JP3605247B2 - Method of changing coolant flow path in pressurized water reactor and upper core structure in pressurized water reactor vessel - Google Patents

Method of changing coolant flow path in pressurized water reactor and upper core structure in pressurized water reactor vessel Download PDF

Info

Publication number
JP3605247B2
JP3605247B2 JP01907997A JP1907997A JP3605247B2 JP 3605247 B2 JP3605247 B2 JP 3605247B2 JP 01907997 A JP01907997 A JP 01907997A JP 1907997 A JP1907997 A JP 1907997A JP 3605247 B2 JP3605247 B2 JP 3605247B2
Authority
JP
Japan
Prior art keywords
upper core
control rod
rod cluster
pressurized water
guide tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01907997A
Other languages
Japanese (ja)
Other versions
JPH10221479A (en
Inventor
登 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP01907997A priority Critical patent/JP3605247B2/en
Publication of JPH10221479A publication Critical patent/JPH10221479A/en
Application granted granted Critical
Publication of JP3605247B2 publication Critical patent/JP3605247B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は原子炉の内部構造に関し、特に加圧水型原子炉の上部炉心構造物に関する。
【0002】
【従来の技術】
従来の加圧水型原子炉の代表的な内部構造の一例が図7に示されている。この構造及びその機能を概説すると、原子炉容器1と一体的に形成された入口ノズル3から冷却材5が原子炉容器1内に流入し、ダウンカマー7を流れ下り、底部プレナム9に至る。底部プレナム9で反転した冷却材5は、多数の燃料集合体からなる炉心11を上向きに貫流し、その際加熱されて高温となり、上部炉心構造物13の上部炉心板15を通って上部プレナム17に至る。その上部プレナム17は、上部炉心板15と、これを上部炉心支持柱19を介して吊り下げ支持する上部炉心支持板21とにより画成され、原子炉容器1に一体的に形成された出口ノズル23を通って冷却材5が流出する。原子炉容器1の上部開口は着脱自在の上蓋25により閉じられているが、上蓋25の上方に設けられた制御棒駆動装置27に対応して、制御棒クラスタ案内管29が上部炉心支持板21に挿通されて設けられている。
燃料集合体の中空案内管に1本づつ挿入される複数の制御棒は、スパイダ部材によりクラスタ状に組み立てられ、制御棒組立体又は制御棒クラスタと呼ばれているが、これは制御棒駆動装置27により上下方向に駆動されるときに制御棒クラスタ案内管29により案内される。この制御棒クラスタ案内管29の構造が図8及び図9に示されている。
【0003】
図8及び図9に示すように、制御棒クラスタ案内管29は略矩形断面の上筒29aと下筒29bからなり、中部フランジ29cにより上部炉心支持板21に固定されている。下筒29bの下部フランジ29dは上部炉心板15に隣接して狭い隙間31を形成すると共に下筒29bの側面下部には流れ窓29eが穿設されている。従って、冷却材5は矢印に示すように流れて、隙間31と流れ窓29eとを分かれて通って上部プレナム17に流出することになる。
【0004】
【発明が解決しようとする課題】
而して、前述の上部炉心構造物では、隙間31は流れ窓29eに比して相対的に小さいから、冷却材のかなりの部分が主流となって流れ窓29eを流れる。この主流は下筒29b内で流れ方向を変えるので、制御棒クラスタの細い制御棒を横切って流れるから、これに流体励起振動を与える。このため制御棒が、制御棒クラスタ案内管の水平案内支持板に接触して摩耗が大きくなるという問題があった。
従って、本発明の課題は、制御棒の流体励起振動を抑制しうる加圧水型原子炉の上部炉心構造物を提供することにあり、或いは既に設置されている加圧水型原子炉の上部炉心構造物において制御棒の流体励起振動を抑制するように原子炉冷却材の流路を変更する改造方法を提供することにある。
【0005】
【課題を解決するための手段】
如上の課題を解決するため、本発明によれば、炉心を構成する燃料集合体群を押さえる上部炉心板と、その炉心に挿脱される制御棒クラスタを案内する制御棒クラスタ案内管と、前記上部炉心板の上方で前記制御棒クラスタ案内管を通して支持する上部炉心支持板と、を原子炉容器内の上部に有する加圧水型原子炉において、冷却材の流路変更を行うための改造方法は、前記制御棒クラスタ案内管の中部フランジと前記上部炉心支持板の上面との間にシムプレート構造物を追加的に介装して制御棒クラスタ案内管下端と上部炉心板上面との間に改造前の隙間より相対的に大きな間隙を付加することから構成される。
又、本発明によれば、炉心を構成する燃料集合体群を押さえる上部炉心板と、炉心に挿脱される制御棒クラスタを案内する制御棒クラスタ案内管と、上部炉心板の上方で前記制御棒クラスタ案内管を通して支持する上部炉心支持板とを有する加圧水型原子炉容器内の上部炉心構造物は、制御棒クラスタ案内管の中部フランジと上部炉心支持板の上面との間にシムプレート構造物が介装され、制御棒クラスタ案内管下端と上部炉心板上面との間にシムプレート構造物の厚さに対応する間隙が形成され、その隙間を通して原子炉冷却材のかなりの部分が流れるようになっていることを特徴としている。
【0006】
【発明の実施の形態】
以下添付の図面を参照して本発明の実施形態を説明する。尚、前述の図面を含む全図に亙って同一部分には同一の符号を付している。
図1において、制御棒クラスタ案内管29の中部フランジ29cと上部炉心支持板21との間にシムプレート33が挟装されている。このシムプレート33の取付け状態が図2の(b)図に拡大して示されている。シムプレート33の詳細は図3(a),(b)に示されているが、取付け厚さはTであり、シムプレート33の無い従来状態(a)に比して厚さTだけ制御棒クラスタ案内管29の高さが嵩上げされた形となっている。制御棒クラスタ案内管29は、主として上部炉心支持板21に支持されるから、上部炉心板15の支持ピン等で位置決めされる制御棒クラスタ案内管29の下部フランジ29dが図4(b)に示すようにその分だけ上部炉心板15から離れ、嵩上げされた形になる。図4(a)は、シムプレート33が取り付けられないときの下部フランジ29dと上部炉心板15との関係を示している。図4(a)の隙間31は、図4(b)の隙間35より明らかに厚さTだけ小さい。
更に、図2(b)の一部を拡大して示す図5に示すように、中部フランジ29cはインロウ式の嵌合構造を形成する環状突起29fを有し、これに対応して上部炉心支持板21は環状凹み21aを有する。更にシムプレート33は、環状突起29fを受け入れ且つ環状凹み21a内に入り込む内周端部33aを有し、図示のように互いに組合わさって所定の位置決め精度が得られる。そして図2に示すように、制御棒クラスタ案内管29の中部フランジ29cは、固定ボルト37により上部炉心支持板21に確りと固定される。
【0007】
上述のようにシムプレート33を介して上部炉心支持板21に固定される制御棒クラスタ案内管29は、図6に示すように並んで配置され、適宜な位置に配置された上部炉心支持柱19により上部炉心支持板21と上部炉心板15とが連結されて上部炉心構造物113が構成される。既に設置されている原子炉の上部炉心構造物13を上述の上部炉心構造物113に改造するには、各制御棒クラスタ案内管29について固定ボルト37を緩めて取外しし、各制御棒クラスタ案内管29を引き抜き、シムプレート33をこれに嵌装し、再び各制御棒クラスタ案内管29を図1に示すように上部炉心支持板21に挿入し、図2(b)に示すように固定ボルト37で締付固定する。このようにして、下部フランジ29dと上部炉心板15との間に大きな隙間35が形成されると、流体抵抗との関連から多くの冷却材がここを貫流することになる。即ち冷却材の流路が変更され、流れ窓29eを通る冷却材の量が減り、制御棒の流体起振力が減少して制御棒の流体励起振動及びこれによる摩耗が低減される。
【0008】
【発明の効果】
以上説明したように、本発明によれば、既設の加圧水型原子炉の上部炉心構造物に含まれる制御棒クラスタ案内管をシムプレート構造物を介装するだけで、制御棒クラスタ案内管と上部炉心板との間の隙間を拡大して冷却材流路を変更し、制御棒の流体励起振動及びこれによる摩耗を低減することができる。
【図面の簡単な説明】
【図1】本発明による実施形態の要部を示す部分側面図である。
【図2】図1の要部を拡大して示す説明図である。
【図3】図1の要部を拡大して示す説明図である。
【図4】図1の要部を拡大して示す説明図である。
【図5】図2(b)の一部を拡大して示す部分断面図である。
【図6】前記実施形態による改造後の上部炉心構造物を示す立断面図である。
【図7】従来の加圧水型原子炉の内部構造の一例を示す概念的立断面図である。
【図8】図7のVIII部をしめす拡大部分立面図である。
【図9】図8の一部を示す拡大部分立面図である。
【符号の説明】
1 原子炉容器
5 冷却材
11 炉心
15 上部炉心板
19 上部炉心支持柱
21 上部炉心支持板
29 制御棒クラスタ案内管
29a 上筒
29b 下筒
29c 中部フランジ
29d 下部フランジ
29e 流れ窓
31 隙間
33 シムプレート
35 隙間
37 固定ボルト
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an internal structure of a nuclear reactor, and more particularly to an upper core structure of a pressurized water reactor.
[0002]
[Prior art]
An example of a typical internal structure of a conventional pressurized water reactor is shown in FIG. In general, the structure and its function are as follows. A coolant 5 flows into the reactor vessel 1 from an inlet nozzle 3 formed integrally with the reactor vessel 1, flows down the downcomer 7, and reaches the bottom plenum 9. The coolant 5 inverted in the bottom plenum 9 flows upward through the core 11 composed of a large number of fuel assemblies, and is heated to a high temperature, passes through the upper core plate 15 of the upper core structure 13 and passes through the upper plenum 17. Leads to. The upper plenum 17 is defined by an upper core plate 15 and an upper core support plate 21 for suspending and supporting the upper core plate 15 via an upper core support column 19, and an outlet nozzle formed integrally with the reactor vessel 1. The coolant 5 flows out through 23. The upper opening of the reactor vessel 1 is closed by a detachable upper lid 25, and the control rod cluster guide tube 29 corresponds to the control rod driving device 27 provided above the upper lid 25. Is provided so as to pass through.
The plurality of control rods inserted one by one into the hollow guide tube of the fuel assembly are assembled in a cluster by a spider member, and are called a control rod assembly or a control rod cluster. When driven in the vertical direction by 27, it is guided by the control rod cluster guide tube 29. The structure of the control rod cluster guide tube 29 is shown in FIGS.
[0003]
As shown in FIGS. 8 and 9, the control rod cluster guide tube 29 includes an upper tube 29a and a lower tube 29b having a substantially rectangular cross section, and is fixed to the upper core support plate 21 by a middle flange 29c. A lower flange 29d of the lower cylinder 29b forms a narrow gap 31 adjacent to the upper core plate 15, and a flow window 29e is formed in the lower side of the lower cylinder 29b. Therefore, the coolant 5 flows as indicated by the arrow, and flows out into the upper plenum 17 through the gap 31 and the flow window 29e.
[0004]
[Problems to be solved by the invention]
In the above-described upper core structure, the gap 31 is relatively small as compared with the flow window 29e. Therefore, a considerable part of the coolant flows through the flow window 29e as the main flow. Since this main flow changes its flow direction in the lower cylinder 29b, it flows across the narrow control rods of the control rod cluster, thereby giving fluid-excited vibration to this. For this reason, there has been a problem that the control rod comes into contact with the horizontal guide support plate of the control rod cluster guide tube to increase wear.
Therefore, an object of the present invention is to provide an upper core structure of a pressurized water reactor that can suppress fluid-induced vibration of a control rod, or to provide an upper core structure of an already installed pressurized water reactor. An object of the present invention is to provide a remodeling method for changing a flow path of a reactor coolant so as to suppress fluid-induced vibration of a control rod.
[0005]
[Means for Solving the Problems]
To solve the problems According to the process 30, according to the present invention, the upper core plate to press the fuel assembly group constituting the core, a control rod cluster guide tubes for guiding the control rod clusters are inserted into and removed from the reactor core, the An upper core support plate supporting the control rod cluster guide tube above the upper core plate, and, in a pressurized water reactor having an upper part in a reactor vessel, a remodeling method for changing a flow path of a coolant includes: Before remodeling between the lower end of the control rod cluster guide tube and the upper core plate upper surface by additionally interposing a shim plate structure between the middle flange of the control rod cluster guide tube and the upper surface of the upper core support plate Is formed by adding a gap relatively larger than the gap.
Further, according to the present invention, an upper core plate for holding a fuel assembly group constituting a core, a control rod cluster guide tube for guiding a control rod cluster to be inserted into and removed from the core, and the control unit above the upper core plate. An upper core structure in a pressurized water reactor vessel having an upper core support plate supported through a rod cluster guide tube comprises a shim plate structure between a middle flange of the control rod cluster guide tube and an upper surface of the upper core support plate. A gap corresponding to the thickness of the shim plate structure is formed between the lower end of the control rod cluster guide tube and the upper surface of the upper core plate so that a considerable portion of the reactor coolant flows through the gap. It is characterized by becoming.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. The same parts are denoted by the same reference numerals throughout the drawings including the above-described drawings.
In FIG. 1, a shim plate 33 is sandwiched between a middle flange 29 c of the control rod cluster guide tube 29 and the upper core support plate 21. The attached state of the shim plate 33 is shown in an enlarged manner in FIG. The details of the shim plate 33 are shown in FIGS. 3 (a) and 3 (b), but the mounting thickness is T, and the control rod has a thickness T as compared with the conventional state (a) without the shim plate 33. The height of the cluster guide tube 29 is raised. Since the control rod cluster guide tube 29 is mainly supported by the upper core support plate 21, a lower flange 29d of the control rod cluster guide tube 29 positioned by a support pin or the like of the upper core plate 15 is shown in FIG. As a result, the upper core plate 15 is separated from the upper core plate 15 by a corresponding amount, and the shape is raised. FIG. 4A shows the relationship between the lower flange 29d and the upper core plate 15 when the shim plate 33 is not attached. The gap 31 in FIG. 4A is clearly smaller by the thickness T than the gap 35 in FIG.
Further, as shown in FIG. 5 which is an enlarged view of a part of FIG. 2 (b), the middle flange 29c has an annular projection 29f forming an in-row type fitting structure. The plate 21 has an annular recess 21a. Furthermore, the shim plate 33 has an inner peripheral end 33a that receives the annular projection 29f and enters the annular recess 21a, and as shown, is combined with each other to obtain a predetermined positioning accuracy. Then, as shown in FIG. 2, the middle flange 29 c of the control rod cluster guide tube 29 is securely fixed to the upper core support plate 21 by the fixing bolt 37.
[0007]
The control rod cluster guide tubes 29 fixed to the upper core support plate 21 via the shim plates 33 as described above are arranged side by side as shown in FIG. 6, and the upper core support columns 19 arranged at appropriate positions. Thereby, the upper core support plate 21 and the upper core plate 15 are connected to each other to form the upper core structure 113. In order to convert the already installed upper core structure 13 of the reactor into the above-described upper core structure 113, the fixing bolt 37 is loosened and removed from each control rod cluster guide tube 29, and each control rod cluster guide tube is removed. 29, the shim plate 33 is fitted therein, the control rod cluster guide tubes 29 are inserted again into the upper core support plate 21 as shown in FIG. 1, and the fixing bolts 37 as shown in FIG. Tighten and fix with. When a large gap 35 is formed between the lower flange 29d and the upper core plate 15 in this manner, a large amount of coolant flows therethrough in relation to fluid resistance. That is, the flow path of the coolant is changed, the amount of the coolant passing through the flow window 29e is reduced, and the fluid oscillating force of the control rod is reduced, so that the fluid-induced vibration of the control rod and the wear due to the vibration are reduced.
[0008]
【The invention's effect】
As described above, according to the present invention, the control rod cluster guide tube included in the upper core structure of the existing pressurized water reactor is simply provided with the shim plate structure, and the control rod cluster guide tube and the upper The gap between the core plate and the core plate is enlarged to change the coolant flow path, so that the fluid-induced vibration of the control rod and the wear caused by the vibration can be reduced.
[Brief description of the drawings]
FIG. 1 is a partial side view showing a main part of an embodiment according to the present invention.
FIG. 2 is an explanatory diagram showing an enlarged main part of FIG. 1;
FIG. 3 is an explanatory diagram showing a main part of FIG. 1 in an enlarged manner.
FIG. 4 is an explanatory diagram showing an enlarged main part of FIG. 1;
FIG. 5 is a partial cross-sectional view showing a part of FIG. 2B in an enlarged manner.
FIG. 6 is an elevational sectional view showing the upper core structure after the modification according to the embodiment.
FIG. 7 is a conceptual vertical sectional view showing an example of the internal structure of a conventional pressurized water reactor.
FIG. 8 is an enlarged partial elevation view showing a portion VIII of FIG. 7;
FIG. 9 is an enlarged partial elevation view showing a part of FIG. 8;
[Explanation of symbols]
Reference Signs List 1 reactor vessel 5 coolant 11 core 15 upper core plate 19 upper core support column 21 upper core support plate 29 control rod cluster guide tube 29a upper cylinder 29b lower cylinder 29c middle flange 29d lower flange 29e flow window 31 gap 33 shim plate 35 Gap 37 Fixing bolt

Claims (3)

炉心を構成する燃料集合体群を押さえる上部炉心板と、
前記炉心に挿脱される制御棒クラスタを案内する制御棒クラスタ案内管と
前記上部炉心板の上方で前記制御棒クラスタ案内管を通して支持する上部炉心支持板と、を原子炉容器内の上部に有する加圧水型原子炉において、
前記制御棒クラスタ案内管の中部フランジと前記上部炉心支持板の上面との間にシムプレート構造物を追加的に介装して前記制御棒クラスタ案内管下端と前記上部炉心板上面との間に相対的に大きな間隙を付加することを特徴とする加圧水型原子炉内の冷却材流路変更方法。
An upper core plate for holding the fuel assemblies constituting the core,
A control rod cluster guide tube for guiding a control rod cluster inserted into and removed from the core ,
An upper core support plate supporting the control rod cluster guide tube above the upper core plate, and a pressurized water reactor having an upper part in a reactor vessel,
A shim plate structure is additionally interposed between the middle flange of the control rod cluster guide tube and the upper surface of the upper core support plate to provide a shim plate structure between the lower end of the control rod cluster guide tube and the upper core plate upper surface. A method for changing a coolant flow path in a pressurized water reactor, characterized by adding a relatively large gap.
炉心を構成する燃料集合体群を押さえる上部炉心板と、
前記炉心に挿脱される制御棒クラスタを案内する制御棒クラスタ案内管と、
前記上部炉心板の上方で前記制御棒クラスタ案内管を通して支持する上部炉心支持板とを有する加圧水型原子炉容器の上部炉心構造物において、
前記制御棒クラスタ案内管の中部フランジと前記上部炉心支持板の上面との間にシムプレート構造物が介装され、
前記制御棒クラスタ案内管下端と前記上部炉心板上面との間に前記シムプレート構造物の厚さに対応する間隙が形成され、
同隙間を通して原子炉冷却材のかなりの部分が流れるようになっていることを特徴とする加圧水型原子炉容器内の上部炉心構造物。
An upper core plate for holding the fuel assemblies constituting the core,
A control rod cluster guide tube for guiding a control rod cluster inserted into and removed from the core,
An upper core support plate supporting the control rod cluster guide tube above the upper core plate , and an upper core structure of a pressurized water reactor vessel having:
A shim plate structure is interposed between a middle flange of the control rod cluster guide tube and an upper surface of the upper core support plate,
A gap corresponding to the thickness of the shim plate structure is formed between the lower end of the control rod cluster guide tube and the upper core plate upper surface,
An upper core structure in a pressurized water reactor vessel, wherein a significant portion of the reactor coolant flows through the gap.
前記シムプレート構造物を介して前記中部フランジが前記上部炉心支持板の上面に支持される前記制御棒クラスタ案内管が複数あることを特徴とする請求項2記載の加圧水型原子炉容器内の上部炉心構造物。The upper part in the pressurized water reactor vessel according to claim 2, wherein there are a plurality of the control rod cluster guide tubes in which the middle flange is supported on the upper surface of the upper core support plate via the shim plate structure. Core structure.
JP01907997A 1997-01-31 1997-01-31 Method of changing coolant flow path in pressurized water reactor and upper core structure in pressurized water reactor vessel Expired - Fee Related JP3605247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01907997A JP3605247B2 (en) 1997-01-31 1997-01-31 Method of changing coolant flow path in pressurized water reactor and upper core structure in pressurized water reactor vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01907997A JP3605247B2 (en) 1997-01-31 1997-01-31 Method of changing coolant flow path in pressurized water reactor and upper core structure in pressurized water reactor vessel

Publications (2)

Publication Number Publication Date
JPH10221479A JPH10221479A (en) 1998-08-21
JP3605247B2 true JP3605247B2 (en) 2004-12-22

Family

ID=11989443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01907997A Expired - Fee Related JP3605247B2 (en) 1997-01-31 1997-01-31 Method of changing coolant flow path in pressurized water reactor and upper core structure in pressurized water reactor vessel

Country Status (1)

Country Link
JP (1) JP3605247B2 (en)

Also Published As

Publication number Publication date
JPH10221479A (en) 1998-08-21

Similar Documents

Publication Publication Date Title
JP5345951B2 (en) Structure of alignment plate for nuclear reactor
EP0669624B1 (en) Debris catcher for a nuclear reactor
JPS6050311B2 (en) Nuclear reactor fuel subassembly
CA1070861A (en) Device to accept axial forces occurring on fuel assemblies during the operation of nuclear reactors
US4671924A (en) Hold-down device of fuel assembly top nozzle employing leaf springs
JP3605247B2 (en) Method of changing coolant flow path in pressurized water reactor and upper core structure in pressurized water reactor vessel
US5519745A (en) Lower tie plate debris catcher for a nuclear reactor
JPS6291893A (en) Nuclear reactor
JP2014160079A (en) Fixed cluster having spider-shaped supporting body, core of pressurized-water reactor, nuclear fuel assembly, and assembly equipped with fixed cluster
US5473650A (en) Lower tie plate debris catcher for a nuclear reactor
JPH0566993B2 (en)
US5420901A (en) Lower tie plate debris catcher for a nuclear reactor
JPH0432998B2 (en)
KR910005731B1 (en) Fuel assembly for a nuclear reactor
US3888732A (en) Inlet for fuel assembly having finger control rods
CN1017100B (en) Cluster guide with centering and antivibratory positioning device for nuclear reactors
JPS59208490A (en) Calandria
KR100314578B1 (en) Insertion Filter for Protecting Debris in Nuclear Fuel Assembly Lower End Fitting
US4793965A (en) Simplified, flexible top end support for cantilever-mounted rod guides of a pressurized water reactor
JP3886654B2 (en) Core structure of pressurized water reactor
JPH0153437B2 (en)
JPH0512799Y2 (en)
JPH088477Y2 (en) Control rod cluster guide tube
JP4301604B2 (en) Pressurized water reactor
JPH11133172A (en) Internal structure of fast breeding reactor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041001

LAPS Cancellation because of no payment of annual fees