造部の泥水と前記スラリー製造部のスラリーとの配合比を決め、該配合比に基づいて、必要総量である前記泥水とスラリーとの各供給量を算出し、前記泥水製造部において前記算出供給量の泥水を圧送するのに要する圧送時間(t)を予測すると共に、前記スラリー製造部側において前記算出供給量のスラリーを前記導入部から全て排出する排出時間を前記泥水の圧送時間(t)と同じくなるよう前記第2ポンプを設定した後、前記泥水製造部の泥水を第1ポンプを介し前記供給配管を通じて圧送し、同時に、前記スラリー製造部のスラリーを第2ポンプを介し前記導入部から供給配管内に圧送して、前記混練器を介し混合しながら、前記運搬車又は打設部へ吐出するよう構成したものである。
【0008】
以上の本発明は、装置設置面積の制約を受ける場合の従来対策として、一般的にアジテータ車への積み込み量(製品供給量)に応じて泥水製造部及び混合処理部を稼働し、アジテータ部のストック量を多少なりとも小さくすることで対処していたが、そのような対策では過密した工事現場において限界があり、改善策を検討している過程で完成されたものである。製品である流動化処理土は、通常使用において、密度及びフロー値にて要求品質が管理され、その管理値も打設箇所の使用目的や条件に応じて決められる。
【0009】
すなわち、本発明の構造は、図面の例において、供給配管40が泥水製造部10とアジテータ機能付き運搬車21又は打設部側との間に配置されることを前提とし、泥水製造部10の泥水3及びセメント系の固化材(請求項1の発明では固化材4を単独又は砂利等を混在した状態で、請求項2の発明では固化材4を調整したスラリー状態で)の構成材料を別々に定量づつ圧送し、運搬車21又は打設部に吐出する直前に連続式混練器44を用いて混練りして投入又は吐出するものである。このため、本発明は、従来構造との対比において、泥水製造部10を必要としているが、混合処理部及びアジテータ部を省略可能にし、無駄のない理想的な製造方法及び装置を実現する。具体的には、装置設置面積的に従来の半分以下にでき、材料の横待ち移動を最小限に止めて装置コスト及び稼働経費を少なくし、流動化処理土の分離を防いで高品質化が図られる。なお、本発明のアジテータ機能付き運搬車は、運搬車として、流動化処理土を分離しないよう処理しつつ運搬する機能を有している意味で、通常のアジテータ車やミキサー車を含む。
【0010】
【発明の実施の形態】
以下、本発明の実施形態を添付図面に基づいて詳細に説明する。この実施形態は好適な2つの具体例であり、種々の限定が付けられているが、本発明の範囲を制約するものではない。なお、図1と図2及び図3(a)は第1形態例の構成を示し、図4と図5及び図3(b)は第2形態例の構成を示している。
【0011】
(第1形態例)この形態は、従来の混合処理部及びアジテータ部を完全に省略可能にしたものであり、土1と水2から泥水3を製造した後、その泥水3にセメント等の固化材4の粉末又はそれら砂利5等を混在したものを供給ライン上の吐出側にて、混合し所定品質の流動化処理土6を製造するものである。この製造装置としては、図2と図3(a)に示される如く、泥水製造部10が主体となり、泥水製造部10と搬送部20との間に配置される供給配管40と、供給配管40の吸い込み側に設けられた圧送ポンプ41と、供給配管40に組み込まれた積算流量計42及び制御部43と、供給配管40の吐出側に組み込まれた混練器としてのスタテックミキサ44と、スタテックミキサ44の手前の配管部に連結された導入部46等を備えている。
【0012】
泥水製造部10は、槽11内に土1及び水2を定量投入して、混合等の処理を行うことにより所定の密度を有する泥水4を製造する箇所である。この形態では、運搬機12に装備されたバケットミキサ13が用いられて、土1及び水2が1バッチに対応する量だけ槽11内に投入された後、その投入された土1を解泥し、岩石等の夾雑物を排出(分級処理)すると共に、均一に混合して設計密度になるよう調泥処理する構成である。この場合、水2は、別途に設置された槽14内からポンプ15及び配管16を介して投入されると共に、流量計17及び制御部18により水投入量が管理される例であるが、他の投入方式であってもよい。また、槽11は、混合処理部19a及び泥水溜部19bを一体的に有し、製造後の泥水3が混合処理部19aから泥水溜部19bに移され、ポンプ41及び供給配管40を介し搬送部20へ圧送している間も、混合処理部19aで次のバッチ操作を開始できるようになっている。これは、槽11の稼働率を挙げるために工夫されたものであるが、槽11自体は少なくとも混合処理部19aを有していればよい。
【0013】
供給配管40は、吸い込み側を泥水溜部19b内に位置し、ポンプ41を介して泥水溜部19b内の泥水3を送り出す。泥水3の圧送量は積算流量計42により計測される。積算流量計42は、その積算値をデジタル表示すると共に、ポンプ41の作動を制御する制御部43へ信号を送信する。この制御部43は、供給配管40から送られる泥水供給量を任意の設定値に設定可能であると共に、ポンプ41の作動を開始させたり、積算流量計43の積算値が前記設定値に達したときに、ポンプ41の作動を停止させる。
【0014】
これに対し、供給配管40の吐出側には搬送部20が位置し、スタテックミキサ44が接続されている。また、搬送部20は、アジテータ車21に製品である流動化処理土6を積み込む箇所で、セメント系の固化材4を供給するサイロ25と、サイロ25の排出部に対応して設けられた移送排出器22と、砂利5等を移送排出器22に投入する骨材投入手段24等が装備されている。
【0015】
スタテックミキサ44は、ラインミキサとして公知のものであり、入口側が供給配管40の出口側に設けられた拡径部40bに対し連結部材45を介し下向きに固定された状態で組み付けられている。この拡径部40b内には、導入部46の出口部分が垂直に突出した状態で接続されている。導入部46は、制御部23付き移送排出器側から延びており、移送排出器内に投入されるセメント4(又はセメント4と砂利5等)を拡径部40b内に導入する。この形態では、導入部46が移送排出器の下部排出部を構成しており、回転作用にてセメント4(又はセメント4と砂利5等)を移送するいわゆるスクリュー機構からなる。移送排出器22は、制御部23を介し作動が制御される。制御部23は、スクリュー機構の開始と停止以外に、導入部46からの排出量や排出時間等が設定可能になっている。したがって、移送排出器内に投入されたセメント4(又はセメント4と砂利5等)は、投入量に応じた移送時間を制御部23に設定しておくことで、設定時間内で導入部46から拡径部40b内に略定量づつ排出される。
【0016】
なお、サイロ25はセメント4を下部側から圧送して貯蔵し、必要量を排出部から送り出すことができる構造であればよい。移送排出器22は、サイロ25の排出部の真下に支持部材26等を用いて固定されている。骨材投入手段24は、砂利5等を槽27内にストックし、それをベルト機構により移送排出器22まで移送して略定量づつ投入可能なものであるが、他の投入方式であってもよい。
【0017】
(第1形態を用いた製造例)図1は以上の製造装置を用いた場合の製造フロー例を示している。この製造例は、泥水3に対し固化材4としてセメントだけを混合する例であるが、固化材4と砂利5等を混在する場合もこれを類推して行うことができる。また、製造される流動化処理土6は、アジテータ車21に積み込まれて打設部まで搬送される例であるが、打設部に直に吐出するようにしてもよい。なお、泥水3自体は従来と同様に作られることから省略している。
【0018】
製造準備段階では、目的とする流動化処理土6の要求密度及びフロー値が得られるよう、泥水3と固化材4の配合比が泥水状態等を考慮して決められる。また、その配合比に基づいて、アジテータ車21への積み込み量に応じた泥水3と固化材4の必要総量(各供給量)が算出される。そして、作業者は、泥水製造部10側において、制御部43に泥水3の供給量を積算値として設定すると共に、その積算値に達するまでの泥水3の圧送時間(t)をポンプ41能力や供給配管40の長さ等を考慮して予測する(ステップ1)。その後、搬送部20側において、粉末状態の固化材4がサイロ25から移送排出器内に前記した供給量だけ検量し投入されると共に、その固化材投入量に応じた排出時間を制御部23に設定する(ステップ2)。この設定は、移送排出器のスクリューの回転数等により、前記予測された時間(t)と同じ時間で、移送排出器22内の固化材4を導入部46から全て排出されるようにするものである。
【0019】
作業者は、以上の準備が完了すると、図2の如くアジテータ車21が定位置にいることを確認した後、制御部43を介しポンプ41の作動を開始し、同時に、制御部23を介し移送排出器の作動を開始する(ステップ3,4,5)。すると、図3(a)の如く泥水溜部19b内の泥水3が供給配管40を通じ、移送排出器22内の固化材4が導入部46を通じてそれぞれスタテックミキサ44の入口に達する。この場合、導入部46側は、固化材4が拡径部40bを圧送している泥水3内に吐出され、その際、固化材4が導入部46の先端を拡径部40b内に下向き状態で大きく突出しているため、負圧により泥水3内にスムースに混入される。
【0020】
そして、泥水3と固化材4とは混在された状態で、スタテックミキサ44内に送り込まれ、スタテックミキサ44の混練り作用により所定品質の流動化処理土6に製造されつつ、アジテータ車21のホッパーからタンク内に積み込まれる。この場合、泥水3の送り出された量は、積算流量計42で計測され、その積算値が制御部43へ逐次送信されている(ステップ6)。また、この積み込みは、積算流量計42の積算値が制御部43の設定値に一致するまで継続され(ステップ6,8)、一致した時点でポンプ41及び積算流量計42が制御部43を介し自動停止される(ステップ10)。同時に、移送排出器22は、制御部23に設定された固化材4の排出時間に達すると、制御部23を介し自動停止される(ステップ7,9,11)。その後、次のアジテータ車への積み込みに移行される。したがって、このような製造方法では、従来方法に対し、装置が簡易化されることに加え、装置設置面積を大幅に小さくでき、装置稼働率を向上できる。また、流動化処理土6は、スタテックミキサ44で製造されつつアジテータ車21に積み込まれたり、打設部に吐出されることから、製造過程に必要なポンプ41等が少なく稼働費を低減できる。
【0021】
(第2形態例)この形態は、第1形態に対し、土1と水2から泥水3を製造し、同時にセメント等の固化材4に水2を加えて調整したスラリー7を製造した後、その泥水3とスラリー7を供給ライン上の吐出側にて混合し所定品質の流動化処理土6を製造する点で相違している。この製造装置としては、図5と図3(b)に示される如く、泥水製造部10及びスラリー製造部30が主体となり、泥水製造部10及びスラリー製造部30と搬送部20との間に配置される供給配管40,50と、供給配管40,50の各吸い込み側に設けられたポンプ41,51と、供給配管40,50に組み込まれた積算流量計42,52及び制御部43,53と、供給配管40,50の吐出側に組み込まれた混練器としてのスタテックミキサ44と、スタテックミキサ44の手前の配管部に連結された導入部48等を備えている。なお、泥水製造部10及びその供給配管40に関係する構成は第1形態と同じことから、第1形態と同一又は類似の部材や部位について、同じ符号を付して重複した説明を極力省略する。
【0022】
スラリー製造部30は、セメント系の固化材4及び水2を槽31内に定量投入して、混合手段32を介し所定品質のスラリー7を製造すると共に、それをアジテータ用槽33内に一時的にストックする箇所である。この形態では、槽34内の水2及びサイロ35に貯蔵された固化材4が1バッチに対応する量だけ槽31内に投入された後、専用の混合手段32により所定時間練り、それを槽33内に移す構成である。また、供給配管50は、吸い込み側を槽33内に位置し、グラウトポンプ51を介して槽33内のスラリー7を送り出す。スラリー7の圧送量は積算流量計52により計測される。積算流量計52は、その積算値をデジタル表示すると共に、グラウトポンプ51の作動を制御する制御部53へ信号を送信する。この制御部53は、供給配管50から送られるスラリー7の供給量を任意の設定値に設定可能であると共に、グラウトポンプ51の作動を開始させたり、積算流量計53の積算値が前記設定値に達したときに、グラウトポンプ51の作動を停止させる。
【0023】
これに対し、供給配管40,50の吐出側には搬送部20が位置し、スタテックミキサ44が接続されている。スタテックミキサ44は、入口側が供給配管40の出口側に設けられた拡径部40bに対し連結部材45を介し略水平又は斜め下向きに固定された状態で組み付けられている。この拡径部40b内には、供給配管50の吐出側を構成している導入部48がその端部を略水平固定された状態で接続されている。なお、図5,図3(b)中、符号28は各供給配管40,50をアジテータ車21のホッパー高さ位置までガイドする柱状の支持部材である。スタテックミキサ44は支持部材28の上端側に保持されている。符号49はスタテックミキサ44の出口側に接続されたガイド管であり、アジテータ車21のホッパー位置に対し必要に応じて設けられるものである。
【0024】
(第2形態を用いた製造例)図4は以上の製造装置を用いた場合の製造フローを示している。なお、この製造フローは、前記した図1に対し、左のスラリー製造部側の流れだけが相違している。
【0025】
準備段階では、目的とする流動化処理土6の要求密度及びフロー値が得られるよう、泥水3とスラリー7の配合比が決められる。また、その配合比に基づいて、アジテータ車21への積み込み量に応じた泥水3とスラリー7との各配合する総量(各供給量)が算出される。そして、作業者は、泥水製造部10側において、制御部43に泥水3の供給量を積算値として設定すると共に、その積算値に達するまでの泥水3の圧送時間(t)を予測する(ステップ1)。また、スラリー製造部30側において、スラリー7の圧送時間を制御部53に設定する(ステップ2)。つまり、この設定では、泥水3の圧送時間(t)と同じ時間で、前記算出されたスラリー7の供給量を導入部48から全て排出されるようにする。
【0026】
作業者は、以上の準備が完了すると、図5の如くアジテータ車21が定位置にいることを確認した後、制御部43を介しポンプ41の作動を開始し、同時に、制御部53を介しグラウトポンプ51の作動を開始する(ステップ3,4,5)。すると、図3(b)の如く泥水溜部19b内の泥水3が供給供給配管40を通じ、槽33内のスラリー7が導入部48を通じてそれぞれスタテックミキサ44の入口に達し、混在した状態になる。
【0027】
そして、泥水3とスラリー7とは混在された状態で、スタテックミキサ44内に送り込まれ、スタテックミキサ44の混練り作用により所定品質の流動化処理土6に製造されつつ、アジテータ車21のホッパーからタンク内に積み込まれる。この場合、泥水3の送り出された量は、積算流量計42で計測され、その積算値が制御部43へ逐次送信されている(ステップ6)。また、この積み込みは、積算流量計42の積算値が制御部43の設定値に一致するまで継続され、一致した時点でポンプ41及び積算流量計42が制御部43を介し自動停止される(ステップ8,10)。同時に、スラリー7の送り出された量は、積算流量計52で計測され、その積算値が制御部53へ逐次送信されている(ステップ9)。そして、その積算値が制御部53の設定値に一致するまで継続され、一致した時点でグラウトポンプ51が制御部53を介し自動停止される(ステップ9,11)。したがって、この製造方法でも、段落0020に記載した第1形態例と同様な利点が得られる。
【0028】
なお、本発明は、請求項に記載した技術要素以外についてはこの実施形態に限られることなく、製造規模や装置設置条件等に応じ、適宜に変更されるものである。また、使用される土は、工事現場等で発生する土であり、多少の砂や砂利等も含んでいることから、学術上の厳格な土よりも広義のものである。
【0029】
【発明の効果】
以上説明したように、本発明に係る流動化処理土の製造方法にあっては、従来方式に対し、泥水製造部を必要としているが、混合処理部及びアジテータ部を省略可能にすることを前提とし、装置構造的に簡易化されること、必要な装置設置面積を大幅に削減できること、無駄のない装置稼働を実現できること、流動化処理土の分離を防いで高品質化を維持できること、等の利点を有している。このため、本発明は、特に、大量製造において、製造原価を低減可能にして経済性に優れ、同時に、設置面積上の制約を受け難くして適用ケースを増大可能にできることから、残土処理経費の削減と資源の有効利用をより促進することができる。なお、本発明のうち、請求項1では、固化材を導入部から配管内に圧送し泥水と共に混練器を介し混合する構成であり、泥水製造部で調整された泥水に不要な水分を混入することがないので、要求される流動化処理土として、特に密度が比較的高い(フロー値が相対的に低い)ような場合に好適なものとなる。
【図面の簡単な説明】
【図1】第1の本発明方法をその製造工程にて示す製造フローである。
【図2】第1の発明方法に用いられる装置構成を模式的に示す図である。
【図3】図2のA部と図5のB部を示す混練器手前付近の模式断面図である。
【図4】第2の本発明方法をその製造工程にて示す製造フローである。
【図5】第2の発明方法に用いられる装置構成を模式的に示す図である。
【図6】従来の流動化処理土の製造手順を示す図である。
【符号の説明】
1は土、2は水、3は泥水、4はセメント(固化材)、5は砂利
6は流動化処理土、7はセメント系スラリー、
10は泥水製造部、20は搬送部、
21はアジテータ車(アジテータ機能付き運搬車)、
30はセメント系スラリー製造部、40,50は供給配管、40bは拡径部、
42,52は積算流量計、23,43,52は制御部、
44はスタテックミキサ(連続式混練器)、46,48は導入部
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a method for producing a fluidized soil obtained by mixing muddy water and a solidifying material among fluidized soils.
[0002]
[Prior art]
In the construction and civil engineering work, conventionally, a large amount of soil generated by excavation at the construction site is mixed with cement or other solidifying material and used as fluidized soil to reduce the cost of remaining soil treatment and to effectively use resources. We are trying to use it. FIG. 6 shows an example of a conventional manufacturing procedure for producing such fluidized soil.
[0003]
At the construction site, a muddy water production section 60, a mixing section 61, and a storage agitator section 62 are provided as production apparatuses. Of these, the muddy water production section 60 and the mixing section 61 are operated in a batch system. That is, the muddy water production unit 60 produces muddy water that is quantitatively charged into the tank and that is quality-controlled (managed by a density test). In terms of procedure, after soil and water are put into the tank in an amount corresponding to one batch, the soil is demudged by a special mixing means, and impurities such as rocks are discharged (classification processing). Adjust the quality to the design quality. The mixing unit 61 is a fluidized material that is quantitatively charged into the tank with muddy water and cement or other powdery solidified material produced by the muddy water manufacturing unit 60 and quality controlled (managed by a density test and a flow test). Manufacture treated soil. In terms of procedure, after the adjusted muddy water and the powdered solidified material are put into the tank in an amount corresponding to one batch, they are kneaded by a dedicated mixing means so as to have the design quality. The agitator section 62 is a place for storing a mortar material in a fluidized state (hereinafter, referred to as fluidized soil) produced for each batch in the mixing section 61, and a mixing means for the agitator provided in the tank. To keep the fluidized soil from separating. The fluidized soil is loaded from the temporarily stocked agitator section 62 into an agitator truck and transported to the construction area, or is pumped into the construction area via a pump and a supply pipe to be driven.
[0004]
[Problems to be solved by the invention]
In the above-mentioned conventional method, the following problems arise in terms of the manufacturing method and apparatus.
First, in this type of production, when the amount of generated soil to be treated is large, such as in urban development, a plurality of muddy water production units 60 and mixing treatment units 61 are provided, and the storage agitator unit 62 is also proportional to it. Size. For this reason, in the conventional method, the equipment cost of the apparatus is large, and the basic price of the product is naturally high. For example, the application itself may be difficult in terms of cost.
Secondly, it is preferable from the viewpoint of transportation cost and quality maintenance that the installation area of the manufacturing equipment and the installation area where the product is used are located as close to the construction site as possible. However, in the conventional method, the muddy water production section 60, the mixing processing section 61, and the storage agitator section 62 are indispensable. For example, if it is necessary to secure a production facility for 500 m3 / day of fluidized soil, It requires at least about 1000 m 2 as the installation area of the apparatus, and there are restrictions on the installation area of the apparatus and the required supply amount cannot be secured.
Third, the fluidized soil is often stocked in the storage agitator section 62, loaded onto the agitator vehicle using a supply pipe and a pressure pump, and transported to the casting section. In such a conventional method, in addition to the time required for loading in the agitator vehicle, separation takes place during the loading process, and the quality tends to change.
[0005]
The present invention has been developed in view of the above background, and its purpose is to greatly simplify a manufacturing apparatus, thereby reducing a basic price of a product and structurally eliminating restrictions on an apparatus installation area. It is an object of the present invention to provide a method for producing a fluidized soil that has been made possible. Other objects will be clarified in the following description.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is devised with the following configuration.
The invention of claim 1 is a fluidization in which muddy water whose density is adjusted in a muddy water producing section and a solidifying material such as cement are mixed to a predetermined quality, and are fed to a carrier with an agitator function or a casting section through a supply pipe. In the method for producing treated soil, the supply pipe is disposed between the muddy water production unit and the transport vehicle or the casting unit side, and a pump that pumps the muddy water of the muddy water production unit, and is pumped by the pump. A flow meter for measuring the amount of muddy water, a continuous kneader connected to the pipe outlet side, and the solidified material on the silo side connected to the pipe on the near side of the kneader, and the input amount of the solidified material by a screw mechanism. Having an introduction section for controlling and supplying the pipe into the pipe, and determining the mixing ratio between the muddy water of the muddy water production section and the solidified material on the silo side in accordance with the density of the fluidized treated soil, based on the mixing ratio. Calculate the required supply amounts of the muddy water and the solidified material A pumping time (t) required for pumping the calculated supply amount of muddy water in the muddy water production unit is predicted, and a discharge time period in which the calculated supply amount of the solidified material is entirely discharged from the introduction unit on the silo side. After setting the screw mechanism so as to be equal to the pumping time (t) of the muddy water, the muddy water of the muddy water production section is pumped through the supply pipe via a pump, and at the same time, the solidified material on the silo side is introduced into the introduction section. From the feeder and into the supply pipe, and discharge to the carrier or the casting section while mixing through the kneader.
[0007]
The invention of claim 2 is a fluidization method in which muddy water whose density is adjusted in a muddy water producing section and a solidifying material such as cement are mixed to a predetermined quality and pressure-fed to a carrier with an agitator function or a casting section through a supply pipe. In the method for producing treated soil, the supply pipe is disposed between the muddy water production unit and the transport vehicle or the casting unit side, and a first pump for pumping the muddy water of the muddy water production unit; A flow meter that measures the amount of muddy water pumped by a pump, a continuous kneader connected to a pipe outlet side, and water added to the solidified material in advance connected to a pipe on the near side of the kneader, An introduction section for supplying the adjusted slurry from the slurry production section to the pipe by controlling the input amount by a second pump, and supplying the slurry into the pipe in accordance with the density of the fluidized treated soil. And the mixing ratio of the slurry in the slurry production section and the Based on the ratio, the respective supply amounts of the muddy water and the slurry, which are the required total amount, are calculated, and the pumping time (t) required for pumping the calculated supply amount of the muddy water in the muddy water production unit is predicted, The second pump is set on the slurry production section so that the discharge time for discharging the calculated supply amount of slurry from the introduction section is the same as the pumping time (t) of the muddy water. Is fed through the supply pipe via the first pump, and at the same time, the slurry in the slurry production section is fed from the introduction section into the supply pipe via the second pump, and the slurry is mixed while passing through the kneader. It is configured to discharge to a car or a casting part.
[0008]
As described above, the present invention operates the muddy water production unit and the mixing processing unit according to the loading amount (product supply amount) on the agitator vehicle as a conventional measure in the case where the installation space of the apparatus is restricted. This was dealt with by reducing the stock volume to some extent, but such measures had limitations in overcrowded construction sites and were completed in the process of considering improvement measures. The required quality of the fluidized soil, which is a product, is controlled by the density and the flow value in normal use, and the control value is also determined according to the purpose of use and the conditions of the casting location.
[0009]
That is, the structure of the present invention is based on the premise that the supply pipe 40 is disposed between the muddy water production unit 10 and the carrier 21 with agitator function or the casting unit side in the example of the drawing. The constituent materials of the muddy water 3 and the cement-based solidifying material (in the invention of claim 1, the solidifying material 4 is used alone or in a state in which gravel and the like are mixed, and in the invention of claim 2, in a slurry state in which the solidifying material 4 is adjusted) The mixture is kneaded using a continuous kneader 44 immediately before being discharged to the transport vehicle 21 or the casting section, and then injected or discharged. For this reason, the present invention requires the muddy water production unit 10 in comparison with the conventional structure. However, the mixing unit and the agitator unit can be omitted, and an ideal production method and apparatus without waste are realized. Specifically, the equipment installation area can be reduced to less than half of the conventional one, the horizontal waiting movement of the material is minimized, the equipment cost and operating cost are reduced, and the separation of the fluidized soil is prevented and the quality is improved. It is planned. The transport vehicle with an agitator function of the present invention includes ordinary agitator trucks and mixer trucks in the sense that it has a function of transporting fluidized soil while treating it so as not to be separated.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. This embodiment is a preferred two specific examples, and various limitations are provided, but do not limit the scope of the present invention. FIGS. 1, 2 and 3 (a) show the configuration of the first embodiment, and FIGS. 4, 5 and 3 (b) show the configuration of the second embodiment.
[0011]
(First Embodiment) In this embodiment, the conventional mixing section and agitator section can be omitted completely. After the muddy water 3 is produced from the soil 1 and the water 2, the cement 3 is solidified into the muddy water 3. The powder of the material 4 or the mixture of the gravel 5 and the like is mixed on the discharge side on the supply line to produce fluidized soil 6 of a predetermined quality. As shown in FIGS. 2 and 3A, the production apparatus mainly includes a muddy water production unit 10 and a supply pipe 40 disposed between the muddy water production unit 10 and the transport unit 20; Pump 41 provided on the suction side of the pump, an integrating flow meter 42 and a control unit 43 incorporated in the supply pipe 40, a static mixer 44 as a kneader incorporated on the discharge side of the supply pipe 40, An introduction section 46 and the like connected to a pipe section in front of the tech mixer 44 are provided.
[0012]
The muddy water production section 10 is a place where the muddy water 4 having a predetermined density is produced by putting a fixed amount of the soil 1 and the water 2 into the tank 11 and performing a process such as mixing. In this embodiment, a bucket mixer 13 mounted on a transporter 12 is used, and soil 1 and water 2 are charged into the tank 11 by an amount corresponding to one batch. In addition to discharging (classifying) contaminants such as rocks, the mixture is uniformly mixed to perform mud conditioning so as to reach the design density. In this case, the water 2 is supplied from the separately installed tank 14 via the pump 15 and the pipe 16, and the amount of water supplied is controlled by the flow meter 17 and the control unit 18. May be used. The tank 11 has a mixing section 19a and a mud pool 19b integrally, and the manufactured mud 3 is transferred from the mixing section 19a to the mud pool 19b and transported via the pump 41 and the supply pipe 40. The next batch operation can be started in the mixing section 19a even while the pressure is being fed to the section 20. This is devised to increase the operation rate of the tank 11, but the tank 11 itself may have at least the mixing section 19a.
[0013]
The supply pipe 40 is located on the suction side in the mud pool 19b, and sends out the mud 3 in the mud pool 19b via the pump 41. The pumping amount of the muddy water 3 is measured by the integrating flow meter 42. The integrating flow meter 42 digitally displays the integrated value and transmits a signal to a control unit 43 that controls the operation of the pump 41. The control unit 43 can set the amount of muddy water supplied from the supply pipe 40 to an arbitrary set value, start the operation of the pump 41, or have the integrated value of the integrating flow meter 43 reach the set value. At times, the operation of the pump 41 is stopped.
[0014]
On the other hand, the transport section 20 is located on the discharge side of the supply pipe 40, and the static mixer 44 is connected. In addition, the transport unit 20 is provided with a silo 25 for supplying the cement-based solidified material 4 at a location where the fluidized soil 6 as a product is loaded on the agitator wheel 21 and a transfer provided corresponding to the discharge unit of the silo 25. A discharger 22 and an aggregate input means 24 for inputting the gravel 5 and the like into the transfer discharger 22 are provided.
[0015]
The static mixer 44 is publicly known as a line mixer, and is assembled with the inlet side fixed downward through a connecting member 45 to a large-diameter portion 40 b provided on the outlet side of the supply pipe 40. The outlet portion of the introduction portion 46 is connected to the inside of the enlarged diameter portion 40b so as to protrude vertically. The introduction portion 46 extends from the transfer / discharge device side with the control portion 23, and introduces the cement 4 (or the cement 4 and the gravel 5 or the like) charged into the transfer / discharge device into the enlarged diameter portion 40b. In this embodiment, the introduction portion 46 constitutes a lower discharge portion of the transfer / discharge device, and includes a so-called screw mechanism that transfers the cement 4 (or the cement 4 and the gravel 5) by a rotating action. The operation of the transfer / discharge device 22 is controlled via a control unit 23. The control unit 23 can set the discharge amount, discharge time, and the like from the introduction unit 46 in addition to the start and stop of the screw mechanism. Therefore, for the cement 4 (or cement 4 and gravel 5 etc.) charged into the transfer / discharge unit, the transfer time according to the input amount is set in the control unit 23 so that the cement 4 is transferred from the introduction unit 46 within the set time. The liquid is discharged into the enlarged diameter portion 40b by a substantially constant amount.
[0016]
Note that the silo 25 may have any structure as long as the cement 4 can be pumped from the lower side and stored, and the required amount can be sent out from the discharge unit. The transfer / discharge device 22 is fixed directly below the discharge portion of the silo 25 using a support member 26 or the like. The aggregate input means 24 is capable of stocking the gravel 5 and the like in the tank 27, transferring the gravel 5 and the like to the transfer / ejector 22 by a belt mechanism, and inputting them in a substantially constant amount. Good.
[0017]
(Example of Manufacturing Using First Embodiment) FIG. 1 shows an example of a manufacturing flow when the above-described manufacturing apparatus is used. This manufacturing example is an example in which only cement is mixed as the solidifying material 4 into the muddy water 3. However, when the solidifying material 4 and the gravel 5 are mixed, this can be performed by analogy. In addition, although the fluidized soil 6 to be manufactured is loaded on the agitator wheel 21 and transported to the casting section, it may be discharged directly to the casting section. Note that the muddy water 3 itself is omitted because it is made in the same manner as in the related art.
[0018]
In the production preparation stage, the mixing ratio of the muddy water 3 and the solidified material 4 is determined in consideration of the muddy water state, etc., so that the required required density and flow value of the fluidized soil 6 are obtained. Further, based on the mixing ratio, the necessary total amount (each supply amount) of the muddy water 3 and the solidified material 4 is calculated according to the amount of loading into the agitator wheel 21. Then, the operator sets the supply amount of the muddy water 3 as an integrated value in the control unit 43 on the muddy water manufacturing unit 10 side, and determines the pumping time (t) of the muddy water 3 until reaching the integrated value by the pump 41 capacity or the like. The prediction is made in consideration of the length of the supply pipe 40 (step 1). Thereafter, on the side of the transport unit 20, the solidified material 4 in the powder state is weighed from the silo 25 into the transfer / ejector by the above-described supply amount, and the discharge time according to the solidified material input amount is sent to the control unit 23. Set (step 2). This setting is such that the solidified material 4 in the transfer / discharge device 22 is completely discharged from the introduction portion 46 in the same time as the predicted time (t) according to the rotation speed of the screw of the transfer / discharge device. It is.
[0019]
When the above preparations are completed, the operator confirms that the agitator wheel 21 is at the home position as shown in FIG. 2, and then starts the operation of the pump 41 via the control unit 43, and at the same time, transfers the pump via the control unit 23. The operation of the ejector is started (steps 3, 4, 5). Then, as shown in FIG. 3A, the muddy water 3 in the muddy water reservoir 19 b reaches the inlet of the static mixer 44 through the supply pipe 40, and the solidified material 4 in the transfer / discharger 22 passes through the inlet 46. In this case, on the introduction part 46 side, the solidified material 4 is discharged into the muddy water 3 that is pumping the enlarged diameter part 40b, and at this time, the solidified material 4 has the distal end of the introduction part 46 facing down into the enlarged diameter part 40b. , And is smoothly mixed into the muddy water 3 by the negative pressure.
[0020]
Then, the muddy water 3 and the solidified material 4 are fed into the static mixer 44 in a mixed state, and are manufactured into the fluidized treated soil 6 of a predetermined quality by the kneading action of the static mixer 44, while the agitator wheel 21 is formed. From the hopper into the tank. In this case, the amount of the discharged muddy water 3 is measured by the integrating flow meter 42, and the integrated value is sequentially transmitted to the control unit 43 (Step 6). The loading is continued until the integrated value of the integrating flow meter 42 matches the set value of the control unit 43 (steps 6 and 8). Automatic stop is performed (step 10). At the same time, the transfer / discharge unit 22 is automatically stopped via the control unit 23 when the discharge time of the solidified material 4 set in the control unit 23 is reached (steps 7, 9, 11). After that, it is shifted to loading to the next agitator vehicle. Therefore, in such a manufacturing method, in addition to the simplification of the apparatus as compared with the conventional method, the installation area of the apparatus can be significantly reduced, and the operation rate of the apparatus can be improved. In addition, since the fluidized soil 6 is loaded on the agitator wheel 21 while being manufactured by the static mixer 44 or discharged to the casting part, the pump 41 and the like required for the manufacturing process are small, and the operating cost can be reduced. .
[0021]
(Second Embodiment) This embodiment is different from the first embodiment in that a slurry 7 is produced by producing muddy water 3 from soil 1 and water 2 and simultaneously adding water 2 to a solidifying material 4 such as cement. The difference is that the muddy water 3 and the slurry 7 are mixed on the discharge side on the supply line to produce fluidized soil 6 of a predetermined quality. As shown in FIGS. 5 and 3 (b), the production apparatus mainly includes a muddy water production unit 10 and a slurry production unit 30, and is disposed between the muddy water production unit 10, the slurry production unit 30, and the transport unit 20. Supply pipes 40, 50, pumps 41, 51 provided on each suction side of the supply pipes 40, 50, integrating flow meters 42, 52 and control units 43, 53 incorporated in the supply pipes 40, 50. , A static mixer 44 as a kneader incorporated on the discharge side of the supply pipes 40 and 50, and an introduction section 48 connected to a pipe section before the static mixer 44. Since the configuration related to the muddy water production unit 10 and its supply pipe 40 is the same as that of the first embodiment, the same or similar members and parts as those of the first embodiment are denoted by the same reference numerals, and redundant description is omitted as much as possible. .
[0022]
The slurry producing section 30 supplies a fixed amount of the cement-based solidifying material 4 and water 2 into the tank 31 to produce the slurry 7 of a predetermined quality through the mixing means 32 and temporarily puts the slurry 7 in the agitator tank 33. It is a place to stock. In this embodiment, the water 2 in the tank 34 and the solidified material 4 stored in the silo 35 are charged into the tank 31 in an amount corresponding to one batch, and then kneaded for a predetermined time by the dedicated mixing means 32. 33. The supply pipe 50 has a suction side located in the tank 33, and sends out the slurry 7 in the tank 33 via the grout pump 51. The pressure of the slurry 7 is measured by the integrating flow meter 52. The integrating flow meter 52 digitally displays the integrated value and transmits a signal to a control unit 53 that controls the operation of the grout pump 51. The control unit 53 can set the supply amount of the slurry 7 sent from the supply pipe 50 to an arbitrary set value, start the operation of the grout pump 51, and adjust the integrated value of the integrating flow meter 53 to the set value. , The operation of the grout pump 51 is stopped.
[0023]
On the other hand, the transport section 20 is located on the discharge side of the supply pipes 40 and 50, and the static mixer 44 is connected. The static mixer 44 is assembled in a state where the inlet side is fixed substantially horizontally or obliquely downward through a connecting member 45 to an enlarged diameter portion 40 b provided on the outlet side of the supply pipe 40. This diameter expansion portion 40b, and is connected in a state where the inlet portion 48 constituting the discharge side of the supply pipe 50 is substantially horizontally fixed to its ends. In FIG. 5 and FIG. 3B, reference numeral 28 denotes a columnar support member for guiding the supply pipes 40 and 50 to the hopper height position of the agitator wheel 21. The static mixer 44 is held on the upper end side of the support member 28. Reference numeral 49 denotes a guide pipe connected to the outlet side of the static mixer 44, which is provided as needed with respect to the hopper position of the agitator wheel 21.
[0024]
(Manufacturing Example Using Second Embodiment) FIG. 4 shows a manufacturing flow when the above-described manufacturing apparatus is used. Note that this manufacturing flow is different from FIG. 1 described above only in the flow on the left slurry manufacturing unit side.
[0025]
In the preparation stage, the mixing ratio of the muddy water 3 and the slurry 7 is determined so that the required required density and the flow value of the fluidized soil 6 are obtained. Further, based on the mixing ratio, the total amount (each supply amount) of the muddy water 3 and the slurry 7 to be mixed according to the amount of loading into the agitator wheel 21 is calculated. Then, on the muddy water production unit 10 side, the supply amount of the muddy water 3 is set as an integrated value in the control unit 43, and the pumping time (t) of the muddy water 3 until reaching the integrated value is predicted (step S1). 1). Further, on the slurry production unit 30 side, the pressure feeding time of the slurry 7 is set in the control unit 53 (step 2). That is, in this setting, the calculated supply amount of the slurry 7 is completely discharged from the introduction section 48 in the same time as the pumping time (t) of the muddy water 3.
[0026]
When the above preparation is completed, the operator confirms that the agitator wheel 21 is at the home position as shown in FIG. 5 and then starts the operation of the pump 41 via the control unit 43, and at the same time grouts via the control unit 53. The operation of the pump 51 is started (steps 3, 4, 5). Then, as shown in FIG. 3B, the muddy water 3 in the muddy water reservoir 19b reaches the inlet of the static mixer 44 through the supply pipe 40, and the slurry 7 in the tank 33 reaches the inlet of the static mixer 44 through the inlet 48. .
[0027]
Then, the muddy water 3 and the slurry 7 are fed into the static mixer 44 in a mixed state, and are produced by the kneading action of the static mixer 44 into the fluidized treated soil 6 of a predetermined quality. It is loaded into the tank from the hopper. In this case, the amount of the discharged muddy water 3 is measured by the integrating flow meter 42, and the integrated value is sequentially transmitted to the control unit 43 (Step 6). This loading is continued until the integrated value of the integrating flow meter 42 matches the set value of the control unit 43, at which time the pump 41 and the integrating flow meter 42 are automatically stopped via the control unit 43 (step 8, 10). At the same time, the amount of the slurry 7 sent out is measured by the integrating flow meter 52, and the integrated value is sequentially transmitted to the control unit 53 (step 9). Then, the operation is continued until the integrated value matches the set value of the control unit 53, and at the time of the match, the grout pump 51 is automatically stopped via the control unit 53 (steps 9 and 11). Therefore, even with this manufacturing method, advantages similar to those of the first embodiment described in paragraph 0020 can be obtained.
[0028]
The present invention is not limited to this embodiment except for the technical elements described in the claims, and can be appropriately changed according to the manufacturing scale, the equipment installation conditions, and the like. The soil used is soil generated at a construction site and the like, and includes a little sand and gravel. Therefore, the soil is broader than a strictly academic soil.
[0029]
【The invention's effect】
As described above, in the method for producing fluidized soil according to the present invention, a muddy water production section is required as compared with the conventional method, but it is assumed that the mixing section and the agitator section can be omitted. That the equipment structure can be simplified, the required equipment installation area can be greatly reduced, the equipment can be operated without waste, high quality can be maintained by preventing separation of fluidized soil, etc. Has advantages. For this reason, the present invention is particularly advantageous in mass production, because it is possible to reduce the production cost and to be economical, and at the same time, it is possible to increase the number of application cases by making it less likely to be restricted by the installation area. Reduction and effective use of resources can be further promoted. According to the first aspect of the present invention, in the first aspect, the solidified material is pressure-fed from the introduction portion into the pipe and mixed with the muddy water through a kneader, and unnecessary water is mixed into the muddy water adjusted by the muddy water production portion. Therefore, the fluidized soil required is particularly suitable when the density is relatively high (the flow value is relatively low).
[Brief description of the drawings]
FIG. 1 is a manufacturing flow showing the first method of the present invention in its manufacturing process.
FIG. 2 is a diagram schematically showing an apparatus configuration used in the first invention method.
FIG. 3 is a schematic cross-sectional view showing a part A in FIG. 2 and a part B in FIG.
FIG. 4 is a manufacturing flow showing the second method of the present invention in the manufacturing process.
FIG. 5 is a diagram schematically showing an apparatus configuration used in the second invention method.
FIG. 6 is a view showing a conventional procedure for producing fluidized soil.
[Explanation of symbols]
1 is soil, 2 is water, 3 is muddy water, 4 is cement (solidified material), 5 is gravel 6, fluidized soil, 7 is cement slurry,
10 is a muddy water production section, 20 is a transport section,
21 is an agitator vehicle (a transport vehicle with an agitator function),
30 is a cement-based slurry production section, 40 and 50 are supply pipes, 40b is an enlarged diameter section,
42 and 52 are integrating flow meters, 23, 43 and 52 are control units,
44 is a static mixer (continuous kneader), 46 and 48 are introduction parts

Claims (2)

泥水製造部で密度を調整した泥水と、セメント等の固化材とを所定品質に混合して、供給配管を介しアジテータ機能付き運搬車又は打設部まで圧送する流動化処理土の製造方法において、
前記供給配管が、前記泥水製造部と前記運搬車又は打設部側との間に配置されて、前記泥水製造部の泥水を圧送するポンプと、該ポンプで圧送される泥水の量を計測する流量計と、配管出口側に接続されている連続式混練器と、該混練器の手前側の配管に接続されてサイロ側の前記固化材をスクリュー機構により投入量を制御して配管内へ供給する導入部とを有し、
流動化処理土の密度に応じて前記泥水製造部の泥水と前記サイロ側の固化材との配合比を決め、該配合比に基づいて、必要総量である前記泥水と固化材との各供給量を算出し、
前記泥水製造部において前記算出供給量の泥水を圧送するのに要する圧送時間(t)を予測すると共に、前記サイロ側において前記算出供給量の固化材を前記導入部から全て排出する排出時間を前記泥水の圧送時間(t)と同じくなるよう前記スクリュー機構を設定した後、
前記泥水製造部の泥水をポンプを介し前記供給配管を通じて圧送し、同時に、前記サイロ側の固化材を前記導入部から供給配管内に圧送して、前記混練器を介し混合しながら、前記運搬車又は打設部へ吐出することを特徴とする流動化処理土の製造方法。
Muddy water whose density has been adjusted in the muddy water production section, and a solidified material such as cement are mixed to a predetermined quality, and a method for producing a fluidized treated soil which is pumped through a supply pipe to a transport vehicle with an agitator function or a casting section,
The supply pipe is arranged between the muddy water production unit and the transport vehicle or the casting unit side, and a pump for pumping the muddy water of the muddy water production unit, and measures an amount of the muddy water pumped by the pump. A flow meter, a continuous kneader connected to the outlet of the pipe, and the solidified material on the silo side connected to the pipe on the near side of the kneader and supplied into the pipe by controlling the input amount by a screw mechanism. And an introduction part to
The mixing ratio between the muddy water of the muddy water production section and the solidified material on the silo side is determined according to the density of the fluidized treated soil, and based on the compounding ratio, the respective supply amounts of the required total amount of the muddy water and the solidified material Is calculated,
The pumping time (t) required for pumping the calculated supply amount of muddy water in the muddy water production unit is predicted, and the discharge time in which the calculated supply amount of the solidified material is entirely discharged from the introduction unit on the silo side is determined. After setting the screw mechanism to be the same as the pumping time (t) of the muddy water,
The transportation vehicle pumps the muddy water of the muddy water production section through the supply pipe via a pump, and simultaneously pressurizes the solidified material on the silo side from the introduction section into the supply pipe, and mixes the mixture through the kneader. Alternatively, a method for producing a fluidized soil, which comprises discharging the soil to a casting portion.
泥水製造部で密度を調整した泥水と、セメント等の固化材とを所定品質に混合して、供給配管を介しアジテータ機能付き運搬車又は打設部まで圧送する流動化処理土の製造方法において、
前記供給配管が、前記泥水製造部と前記運搬車又は打設部側との間に配置されて、前記泥水製造部の泥水を圧送する第1ポンプと、該第1ポンプで圧送される泥水の量を計測する流量計と、配管出口側に接続されている連続式混練器と、該混練器の手前側の配管に接続されて前記固化材に予め水を加えて調整するスラリー製造部から、調整後のスラリーを、第2ポンプにより投入量を制御して配管内へ供給する導入部とを有し、
流動化処理土の密度に応じて前記泥水製造部の泥水と前記スラリー製造部のスラリーとの配合比を決め、該配合比に基づいて、必要総量である前記泥水とスラリーとの各供給量を算出し、
前記泥水製造部において前記算出供給量の泥水を圧送するのに要する圧送時間(t)を予測すると共に、前記スラリー製造部側において前記算出供給量のスラリーを前記導入部から全て排出する排出時間を前記泥水の圧送時間(t)と同じくなるよう前記第2ポンプを設定した後、
前記泥水製造部の泥水を第1ポンプを介し前記供給配管を通じて圧送し、同時に、前記スラリー製造部のスラリーを第2ポンプを介し前記導入部から供給配管内に圧送して、前記混練器を介し混合しながら、前記運搬車又は打設部へ吐出することを特徴とする流動化処理土の製造方法。
Muddy water whose density has been adjusted in the muddy water production section, and a solidified material such as cement are mixed to a predetermined quality, and a method for producing a fluidized treated soil which is pumped through a supply pipe to a transport vehicle with an agitator function or a casting section,
A first pump that is disposed between the muddy water production unit and the transportation vehicle or the casting unit side to pump the muddy water of the muddy water production unit, and a muddy water pumped by the first pump; A flow meter for measuring the amount, a continuous kneader connected to the pipe outlet side, and a slurry manufacturing unit connected to the pipe on the near side of the kneader and adjusted by adding water to the solidified material in advance, An introduction unit for supplying the adjusted slurry to the pipe by controlling the input amount by the second pump,
The mixing ratio between the muddy water of the muddy water production section and the slurry of the slurry production section is determined in accordance with the density of the fluidized soil, and based on the mixing ratio, the respective supply amounts of the required total amount of the muddy water and the slurry are determined. Calculate,
The pumping time (t) required for pumping the calculated supply amount of muddy water in the muddy water production unit is predicted, and the discharge time for discharging the calculated supply amount of slurry from the introduction unit on the slurry production unit side is set. After setting the second pump to be the same as the muddy water pumping time (t),
The slurry of the slurry production section is pumped through the supply pipe via a first pump, and the slurry of the slurry production section is simultaneously pumped from the introduction section into the supply pipe via a second pump via the kneader. A method for producing a fluidized soil, wherein the fluidized soil is discharged to the carrier or the casting part while mixing.
JP17129998A 1998-06-18 1998-06-18 Method and apparatus for producing fluidized soil Expired - Fee Related JP3605709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17129998A JP3605709B2 (en) 1998-06-18 1998-06-18 Method and apparatus for producing fluidized soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17129998A JP3605709B2 (en) 1998-06-18 1998-06-18 Method and apparatus for producing fluidized soil

Publications (2)

Publication Number Publication Date
JP2000008406A JP2000008406A (en) 2000-01-11
JP3605709B2 true JP3605709B2 (en) 2004-12-22

Family

ID=15920721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17129998A Expired - Fee Related JP3605709B2 (en) 1998-06-18 1998-06-18 Method and apparatus for producing fluidized soil

Country Status (1)

Country Link
JP (1) JP3605709B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4789151B2 (en) * 2007-02-19 2011-10-12 株式会社不動テトラ Waste mud regeneration processing apparatus and processing method
JP2018021378A (en) * 2016-08-03 2018-02-08 友弘エコロジー株式会社 Fluidized soil manufacturing method and transport method thereof

Also Published As

Publication number Publication date
JP2000008406A (en) 2000-01-11

Similar Documents

Publication Publication Date Title
KR101224550B1 (en) Concrete batch plant
CN107020692A (en) It is a kind of to prepare curable native complete set of equipments
JP3605709B2 (en) Method and apparatus for producing fluidized soil
JP2001270378A (en) Washing and loading methods for concrete mixer truck
CN206899473U (en) It is a kind of to prepare curable native complete set of equipments
JP2002285572A (en) Manufacturing method for fluidized treated soil and equipment
KR20140049706A (en) Mixing apparatus of portable type
JPH1143967A (en) Manufacture of fluidized treated soil for civil work and device therefor
JP3844377B2 (en) Cement mixed soil improvement equipment
JP2001115486A (en) Material supplying machine for fluidization-treated soil
CN206899521U (en) It is a kind of to prepare the curable native complete set of equipments of fluidised form
JPH05208412A (en) Mobile concrete mixer
AU2010100118A4 (en) A Compact Concrete Producing and Transporting Equipment
JP2761754B2 (en) Method for producing ready-mixed concrete
JPH0796219B2 (en) Equipment for manufacturing raw concrete
KR20040059628A (en) Manufacturing system of cement concrete
JP2911412B2 (en) Filling material for construction work, method of manufacturing the same, and method of filling construction site using the filler
JP2001132013A (en) Method and device for fluidization treatment of construction generated earth
JP3733513B2 (en) Grouting material filling method and filling device
JPH0811084Y2 (en) Tunnel building system
JP3000810U (en) On-site pouring equipment for aerated concrete
JP2012001900A (en) Fluidized soil manufacturing method and manufacturing device
JPH0366898A (en) Soil and sand carryout method in shield method and soil modifying device
JP2554141B2 (en) Mud solidifying agent mixing processing equipment
JP2000034741A (en) Method and device for manufacturing back filling material

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040525

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040921

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees