JP3603847B2 - Tension applying device for magnetic measurement - Google Patents

Tension applying device for magnetic measurement Download PDF

Info

Publication number
JP3603847B2
JP3603847B2 JP2001398841A JP2001398841A JP3603847B2 JP 3603847 B2 JP3603847 B2 JP 3603847B2 JP 2001398841 A JP2001398841 A JP 2001398841A JP 2001398841 A JP2001398841 A JP 2001398841A JP 3603847 B2 JP3603847 B2 JP 3603847B2
Authority
JP
Japan
Prior art keywords
test piece
tension applying
tension
magnetic
lever
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001398841A
Other languages
Japanese (ja)
Other versions
JP2003194903A (en
Inventor
多津彦 平谷
道清 平井
豊文 仁科
勤 桑田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001398841A priority Critical patent/JP3603847B2/en
Publication of JP2003194903A publication Critical patent/JP2003194903A/en
Application granted granted Critical
Publication of JP3603847B2 publication Critical patent/JP3603847B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、張力付加状態で使用される磁性材料の実装特性評価に用いることが可能な磁気測定用張力付加装置に関するものである。
【0002】
【従来の技術】
近年、電気機器の高性能化に伴い、磁性材料に求められる特性は益々厳しくなっている。その特性評価は、一般に行われている出荷直前の素材特性評価はもとより、実使用条件に則した形での評価方法が求められるようになってきた。
【0003】
すなわち、電気機器の構成部材は、様々な加工成形を経て組み込まれる。この時、材料に張力が付加される場合も少なくない。材料の磁気特性は応力によって大きく変化する場合があるため、機器性能の向上を目指すには、素材の磁気特性評価のみならず、実際に使用されている応力状態での磁気特性評価も行なう必要がある。
【0004】
従来より磁気特性(透磁率、ヒステリシスループ、鉄損等)の張力依存性を調査する場合、短冊状試験片を長手方向に引張り、これを単板磁気測定装置で測定する方法が行われてきた。張力付加方法は、一般的に図2に示すようなハンドル付きスライダーが利用される。このような例は、例えば実開昭61−60180号公報等に見られる。
【0005】
【発明が解決しようとする課題】
単板磁気測定装置は、試験片両端の磁極から発生する反磁界の影響を軽減するため、図3に示すように、通常は継鉄(ヨーク)12と呼ばれる部品を使って磁極の生じない閉じた磁気回路(閉磁路)を形成する。この継鉄は測定試験片と材質が異なるために、閉磁路にかかる磁界および中を貫く磁束は一様ではない。そこで単板測定装置では、試験片を磁化する励磁コイル13と磁束を計測する検出コイル14に加えて、試験片近傍に磁界測定コイル15を巻いて、そこにかかる磁界を実測する必要がある。
【0006】
このため単板測定枠のコイル構成や計測回路は、励磁コイルと検出コイルのみで構成されるエプスタイン試験枠図4に比べて複雑であり、装置の取り扱いには比較的高度な技術が要求される。
【0007】
一方、張力付加方法について考えると、現在行われているハンドル付きスライダーでは大きな張力を付加するには不向きである。実際、降伏応力に近い張力下で使用される材料の磁気特性を問題とする場合もあり、このような状況を従来の引張機構で実現するには装置が大型化してしまい、作業効率が低下する。
【0008】
図2に示すようなハンドル付きスライダーは、ハンドル回転によるトルクが掴み部に伝わりやすく、このため試験片がねじれやすいという問題があった。また荷重が高くなるにつれハンドルの回転が固くなるため、張力を微調整するのは困難であった。
【0009】
このような状況に対して、この発明は十分大きな張力まで精度良く安定して付加することができる、コンパクトかつ取り扱い容易な磁気測定用張力付加装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記の課題は、次の発明により解決される。その発明は、エプスタイン測定枠にセットされた短冊状試験片のそれぞれの一端に取り付けるとともに荷重を測定する荷重計と、それぞれの試験片の他の一端にその作用点を取り付けて張力を付加する張力付加レバーと、この張力付加レバーの力点に力を加える張力調節用ハンドルとを備えており、前記荷重計の固定側と前記張力付加レバーの支点はいずれも装置本体に固定されていることを特徴とする磁気測定用張力付加装置である。
【0011】
この発明は、試料に張力を加えるためにテコの原理を応用している。テコを利用して、支点に対して力点と作用点の長さ比を大きくすることにより、小さな力でネジを締め付けるだけで、サンプルに大きな張力を付加することができる。このような機構を用いることで、重りをかけて材料を引っ張る方法(重垂式)のように装置が大がかりになることもなく、また重垂の扱い等の安全上の問題も解決できる。
【0012】
なお、この発明においては、上記の個々の構成要素の間に、適宜リンク機構等を設置して、力を伝達してもよく、発明の効果が損なわれることはない。また、試験片への取り付けに当たっては、試験片を掴むためのチャックや掴み治具等の治具を用いることは言うまでもない。
【0013】
この発明はさらに、上側試験片と下側試験片の上下方向の位置決めをするために本体にそれぞれ設けられた基準面と、下側試験片を下から前記基準面に押さえつけて掴む下側試験片掴み冶具と、上側試験片を上から前記基準面に押さえつけて掴む上側試験片掴み冶具を備えている磁気測定用張力付加装置とすることもできる。
【0014】
この発明は、エプスタイン法の測定における上側と下側の試験片に対して、それぞれ基準面を設けることにより、試験片の上下方向の位置決めを行う。上側と下側の試験片掴み冶具により試験片を基準面に押しつけて上下方向に固定することにより、張力が付加されても上側と下側の試験片が離れることが無く、接触状態が維持できる。このように、試験片の交差部を密着させることにより磁束漏れを防止することが出来る。
【0015】
さらにこの発明は、個々の試験片に対応する張力付加レバー、張力付加レバーの支点を固定する支点固定冶具、下側試験片掴み冶具、および上側試験片掴み冶具が、その試験片と直交する試験片の長手方向に沿ってスライド可能に設置されていることを特徴とする磁気測定用張力付加装置とすることもできる。
前述の装置構成要素が試験片の長手方向に沿ってスライド可能に設置されている。このように、治具等をスライドさせることにより、直交する試験片の脱着を簡便化することが可能となる。なお、これらのレバーおよび治具類を連結するリンク機構等の部品も、治具類のスライドに伴い同じ方向に移動することになる。
【0016】
この発明ではさらに、エプスタイン枠を載せる装置外枠、張力付加レバー、支点固定冶具、及び試料掴み冶具が非磁性材料で構成されていることを特徴とする磁気測定用張力付加装置とすることもできる。
【0017】
この発明は、装置の構成要素を非磁性材料としているので、磁気測定への影響を防止することができる。
【0018】
【発明の実施の形態】
この発明の実施に当たっては、装置として、図4に示すように試験片のみで閉磁路が形成されるエプスタイン形式の測定方法を採用することができる。エプスタイン測定では、閉磁路内の磁界および発生する磁束が均一であるとみなして、回路構成を比較的シンプルに設計できる。
【0019】
それぞれの試験片の一端には荷重計を取り付ける。これよって荷重をモニターしながら所定の張力を付加することができる。
張力付加方法は、テコの原理に基づいた冶具を利用することにより、微小な力で大きな張力を付加することが可能となる。
【0020】
図5にその仕組みを示す。張力付加レバー5の動きは、力点を張力調整ハンドル8をまわして押すことにより、微調整することが可能である。
【0021】
さらにサンプルに対し、平行な応力として伝わるように、レバーと試験片の掴み治具の間に可動ジョイントを使用することもできる。この可動ジョイント枠にスムーズに出し入れ出来るよう、可動ジョイントを外側に倒せるようにするとよい。試験片掴み冶具9、10と張力付加レバーの接続は可動式ジョイント6を用い、試験片への張力が水平にかかるように、即ち平行な応力として伝わるようにしてある。
【0022】
また、装置製作のポイントは、小さな力で大きな荷重を簡単にかけられること、作業台上に設置出来るコンパクトサイズにすることである。そこで、張力付加レバーは、図6に示すように、エプスタイン枠にセットした4つの試験片を含む平面と垂直となるよう配置する。これによって装置全体をコンパクトな構造に収めることができる。
【0023】
一方、磁気測定においては、試験片交叉部が隙間なく接触することが肝要である。試験片交叉部が接触不十分であると、そこから磁束が漏洩して測定精度が低下する。そこで図7に示すように、交叉部の基準高さを設定して、下側試験片を籠型掴み冶具9により固定ネジ16を締め付けて試料を下から基準高さに持ち上げ、上側試験片はコの字型掴み冶具10により、固定ネジ16を締め付けて試料を上から基準高さまで押さえつける機構とする。この機構によれば、試験片の板厚によらず交叉部の接触を確実にして磁気測定を精度良く行うことができる。
【0024】
試験片の脱着を容易にすることは、作業効率を高める上で重要な課題である。図8は、「試験片」と図示された試験片を装着するにあたり、この試験片に対応する対応する張力付加レバー5、可動式ジョイント6、支点固定冶具7、及び掴み冶具9あるいは10を、一体として図面で左側にスライドした状態を示すものである。図8に示すように、張力付加レバー5、可動式ジョイント6、支点固定冶具7、及び掴み冶具9、10が対象試験片と直交する試験片の長手方向にスライドして、試験片脱着を容易に実行可能とする。
【0025】
装置の材料としては、エプスタイン枠を載せる装置外枠、張力付加レバー、支点固定冶具、及び試料掴み冶具が非磁性材料で構成することが好ましい。例えば、磁気測定に影響を及ぼさない非磁性のステンレス鋼その他の材料を使用することができる。
【0026】
【実施例】
板厚1.0mmの鋼板(降伏強度約300N/mm)を幅10mm、長さ200mmの寸法に切り出して、張力付加装置に組み込まれた10cmエプスタイン枠の各辺に1枚ずつセットした。エプスタイン枠には励磁用コイルが240ターン、検出用コイルが400ターン巻かれている。
【0027】
この枠の端子を直流磁気測定装置に接続して、試験片を一旦消磁後、800A/mまでの初磁化曲線を測定し、そこから最大透磁率を算出した。張力付加は各設定張力ごと4つの試験片が均等になるようそれぞれ荷重計をモニターしながら調整した。張力は材料の降伏強度とほぼ等しい300N/mm(荷重にして3000N)まで付加した。図9に装置構成を、図10に試験片の磁気特性(最大透磁率)の張力依存性を示す。
【0028】
図10より、張力数十N/mm付近で最大透磁率が極大となる様子、また材料の降伏点付近での最大透磁率の変化を詳細に観察することができる。
【0029】
【発明の効果】
この発明の装置を用いれば、荷重計をモニターしながら数N/mmから数百N/mmの広い範囲で容易に張力付加することが可能であり、エプスタイン枠を磁気測定装置に接続して張力付加時の磁気特性を詳細に測定することが出来る。
【図面の簡単な説明】
【図1】張力付加装置の外観を示す図。
【図2】従来技術による張力付加機構を示す図。
【図3】単板測定の磁束の流れを示す図。
【図4】エプスタイン測定の磁束の流れを示す図。
【図5】テコの原理を利用した張力付加機構を示す図。
【図6】張力付加レバーの配置を示す図。
【図7】試験片掴み冶具を示す図。 (a)下側試料掴み部 (b)上側試料掴み部
【図8】治具類の水平移動機構を示す図。
【図9】磁気測定の装置構成を示す図。
【図10】鋼板磁気特性の張力依存性を示す図。
【符号の説明】
1エプスタイン試験枠(励磁コイル・検出コイル含む)
2試験片(下側)
3試験片(上側)
4荷重計
5張力付加レバー
6可動式ジョイント
7支点固定冶具
8張力調整ハンドル
9下側試験片掴み冶具
10 上側試験片掴み冶具
11 装置土台、外装
12 継鉄(ヨーク)
13 励磁コイル
14 検出コイル
15 磁界測定コイル
16 試験片固定ネジ
17 張力付加ハンドル
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a magnetic measurement tension applying device that can be used for evaluating mounting characteristics of a magnetic material used in a tension applied state.
[0002]
[Prior art]
In recent years, the characteristics required of magnetic materials have become more and more severe with the improvement in the performance of electric devices. For the characteristic evaluation, not only the material characteristic evaluation generally performed immediately before shipping but also an evaluation method in a form conforming to actual use conditions has been required.
[0003]
That is, the components of the electric device are assembled through various processing and molding. At this time, tension is often applied to the material. Because the magnetic properties of a material can change significantly due to stress, it is necessary to evaluate not only the magnetic properties of the material but also the magnetic properties under the stress conditions actually used in order to improve the performance of the equipment. is there.
[0004]
Conventionally, when investigating the dependence of magnetic properties (magnetic permeability, hysteresis loop, iron loss, etc.) on tension, a method of pulling a strip-shaped test piece in the longitudinal direction and measuring this with a single-plate magnetometer has been used. . In the tension applying method, a slider with a handle as shown in FIG. 2 is generally used. Such an example is found in, for example, Japanese Utility Model Laid-Open No. 61-60180.
[0005]
[Problems to be solved by the invention]
In order to reduce the influence of the demagnetizing field generated from the magnetic poles at both ends of the test piece, the single-plate magnetometer, as shown in FIG. A magnetic circuit (closed magnetic circuit) is formed. Since the material of the yoke differs from that of the test piece, the magnetic field applied to the closed magnetic circuit and the magnetic flux penetrating therethrough are not uniform. Therefore, in the single-plate measuring device, in addition to the exciting coil 13 for magnetizing the test piece and the detection coil 14 for measuring the magnetic flux, it is necessary to wind a magnetic field measuring coil 15 near the test piece and actually measure the magnetic field applied thereto.
[0006]
For this reason, the coil configuration and the measurement circuit of the single-plate measurement frame are more complicated than those of the Epstein test frame shown in FIG. 4, which is composed of only the excitation coil and the detection coil. .
[0007]
On the other hand, considering the tension applying method, a slider with a handle currently used is not suitable for applying a large tension. In fact, there are cases where the magnetic properties of the material used under tension close to the yield stress are problematic, and in order to realize such a situation with a conventional tension mechanism, the device becomes large-sized and the working efficiency is reduced. .
[0008]
The slider with the handle as shown in FIG. 2 has a problem that the torque due to the rotation of the handle is easily transmitted to the grip portion, and the test piece is easily twisted. In addition, since the rotation of the handle becomes harder as the load increases, it is difficult to finely adjust the tension.
[0009]
In this situation, an object of the present invention is to provide a compact and easy-to-handle magnetic measuring tension applying device capable of applying a sufficiently large tension with high accuracy and stability.
[0010]
[Means for Solving the Problems]
The above problem is solved by the following invention. The invention provides a load cell attached to one end of a strip-shaped test piece set in an Epstein measurement frame and measuring a load, and a tension for attaching a tension to the other end of each test piece by attaching its application point. An additional lever, and a tension adjusting handle for applying a force to a force point of the tension applying lever, wherein both a fixed side of the load cell and a fulcrum of the tension applying lever are fixed to the apparatus main body. It is a tension applying device for magnetic measurement.
[0011]
The present invention uses the lever principle to apply tension to a sample. By using the lever to increase the length ratio between the force point and the action point with respect to the fulcrum, a large tension can be applied to the sample only by tightening the screw with a small force. By using such a mechanism, the device does not become large as in the method of pulling a material with a weight (double hanging type), and safety problems such as handling of double hanging can be solved.
[0012]
In the present invention, a link mechanism or the like may be appropriately installed between the individual components to transmit the force, and the effect of the present invention is not impaired. Needless to say, a jig such as a chuck or a gripping jig for gripping the test piece is used for mounting the test piece.
[0013]
The present invention further provides a reference surface provided on the main body for positioning the upper test piece and the lower test piece in the vertical direction, and a lower test piece which presses and holds the lower test piece against the reference surface from below. It is also possible to provide a magnetic measurement tension applying device including a gripping jig and an upper test piece gripping jig which presses and grips the upper test piece against the reference surface from above.
[0014]
According to the present invention, the upper and lower test pieces in the Epstein method are each provided with a reference plane to position the test pieces in the vertical direction. By pressing the test piece against the reference surface with the upper and lower test piece gripping jigs and fixing it vertically, the upper and lower test pieces do not separate even if tension is applied, and the contact state can be maintained. . As described above, the magnetic flux leakage can be prevented by bringing the intersections of the test pieces into close contact with each other.
[0015]
Further, according to the present invention, a tensioning lever corresponding to each test piece, a fulcrum fixing jig for fixing a fulcrum of the tensioning lever, a lower test piece gripping jig, and an upper test piece gripping jig are arranged so that the test piece is orthogonal to the test piece. The tension applying device for magnetic measurement may be slidably installed along the longitudinal direction of the piece.
The above-described device components are slidably installed along the longitudinal direction of the test piece. As described above, by sliding the jig or the like, it is possible to easily attach and detach orthogonal test pieces. Parts such as a link mechanism for connecting these levers and jigs also move in the same direction as the jigs slide.
[0016]
According to the present invention, it is also possible to provide a tension measuring device for magnetic measurement, wherein the outer frame of the device on which the Epstein frame is placed, the tension applying lever, the fulcrum fixing jig, and the sample gripping jig are made of a non-magnetic material. .
[0017]
According to the present invention, since the components of the device are made of a non-magnetic material, it is possible to prevent the influence on the magnetic measurement.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
In carrying out the present invention, an Epstein-type measuring method in which a closed magnetic circuit is formed only by a test piece as shown in FIG. 4 can be employed as an apparatus. In the Epstein measurement, the circuit configuration can be designed relatively simply, assuming that the magnetic field in the closed magnetic circuit and the generated magnetic flux are uniform.
[0019]
A load cell is attached to one end of each test piece. Thus, a predetermined tension can be applied while monitoring the load.
In the tension applying method, a large tension can be applied with a small force by using a jig based on the principle of leverage.
[0020]
FIG. 5 shows the mechanism. The movement of the tension applying lever 5 can be finely adjusted by turning the point of force by turning the tension adjusting handle 8.
[0021]
In addition, a movable joint can be used between the lever and the test piece gripping jig so that the stress is transmitted as a parallel stress to the sample. It is preferable that the movable joint can be tilted outward so that the movable joint can be smoothly moved in and out of the movable joint frame. A movable joint 6 is used to connect the test piece gripping jigs 9 and 10 to the tension applying lever, so that the tension on the test piece is applied horizontally, that is, transmitted as parallel stress.
[0022]
In addition, the points of manufacturing the device are that a large load can be easily applied with a small force and that the device can be installed on a work table in a compact size. Therefore, as shown in FIG. 6, the tension applying lever is disposed so as to be perpendicular to the plane including the four test pieces set in the Epstein frame. This allows the entire apparatus to be housed in a compact structure.
[0023]
On the other hand, in magnetic measurement, it is important that the test piece intersections come into contact with no gap. Insufficient contact at the intersection of the test pieces causes magnetic flux to leak from the test piece, resulting in reduced measurement accuracy. Therefore, as shown in FIG. 7, the reference height of the crossing portion is set, the lower test piece is clamped by the basket-shaped gripping jig 9 and the fixing screw 16 is tightened to lift the sample from the bottom to the reference height. With the U-shaped gripping jig 10, the fixing screw 16 is tightened to hold the sample from above to the reference height. According to this mechanism, regardless of the thickness of the test piece, the contact of the intersection can be ensured and the magnetic measurement can be performed accurately.
[0024]
Easily attaching and detaching a test piece is an important issue in improving work efficiency. FIG. 8 shows that, when the test piece illustrated as “test piece” is mounted, the corresponding tension applying lever 5, movable joint 6, fulcrum fixing jig 7, and gripping jig 9 or 10 corresponding to the test piece, It shows a state where it is slid to the left in the drawing as a whole. As shown in FIG. 8, the tension applying lever 5, the movable joint 6, the fulcrum fixing jig 7, and the gripping jigs 9, 10 slide in the longitudinal direction of the test piece orthogonal to the target test piece, thereby facilitating the detachment of the test piece. Executable.
[0025]
As a material of the apparatus, it is preferable that the outer frame of the apparatus on which the Epstein frame is mounted, the tension applying lever, the fulcrum fixing jig, and the sample gripping jig are made of a non-magnetic material. For example, non-magnetic stainless steel or other materials that do not affect magnetic measurements can be used.
[0026]
【Example】
A steel plate having a thickness of 1.0 mm (yield strength of about 300 N / mm 2 ) was cut out to a size of 10 mm in width and 200 mm in length, and set one by one on each side of a 10 cm Epstein frame incorporated in a tension applying device. The exciting coil is wound 240 turns and the detecting coil is wound 400 turns in the Epstein frame.
[0027]
The terminal of this frame was connected to a DC magnetometer, and the test piece was demagnetized once, and the initial magnetization curve up to 800 A / m was measured, and the maximum magnetic permeability was calculated therefrom. The tension was adjusted while monitoring the load meters so that the four test pieces became equal for each set tension. The tension was applied up to 300 N / mm 2 (3000 N under load) which is almost equal to the yield strength of the material. FIG. 9 shows the apparatus configuration, and FIG. 10 shows the tension dependence of the magnetic properties (maximum magnetic permeability) of the test piece.
[0028]
From FIG. 10, it is possible to observe in detail how the maximum magnetic permeability becomes maximum around a tension of several tens of N / mm 2 , and how the maximum magnetic permeability changes near the yield point of the material.
[0029]
【The invention's effect】
By using the apparatus of the present invention, it is possible to easily apply tension in a wide range from several N / mm 2 to several hundred N / mm 2 while monitoring the load cell, and connect the Epstein frame to the magnetic measuring apparatus. Thus, the magnetic properties at the time of applying tension can be measured in detail.
[Brief description of the drawings]
FIG. 1 is a diagram showing the appearance of a tension applying device.
FIG. 2 is a diagram showing a tension applying mechanism according to the related art.
FIG. 3 is a diagram showing the flow of magnetic flux in single-plate measurement.
FIG. 4 is a diagram showing a flow of a magnetic flux in Epstein measurement.
FIG. 5 is a diagram showing a tension applying mechanism using the lever principle.
FIG. 6 is a diagram showing an arrangement of a tension applying lever.
FIG. 7 is a view showing a test piece gripping jig. (A) Lower sample gripping part (b) Upper sample gripping part FIG. 8 is a view showing a horizontal movement mechanism of jigs.
FIG. 9 is a diagram showing a configuration of an apparatus for magnetic measurement.
FIG. 10 is a graph showing the dependence of magnetic properties of a steel sheet on tension.
[Explanation of symbols]
1 Epstein test frame (including excitation coil and detection coil)
2 test pieces (lower side)
3 test pieces (upper)
4 Load meter 5 Tension applying lever 6 Movable joint 7 Support point fixing jig 8 Tension adjustment handle 9 Lower test piece gripping jig 10 Upper test piece gripping jig 11 Device base, exterior 12 Yoke (yoke)
13 Excitation coil 14 Detection coil 15 Magnetic field measurement coil 16 Test piece fixing screw 17 Tension applying handle

Claims (4)

エプスタイン測定枠にセットされた短冊状試験片のそれぞれの一端に取り付けるとともに荷重を測定する荷重計と、それぞれの試験片の他の一端にその作用点を取り付けて張力を付加する張力付加レバーと、この張力付加レバーの力点に力を加える張力調節用ハンドルとを備えており、前記荷重計の固定側と前記張力付加レバーの支点はいずれも装置本体に固定されていることを特徴とする磁気測定用張力付加装置。A load meter attached to each end of the strip-shaped test piece set in the Epstein measurement frame and measuring the load, a tensioning lever for applying the tension by attaching the point of action to the other end of each test piece, A magnetic force measuring handle for applying a force to a force point of the tension applying lever, wherein a fixed side of the load cell and a fulcrum of the tension applying lever are both fixed to the apparatus main body. Tension applying device. 上側試験片と下側試験片の上下方向の位置決めをするために本体にそれぞれ設けられた基準面と、下側試験片を下から前記基準面に押さえつけて掴む下側試験片掴み冶具と、上側試験片を上から前記基準面に押さえつけて掴む上側試験片掴み冶具を備えている請求項1記載の磁気測定用張力付加装置。A reference surface provided on the main body for positioning the upper test piece and the lower test piece in the vertical direction, a lower test piece gripping jig for holding the lower test piece against the reference surface from below, and The tension applying device for magnetic measurement according to claim 1, further comprising an upper test piece gripping jig for holding the test piece against the reference surface from above and gripping the test piece. 個々の試験片に対応する張力付加レバー、張力付加レバーの支点を固定する支点固定冶具、下側試験片掴み冶具、および上側試験片掴み冶具が、その試験片と直交する試験片の長手方向に沿ってスライド可能に設置されていることを特徴とする請求項1又は請求項2記載の磁気測定用張力付加装置。The tensioning lever corresponding to each test piece, the fulcrum fixing jig that fixes the fulcrum of the tensioning lever, the lower test piece gripping jig, and the upper test piece gripping jig are placed in the longitudinal direction of the test piece orthogonal to the test piece. The tension applying device for magnetic measurement according to claim 1 or 2, wherein the tension applying device is installed so as to be slidable along. エプスタイン枠を載せる装置外枠、張力付加レバー、支点固定冶具、及び試料掴み冶具が非磁性材料で構成されていることを特徴とする請求項1〜3記載の磁気測定用張力付加装置。The tension applying device for magnetic measurement according to any one of claims 1 to 3, wherein the outer frame for mounting the Epstein frame, the tension applying lever, the fulcrum fixing jig, and the sample gripping jig are made of a non-magnetic material.
JP2001398841A 2001-12-28 2001-12-28 Tension applying device for magnetic measurement Expired - Fee Related JP3603847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001398841A JP3603847B2 (en) 2001-12-28 2001-12-28 Tension applying device for magnetic measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001398841A JP3603847B2 (en) 2001-12-28 2001-12-28 Tension applying device for magnetic measurement

Publications (2)

Publication Number Publication Date
JP2003194903A JP2003194903A (en) 2003-07-09
JP3603847B2 true JP3603847B2 (en) 2004-12-22

Family

ID=27604117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001398841A Expired - Fee Related JP3603847B2 (en) 2001-12-28 2001-12-28 Tension applying device for magnetic measurement

Country Status (1)

Country Link
JP (1) JP3603847B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106707201A (en) * 2016-12-31 2017-05-24 西南交通大学 Test system and method for testing wound iron core radial pressure and magnetic flux relevance

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1304848C (en) * 2004-05-28 2007-03-14 清华大学 Horizontal magnetic coupler mechanical loading and measuring systems
JP5365304B2 (en) * 2009-03-30 2013-12-11 Jfeスチール株式会社 Single-plate magnetic property tester for magnetic steel sheet and magnetic property measurement method
KR101202843B1 (en) 2010-11-22 2012-11-20 한국철도기술연구원 high-capacity static press
JP5527203B2 (en) * 2010-12-28 2014-06-18 Jfeスチール株式会社 Single plate magnetic tester and method for measuring magnetic properties of electrical steel sheet using the same
JP5374533B2 (en) * 2011-03-28 2013-12-25 国立大学法人 大分大学 Magnetic property evaluation apparatus and specimen for magnetic property measurement
CN103064042A (en) * 2012-12-27 2013-04-24 保定天威集团有限公司 Measuring model and measuring method for performance of silicon steel sheets on transformer product
CN103543338B (en) * 2013-11-13 2015-11-25 保定天威保变电气股份有限公司 The method of a kind of measuring transformer different joint form loss unshakable in one's determination
CN103558568B (en) * 2013-11-15 2017-03-01 沈阳工业大学 The magnetic characteristic measurement apparatus of electrical sheet and combinations thereof structure difference stress direction
CN104375103B (en) * 2014-10-31 2017-05-03 上海卫星装备研究所 Test clamp device for whole satellite magnetic testing
CN106707064B (en) * 2016-12-31 2018-05-08 西南交通大学 Winding radial pressure and frequency response relevance research platform and its experimental method
CN106526335B (en) * 2016-12-31 2018-05-08 西南交通大学 Radial pressure variable rewinding material loss test system and test method
DE102017220419A1 (en) * 2017-11-16 2019-05-16 Siemens Aktiengesellschaft Classification of the noise behavior of ferromagnetic materials
CN110441720A (en) * 2019-09-12 2019-11-12 河北工业大学 It is a kind of fold direction apply stress improvement epstein frame
CN111025207B (en) * 2019-12-11 2022-01-11 中国科学院光电技术研究所 Method and device for measuring static magnetic force

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106707201A (en) * 2016-12-31 2017-05-24 西南交通大学 Test system and method for testing wound iron core radial pressure and magnetic flux relevance
CN106707201B (en) * 2016-12-31 2018-04-13 西南交通大学 A kind of pilot system and method for testing rewinding material radial pressure and magnetic flux relevance

Also Published As

Publication number Publication date
JP2003194903A (en) 2003-07-09

Similar Documents

Publication Publication Date Title
JP3603847B2 (en) Tension applying device for magnetic measurement
Nakata et al. Improvement of measuring accuracy of magnetic field strength in single sheet testers by using two H coils
JP5709695B2 (en) Stress-load type single plate magnetic tester
Pfutzner et al. Rotational magnetization in transformer cores—A review
JP5527203B2 (en) Single plate magnetic tester and method for measuring magnetic properties of electrical steel sheet using the same
CN2857035Y (en) Mag netostriction and magnetic anisotropic
US6345534B1 (en) Nondestructive fatigue test method for ferromagnetic construction materials
CN116224192A (en) Soft magnetic material magnetic property testing system
Kraus A novel method for measurement of the saturation magnetostriction of amorphous ribbons
JPH06289112A (en) Magnetic measurement device
JP2011169736A (en) Device and method for measuring alternating current magnetostriction
Möwius et al. Measurement technologies for permanent magnets
JP6289552B2 (en) Magnetostriction measuring apparatus and magnetostriction measuring method
CN114814679B (en) Device for detecting magnetism of soft magnetic material in real time under automatic stress application
Arcas et al. Sensor applications based on induced magnetic anisotropy in toroidal cores
JP3944300B2 (en) Rail stress measurement jig
CN220922109U (en) Linear displacement measuring clamp of universal testing machine
CN220019333U (en) Pendulum type friction coefficient tester
CN110045305B (en) Quasi-closed-circuit soft magnetic measuring instrument
TW201602610A (en) System and method for measuring magnetic properties
CN216926526U (en) Test fixture
CN217542604U (en) Metal sample elongation magnetic force measuring seat
JP6371453B2 (en) Magnetostriction measuring apparatus and magnetostriction measuring method
CN211717965U (en) Novel tensile machine
CN112179780B (en) Blank inspection device suitable for neodymium iron boron magnet and implementation method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees