JP3603402B2 - Methyl methacrylate resin composition - Google Patents

Methyl methacrylate resin composition Download PDF

Info

Publication number
JP3603402B2
JP3603402B2 JP21711095A JP21711095A JP3603402B2 JP 3603402 B2 JP3603402 B2 JP 3603402B2 JP 21711095 A JP21711095 A JP 21711095A JP 21711095 A JP21711095 A JP 21711095A JP 3603402 B2 JP3603402 B2 JP 3603402B2
Authority
JP
Japan
Prior art keywords
polymer
weight
methyl methacrylate
molecular weight
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21711095A
Other languages
Japanese (ja)
Other versions
JPH0959472A (en
Inventor
隆 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP21711095A priority Critical patent/JP3603402B2/en
Publication of JPH0959472A publication Critical patent/JPH0959472A/en
Application granted granted Critical
Publication of JP3603402B2 publication Critical patent/JP3603402B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明が属する技術分野】
本発明は、耐衝撃性に優れさらに耐溶剤性及び加熱変形時の耐ネッキング性に優れ、射出成形、押出し板、異形(共)押出し、ブロー成形、発泡品に適したメタクリル酸メチル系樹脂組成物に関するものである。
【0002】
【従来の技術】
耐衝撃性に優れたメタクリル酸メチル系樹脂組成物については、耐衝撃改質剤として各種の弾性率の低いエラストマー成分をサブミクロンオーダーで樹脂中に混ぜることによる方法が開示されている。
例えば特公昭55−27576号公報および特開昭49−23292号公報にはエラストマー構造を有する多層構造アクリル系重合体が提案されている。また特開平5−147514号公報には、エラストマー成分としてメタクリル酸メチル、ブタジエン、スチレン各単位からなるグラフト共重合体を分散相として含むシロップを重合して得るアクリル樹脂の記載がある。
【0003】
【発明が解決しようとする課題】
メタクリル酸メチル系樹脂は一般に、溶融流動性が高いと、溶融延伸するときの張力が低くなる。従って溶融流動性と該張力共に高いことをが必要なブロー成形や、異形押出し、押出し発泡には適さず、これらの分野に使用されていないのが現状である。
また、メタクリル酸メチル系樹脂の押出し板を2次加工である加熱成形した際、引き延ばされる部分の厚みが薄くなり易い。
これらの性質は、上記提案の耐衝撃アクリル樹脂でも、同様である。
さらに射出成形性を良くするために流動性を向上させると、耐溶剤性が低下する問題を抱えており、耐衝撃性、流動性、耐溶剤性の全てが良好な材料を得ることはできていない。
そこで本発明は、耐衝撃性を有し、押出し特性や射出成形特性に影響する高剪断下での溶融流動性が高く、しかも耐溶剤性および溶融張力も優れた耐衝撃性メタクリル酸メチル系樹脂組成物を提供する。
【0004】
【課題を解決するための手段】
本発明は、重量平均分子量が8万〜40万で、Z平均分子量における分岐点間分子量が3万〜50万である分岐構造を有するメタクリル酸メチル系重合体A30〜95重量%およびゴム状重合体B5〜70重量%とからなるメタクリル酸メチル系樹脂組成物である。
【0005】
本発明における分岐構造を有するメタクリル酸メチル系重合体Aのメタクリル酸メチル単位を主成分とする重合体とは、その構成単位がメタクリル酸メチル単位が50重量%以上好ましくは70重量%以上であり、残りは、メタクリル酸メチルと共重合可能な単官能および多官能の不飽和単量体単位からなるものである。
メタクリル酸メチルが50重量%未満では、いわゆるポリメタクリル酸メチルの特性である透明性、機械的強度が発現しにくい。
【0006】
共重合可能な単官能不飽和単量体としては、例えば、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸ベンジル等のメタクリル酸エステル類:アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸2−エチルヘキシル等のアクリル酸エステル類:アクリル酸、メタクリル酸、マレイン酸、イタコン酸等の不飽和カルボン酸、無水マレイン酸、無水イタコン酸等の酸無水物:アクリル酸2−ヒドロキシエチル、アクリル酸2−ヒドロキシプロピル、アクリル酸モノグリセロール、メタクリル酸2−ヒドロキシエチル、メタクリル酸ヒドロキシプロピル、メタクリル酸モノグリセロール等のヒドロキシル基含有のエステル:アクリルアミド、メタクリルアミド、ジアセトンアクリルアミドがある。ニトリル類には、アクリロニトリル、メタクリロニトリル、メタクリル酸ジメチルアミノエチル等の窒素含有単量体:アリルグリシジルエーテル、アクリル酸グリシジル、メタクリル酸グリシジル等のエポキシ基含有単量体:スチレン、α−メチルスチレン等のスチレン系単量体:がある。
【0007】
本発明の分岐構造を有するメタクリル酸メチル系重合体の重量平均分子量(Mw)は8万〜40万である。 好ましくは、15万〜30万である。
Mwが8万未満だと該重合体の機械的強度や耐溶剤性が充分でなく、これとゴム状重合体Bとで得られる耐衝撃性メタクリル酸メチル系樹脂組成物の強度や耐溶剤性も悪くなる。また40万を越えて高いと溶融流動性が低くなり過ぎて得られる樹脂組成物の成形性が低下する。
【0008】
本発明の分岐構造を有するメタクリル酸メチル系重合体Aは、そのZ平均分子量(Mz)における分岐点間分子量(Mzb)が3万〜50万のものである。好ましくは5万〜20万のものである。
該Mzbが50万を越えると、得られる分岐構造を有する重合体Aの耐溶剤性が低くなり、これより得られる耐衝撃性メタクリル酸メチル系樹脂組成物の耐溶剤性も低くなる。
一方該分岐点間分子量が3万未満の場合は、樹脂組成物の機械的強度が劣ると共に成形品の外観も劣る。
【0009】
ここでMw、Mzとは、ゲル・パーミエーション・クロマトグラフィー(GPC)と示差屈折率計により求められた値である。
この求め方は、例えば1984年度版「高分子特性解析」(共立出版)24頁〜55頁に記載されている。
【0010】
分岐点間分子量とは、分岐構造を有する重合体において分岐点から次の分岐点までの分子量の平均値を意味する。
本発明では、この分岐点間分子量をMz値におけるもので規定した。
このZ平均分子量における分岐点間分子量(Mzb)は、日本ゴム協会誌、第45巻、第2号、105〜118頁「キャラクタリゼーション」の記載に基づき下記[数1]、[数2]式より算出される。
【0011】
【数1】
{〔η〕/〔η〕}10/6={(1+Bz/6)0.5 +4Bz/3π}−0.5
【0012】
【数2】
Mzb=Mz/Bz
【0013】
上記[数1]において、〔η〕は、測定対象の重合体の分子サイズ別分子量−極限粘度の関係から、測定対象の重合体のMz値に相当する分子量の極限粘度である。
〔η〕は、測定対象の重合体のMz値に相当する直鎖状メタクリル酸メチル重合体標準試料の極限粘度である。
Bzは、Z平均分子量Mzにおける分岐点の数である。
【0014】
本発明における分岐構造を有するメタクリル酸メチル系重合体Aの分子量分布は、分子量30万以上の重量比が、その重合体の還元粘度が0.7dl/g以下の時は14×該還元粘度値−6.8(%)以上、14×該還元粘度値+11.2(%)以下であり、還元粘度が0.7dl/g以上の時は40×該還元粘度値−25(%)以上、40×該還元粘度値−7(%)以下であることが好ましい。
なお、本発明で表す還元粘度とは、その測定する重合体の溶液濃度が1g/dlでの値である。
重合体Aの分子量30万以上の成分の割合が上記の範囲内の方が、重合体Aの流動性と耐溶剤性及び機械的強度のバランスに優れ、これを用いて得られる樹脂組成物の流動性と耐溶剤性及び機械的強度のバランスに優れている。
【0015】
一般に、熱可塑性樹脂の溶融延伸する際の張力は、その指標として、ダイスウェル比で表すことができる。
該ダイスウェル比は、メルトインデクサを用いて230℃、3.8kg荷重の条件でオリフィスの長さが8.0mmとオリフィスの径が2.09mmのオリフィスを使用してメルトフローレートを測定したときのストランド径をオリフィスの径で割った値で表すことができる。
本発明の分岐構造を有するメタクリル酸メチル系重合体Aのダイスウェル比は、1.2〜2.5の値となる。
なお、分岐構造を有さない通常のメタクリル酸メチル系樹脂のダイスウェル比は、ジャーナルオブアプライドポリマーサイエンス(J.Appl.Polym.Sci)29(1984).3479−3490頁のFig.9 に記載の通り、約1程度である。
つまり、分岐構造を有するメタクリル酸メチル系重合体のダイスウェル比が大きく、溶融延伸する際の張力が大きいことが示される。
【0016】
本発明の分岐構造を有するメタクリル酸メチル系重合体Aは、前述の構成単位の単量体に、所定量の多官能単量体と連鎖移動剤を加えて重合することによって得られる。
【0017】
共重合可能な多官能単量体としては、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート等のエチレングリコールまたはそのオリゴマーの両末端水酸基をアクリル酸またはメタクリル酸でエステル化したもの;ネオペンチルグリコールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート等の2価のアルコールの水酸基をアクリル酸またはメタクリル酸でエステル化したもの;トリメチロールプロパン、ペンタエリスリトール等の多価アルコールまたはこれら多価アルコール誘導体をアクリル酸またはメタクリル酸でエステル化したもの;ジビニルベンゼン等が挙げられる。
【0018】
連鎖移動剤としては、メタクリル酸メチルの重合に用いられる周知のものでよい。この中には、連鎖移動官能基を1つ有する単官能の連鎖移動剤および連鎖移動官能基を2つ以上有する多官能連鎖移動剤とがある。
単官能連鎖移動剤としては、アルキルメルカプタン類、チオグリコール酸エステル類等が挙げられ、多官能連鎖移動剤としては、エチレングリコール、ネオペンチルグリコール、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、ソルビトール等の多価アルコール水酸基をチオグリコール酸または3−メルカプトプロピオン酸でエステル化したものが挙げられる。
【0019】
分岐構造を有するメタクリル酸メチル系重合体Aの製造に用いる連鎖移動剤および多官能単量体の量は、該単官能単量体1モル当たり、該連鎖移動剤の量が1×10−5モル〜5×10−3モル、該多官能単量体の量がその官能基数が1×10−5〜{該連鎖移動剤(モル)−2.5×10−4}モルとなる範囲である。
【0020】
分岐構造を有するメタクリル酸メチル系重合体Aの重量平均分子量は、一般に主として用いられる該多官能単量体の濃度、連鎖移動剤の濃度及びラジカル開始剤の濃度に支配される。
重合平均分子量の調整は、該多官能単量体濃度が高い程重合平均分子量は大きくなり、逆に連鎖移動剤濃度が高い程小さくなることを考慮して、該多官能単量体の上記濃度範囲内及び連鎖移動剤の濃度の範囲内で適宜変更することで行う。
分岐点間分子量は、主として、該多官能単量体濃度によって調整できる。
該多官能単量体濃度が高い程、分岐点間分子量は小さくなる。
また、連鎖移動剤では、多官能連鎖移動剤の濃度が高い程分岐点間分子量は小さくなる。
分子量30万以上の割合は、多官能単量体の濃度が高い程多くなる。
【0021】
重合開始剤の使用量は、重合方法に応じた周知の適量でよく、単量体または単量体混合物100重量部に対して0.001〜1重量部程度、好ましくは0.01〜0.7重量部である。
なお、重合開始剤の量が多い程、重量平均分子量が小さくなるのは、一般的なメタクリル酸メチル系重合体と同様である。
【0022】
本発明の分岐構造を有するメタクリル酸メチル系重合体Aを得る重合方法としては、一般のメタクリル酸メチル系樹脂を製造する周知の重合方法が適用できる。 つまり懸濁重合法、塊状重合法、乳化重合法である。 なかでも、懸濁重合が適している。
【0023】
本発明の樹脂組成物におけるゴム状重合体Bは、アクリル系多層構造重合体もしくは5〜80重量部のゴム状重合体にエチレン性不飽和単量体なかでもアクリル系不飽和単量体95〜20重量部をグラフト重合したグラフト共重合体などがある。
アクリル系多層構造重合体は、ゴム弾性の層またはエラストマーの層を20〜60重量部を内在させるものであって、最外には、硬質層を有するもので、最内層として硬質層をさらに含む構造のものでも良い。
例えば特公昭55−27576号公報または特開平6−80739号公報や特開昭49−23292号公報に記載のものが該当する。
【0024】
5〜80重量部のゴム状重合体にエチレン性不飽和単量体を95〜20重量部グラフト重合したグラフト共重合体は、ゴム状重合体として例えばポリブタジエンゴム、アクリロニトリル/ブタジエン共重合体ゴム、スチレン/ブタジエン共重合体ゴムなどのジエン系ゴム、ポリブチルアクリレート、ポリプロピルアクリレート、ポリ−2−エチルヘキシルアクリレートなどのアクリル系ゴム、およびエチレン/プロピレン/非共役ジエン系ゴムなどを用いることができる。このゴム状重合体にグラフト共重合するのに用いられるエチレン性単量体およびそれらの混合物としてはスチレン、アクリロニトリル、アルキル(メタ)アクリレートなどが挙げられる。これらのグラフト共重合体としては特開昭55−147514号公報や特公昭47−9740号公報に記載のものを用いることができる。
【0025】
ゴム状重合体Bの量は、5〜70重量%、好ましくは8〜50重量%である必要がある。5重量%より少ないと得られる樹脂組成物の耐衝撃性が低くなり、70重量%を越える場合には成形加工性及び耐熱性が低下すると共に溶融延伸時の張力が低いものとなる。
【0026】
また本発明の樹脂組成物においては、さらにエチレン性単量体類の重合体を加えても良い。その量は、樹脂組成物として分岐構造を有するメタクリル酸メチル系重合体Aが30重量%以上かつゴム状重合体が5重量%以上となるものである。この様な重合体として、アクリル系樹脂、スチレン系樹脂、塩化ビニル系樹脂、アクリロニトリル系樹脂、ビニリデンフロライド系樹脂などである。
【0027】
本発明の樹脂組成物は、分岐構造を有するメタクリル酸メチル系重合体Aとゴム状重合体Bとから、本発明の樹脂組成物とするには、一般的な、熱可塑性樹脂の組成物を作る周知の方法が適用できる。
つまり、これらの重合体を混合した後、単軸あるいは二軸の押出し機で溶融混練することにより得られる。
その際、上記エチレン性単量体類の重合体や必要に応じて離型剤、紫外線吸収剤、着色剤、酸化防止剤、熱安定剤、可塑剤、充填剤、染料、顔料、光拡散材等のアクリル樹脂用各種添加剤をその混ぜても良い。
【0028】
【発明の効果】
本発明の樹脂組成物は、耐衝撃性に優れるとともに、耐溶剤性にも優れ、高い溶融張力と優れた流動性を有し、加熱変形時の耐ネッキング性に優れた成形品が得られる。この樹脂を射出成形する際、大型成形品や末端部で肉厚となっている成形品等の成形性が優れ、また押出し機でシーティングする際のメルトダウンが軽減され、押出し加工特性が良好となる。さらに、できたシート等を加熱成形する場合には偏肉の少ない良好な製品を得ることができる。また、インジェクションブロー成形やダイレクトブロー成形の成形条件範囲が広くなり、できた成形品の偏肉が軽減される。さらに従来のメタクリル樹脂では満足できる発泡体が得られていないのに対し、発泡成形時のガス抜けが少ない高発泡倍率の発泡体を得ることができる。
【0029】
【実施例】
以下、実施例により本発明をさらに具体的に説明するが、本発明はこれによって限定されるものではない。なお、実施例中の評価は次のような方法を用いて行った。
・メルトフローインデックス(MFR):JIS K7210に準拠し、230℃、3.8kg荷重、10分で測定した(g/10分)。
・ダイスウェル比:上記MFRを測定した際の重合体のストランド径と測定器のオリフィスの径の比で表した。
・耐溶剤性:射出成形機(名機製作所ムゲート付┻製M140−SJ)とフィルき平板用金型を用い150x150x3mmの平板を成形し、25℃でエタノールに1日浸漬した後、目視によりクラックの有無を確認した。
・還元粘度:JIS Z8803に準拠し、還元粘度は1g/dlの濃度での値であり、クロロホルム溶液、25℃で測定し求めた(dl/g)。
・重量平均分子量(Mw)及びZ平均分子量(Mz):示差屈折率計及び粘度計付きゲルパーミエーションクロマトグラフィー(Waters社製GPC150−CV)を用い、標準メタクリル酸メチル重合体の{分子量−溶出時間}較正曲線から求めた。
・Z平均分子量での分岐点間分子量(Mzb):上記較正曲線および標準メタクリル酸メチル重合体の{極限粘度−溶出時間}較正曲線とからMz値と同じ分子量値の標準メタクリル酸メチル重合体の極限粘度[η] を求め、次に標準メタクリル酸メチル重合体の{絶対分子量・極限粘度−溶出時間}普遍較正曲線により、Mzに対応の極限粘度[η] を求め、前述の[数1]、[数2]より算出した。
・耐衝撃性;ASTM D−256に準じ、厚み3.2mmのノッチ付きサンプルでアイゾット衝撃値を測定した(kgf・cm/cm)。
【0030】
実施例で用いた各種単量体、連鎖移動剤の略称は、以下の通り。
・MMA:メタクリル酸メチル
・MA:アクリル酸メチル
・DDSH:n−ドデシルメルカプタン
・HDA:16−ヘキサンジオールジアクリレート
【0031】
参考例1
200リットルのSUS製オートクレーブにMMA96重量部、MA4重量部、HDA0.113重量部、DDSH0.36重量部、ラウロイルパーオキサイド0.3重量部、イオン交換水200重量部、ポリメタクリル酸ナトリウム1重量部を入れて混合し、加熱昇温して、80℃で重合を開始し、90分経過後さらに100℃で60分重合させた。重合後、洗浄、脱水、乾燥を行い、ビーズ状の分岐構造を有する重合体Aを得た。
重合体Aの物性を評価し、結果を[表1]に示した。
【0032】
参考例2
参考例1で用いた、MMA、MA、DDSH、HDAの量を表1に示す通りとした以外は、参考例1と同様に行い重合体Aを得た。
重合体Aの物性を評価し、結果を[表1]に示した。
【0033】
実施例1〜4、比較例1〜3
参考例1または2で得た重合体Aまたは重合体Aと特開平6−80739号公報実施例3に記載の方法で得たゴム成分含量36重量%の3層構造重合体とMFR=7の汎用メタクリル樹脂とを[表2]で示した重量比で混合した後、30mmベント付き2軸押出し機を用い、シリンダー温度190〜260℃で溶融混練して樹脂組成物とした。
この樹脂組成物の物性を評価した。結果を[表2]に示した。
【0034】
実施例5
実施例1のゴム成分含量36重量%の3層構造重合体に代えて、特開昭55−147514 号公報実施例3の記載に準拠して作られたブタジエンゴム7重量%含むゴム状重合体をもちい[表2]で示す通りに各重合体の配合を変更した以外は、実施例1と同様に行った。結果を[表2]に示した。
【0035】
【表1】

Figure 0003603402
【0036】
【表2】
Figure 0003603402
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a methyl methacrylate-based resin composition having excellent impact resistance, excellent solvent resistance and necking resistance during heat deformation, and suitable for injection molding, extruded plates, irregular (co) extrusion, blow molding, and foamed products. It is about things.
[0002]
[Prior art]
With respect to a methyl methacrylate-based resin composition having excellent impact resistance, a method has been disclosed in which various elastomer components having a low elastic modulus are mixed in a resin on the submicron order as an impact modifier.
For example, Japanese Patent Publication No. 55-27576 and Japanese Patent Application Laid-Open No. 49-23292 propose a multi-layer acrylic polymer having an elastomer structure. JP-A-5-147514 describes an acrylic resin obtained by polymerizing a syrup containing, as a disperse phase, a graft copolymer composed of each unit of methyl methacrylate, butadiene, and styrene as an elastomer component.
[0003]
[Problems to be solved by the invention]
In general, when the melt flowability of a methyl methacrylate resin is high, the tension at the time of melt drawing becomes low. Therefore, it is not suitable for blow molding, profile extrusion or extrusion foaming, which requires both high melt fluidity and high tension, and is not used in these fields at present.
Further, when an extruded plate of a methyl methacrylate resin is subjected to heat molding as a secondary processing, the thickness of a stretched portion tends to be thin.
These properties are the same for the impact-resistant acrylic resin proposed above.
Furthermore, when the fluidity is improved to improve the injection moldability, there is a problem that the solvent resistance is reduced, and it is possible to obtain a material having good impact resistance, fluidity, and solvent resistance. Absent.
Therefore, the present invention provides an impact-resistant methyl methacrylate resin having impact resistance, high melt fluidity under high shear that affects extrusion characteristics and injection molding characteristics, and also has excellent solvent resistance and melt tension. A composition is provided.
[0004]
[Means for Solving the Problems]
The present invention relates to a methyl methacrylate polymer having a branched structure having a weight average molecular weight of from 80,000 to 400,000 and a molecular weight between branch points in the Z average molecular weight of from 30,000 to 500,000, from 30 to 95% by weight, and a rubbery weight. A methyl methacrylate-based resin composition comprising 5 to 70% by weight of a combined B.
[0005]
The polymer having methyl methacrylate units as the main component of the methyl methacrylate polymer A having a branched structure in the present invention means that the constituent units are 50% by weight or more, preferably 70% by weight or more of methyl methacrylate units. The remainder consists of monofunctional and polyfunctional unsaturated monomer units copolymerizable with methyl methacrylate.
If the content of methyl methacrylate is less than 50% by weight, transparency and mechanical strength, which are characteristics of so-called polymethyl methacrylate, are hardly exhibited.
[0006]
Examples of copolymerizable monofunctional unsaturated monomers include, for example, methacrylates such as ethyl methacrylate, propyl methacrylate, butyl methacrylate, and benzyl methacrylate: methyl acrylate, ethyl acrylate, propyl acrylate; Acrylic esters such as butyl acrylate and 2-ethylhexyl acrylate: unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid and itaconic acid; and acid anhydrides such as maleic anhydride and itaconic anhydride: acrylic acid 2 -Hydroxy group-containing esters such as hydroxyethyl, 2-hydroxypropyl acrylate, monoglycerol acrylate, 2-hydroxyethyl methacrylate, hydroxypropyl methacrylate and monoglycerol methacrylate: acrylamide, methacrylamide, diacetone There is acrylamide. Nitriles include nitrogen-containing monomers such as acrylonitrile, methacrylonitrile, and dimethylaminoethyl methacrylate: epoxy group-containing monomers such as allyl glycidyl ether, glycidyl acrylate, and glycidyl methacrylate: styrene, α-methylstyrene And other styrene-based monomers.
[0007]
The weight average molecular weight (Mw) of the methyl methacrylate polymer having a branched structure of the present invention is from 80,000 to 400,000. Preferably, it is 150,000 to 300,000.
When the Mw is less than 80,000, the mechanical strength and solvent resistance of the polymer are not sufficient, and the strength and solvent resistance of the impact-resistant methyl methacrylate resin composition obtained from the polymer and the rubbery polymer B are not sufficient. Also gets worse. On the other hand, when it is higher than 400,000, the melt fluidity becomes too low and the moldability of the obtained resin composition is lowered.
[0008]
The methyl methacrylate polymer A having a branched structure according to the present invention has a molecular weight between branch points (Mzb) in the Z-average molecular weight (Mz) of 30,000 to 500,000. Preferably it is 50,000-200,000.
When the Mzb exceeds 500,000, the solvent resistance of the obtained polymer A having a branched structure decreases, and the solvent resistance of the resulting impact-resistant methyl methacrylate-based resin composition also decreases.
On the other hand, when the molecular weight between branch points is less than 30,000, the mechanical strength of the resin composition is poor and the appearance of the molded product is also poor.
[0009]
Here, Mw and Mz are values determined by gel permeation chromatography (GPC) and a differential refractometer.
This method is described in, for example, "Polymer Characteristic Analysis", 1984 edition (Kyoritsu Shuppan), pp. 24 to 55.
[0010]
The molecular weight between branch points means an average value of the molecular weight from a branch point to the next branch point in a polymer having a branched structure.
In the present invention, the molecular weight between branch points is defined by the value at the Mz value.
The molecular weight between branch points (Mzb) in the Z average molecular weight is based on the following [Equation 1] and [Equation 2] based on the description of "Characterization", Vol. 45, No. 2, pp. 105-118, The Society of Rubber Industry, Japan. It is calculated from:
[0011]
(Equation 1)
{[Η 1 ] / [η 2 ]} 10/6 = {(1 + Bz / 6) 0.5 + 4Bz / 3π} −0.5
[0012]
(Equation 2)
Mzb = Mz / Bz
[0013]
In the above [Equation 1 ], [η 1 ] is the intrinsic viscosity of the molecular weight corresponding to the Mz value of the polymer to be measured from the relationship of molecular weight by molecular size of polymer to be measured to intrinsic viscosity.
2 ] is the limiting viscosity of a linear methyl methacrylate polymer standard sample corresponding to the Mz value of the polymer to be measured.
Bz is the number of branch points in the Z average molecular weight Mz.
[0014]
The molecular weight distribution of the methyl methacrylate-based polymer A having a branched structure in the present invention is such that when the weight ratio of the molecular weight is 300,000 or more, when the reduced viscosity of the polymer is 0.7 dl / g or less, 14 × the reduced viscosity value −6.8 (%) or more, 14 × the reduced viscosity value + 11.2 (%) or less, and when the reduced viscosity is 0.7 dl / g or more, 40 × the reduced viscosity value−25 (%) or more; It is preferably 40 × the reduced viscosity value−7 (%) or less.
The reduced viscosity described in the present invention is a value at a solution concentration of the polymer to be measured at 1 g / dl.
When the proportion of the component having a molecular weight of 300,000 or more of the polymer A is within the above range, the balance of the fluidity and the solvent resistance and the mechanical strength of the polymer A is excellent, and the resin composition obtained by using this is Excellent balance of fluidity, solvent resistance and mechanical strength.
[0015]
Generally, the tension at the time of melt-stretching a thermoplastic resin can be represented by a die swell ratio as an index.
The die swell ratio was determined by measuring the melt flow rate using an orifice having an orifice length of 8.0 mm and an orifice diameter of 2.09 mm at a temperature of 230 ° C. and a load of 3.8 kg using a melt indexer. Can be represented by a value obtained by dividing the strand diameter of the orifice by the diameter of the orifice.
The die swell ratio of the methyl methacrylate polymer A having a branched structure of the present invention is a value of 1.2 to 2.5.
The die swell ratio of a normal methyl methacrylate-based resin having no branched structure is described in Journal of Applied Polymer Science (J. Appl. Polym. Sci) 29 (1984). 3479-3490, FIG. 9, about 1.
That is, it is shown that the die swell ratio of the methyl methacrylate polymer having a branched structure is large, and the tension at the time of melt stretching is large.
[0016]
The methyl methacrylate polymer A having a branched structure of the present invention can be obtained by adding a predetermined amount of a polyfunctional monomer and a chain transfer agent to the monomer of the above-mentioned constitutional unit and polymerizing it.
[0017]
Examples of the copolymerizable polyfunctional monomer include ethylene glycol such as ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, and tetraethylene glycol di (meth) acrylate. Oligomer obtained by esterifying the hydroxyl groups at both ends of the oligomer with acrylic acid or methacrylic acid; the hydroxyl groups of dihydric alcohols such as neopentyl glycol di (meth) acrylate, hexanediol di (meth) acrylate, and butanediol di (meth) acrylate Esterified with acrylic acid or methacrylic acid; polyhydric alcohols such as trimethylolpropane and pentaerythritol, or those obtained by esterifying these polyhydric alcohol derivatives with acrylic acid or methacrylic acid Divinyl benzene.
[0018]
The chain transfer agent may be a well-known one used for the polymerization of methyl methacrylate. Among these, there are a monofunctional chain transfer agent having one chain transfer functional group and a polyfunctional chain transfer agent having two or more chain transfer functional groups.
Examples of the monofunctional chain transfer agent include alkyl mercaptans and thioglycolic acid esters, and examples of the polyfunctional chain transfer agent include ethylene glycol, neopentyl glycol, trimethylolpropane, pentaerythritol, dipentaerythritol, and tripentane. Examples thereof include those obtained by esterifying a hydroxyl group of a polyhydric alcohol such as erythritol and sorbitol with thioglycolic acid or 3-mercaptopropionic acid.
[0019]
The amounts of the chain transfer agent and the polyfunctional monomer used for producing the methyl methacrylate polymer A having a branched structure are such that the amount of the chain transfer agent is 1 × 10 −5 per mole of the monofunctional monomer. Mol to 5 × 10 −3 mol, and the amount of the polyfunctional monomer is within a range where the number of functional groups is 1 × 10 −5 to {the chain transfer agent (mol) −2.5 × 10 −4 } mol. is there.
[0020]
The weight-average molecular weight of the methyl methacrylate polymer A having a branched structure is generally governed by the concentration of the polyfunctional monomer, the concentration of the chain transfer agent and the concentration of the radical initiator which are mainly used.
Adjustment of the polymerization average molecular weight, the higher the concentration of the polyfunctional monomer, the larger the polymerization average molecular weight, and conversely, the lower the concentration of the chain transfer agent, the smaller the concentration, the above concentration of the polyfunctional monomer. It is performed by appropriately changing the range and the concentration of the chain transfer agent.
The molecular weight between branch points can be adjusted mainly by the concentration of the polyfunctional monomer.
The higher the concentration of the polyfunctional monomer, the lower the molecular weight between branch points.
In the chain transfer agent, the higher the concentration of the polyfunctional chain transfer agent, the smaller the molecular weight between branch points.
The proportion having a molecular weight of 300,000 or more increases as the concentration of the polyfunctional monomer increases.
[0021]
The amount of the polymerization initiator used may be a known appropriate amount according to the polymerization method, and is about 0.001 to 1 part by weight, preferably 0.01 to 0.1 part by weight, per 100 parts by weight of the monomer or the monomer mixture. 7 parts by weight.
In addition, it is the same as that of a general methyl methacrylate-based polymer that the weight-average molecular weight decreases as the amount of the polymerization initiator increases.
[0022]
As a polymerization method for obtaining the methyl methacrylate polymer A having a branched structure of the present invention, a well-known polymerization method for producing a general methyl methacrylate resin can be applied. That is, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method. Among them, suspension polymerization is suitable.
[0023]
Rubber-like polymer B in the resin composition of the present invention, the acrylic multi-layer polymer or ethylenic rubbery polymer 5-80 parts by weight of the unsaturated monomer inter alia acrylic unsaturated monomer 9 5 A graft copolymer obtained by graft polymerization of about 20 parts by weight;
The acrylic multi-layer structure polymer has a rubber elastic layer or an elastomer layer containing 20 to 60 parts by weight, and has an outermost layer having a hard layer and further includes a hard layer as the innermost layer. It may have a structure.
For example, those described in JP-B-55-27576, JP-A-6-80739, and JP-A-49-23292 correspond thereto.
[0024]
The graft copolymer obtained by graft-polymerizing 95 to 20 parts by weight of an ethylenically unsaturated monomer to 5 to 80 parts by weight of a rubbery polymer is, for example, polybutadiene rubber, acrylonitrile / butadiene copolymer rubber as a rubbery polymer, Diene rubbers such as styrene / butadiene copolymer rubbers, acrylic rubbers such as polybutyl acrylate, polypropyl acrylate, and poly-2-ethylhexyl acrylate, and ethylene / propylene / non-conjugated diene rubbers can be used. Examples of the ethylenic monomers used for graft copolymerization with the rubbery polymer and mixtures thereof include styrene, acrylonitrile, alkyl (meth) acrylate, and the like. As these graft copolymers, those described in JP-A-55-147514 and JP-B-47-9740 can be used.
[0025]
The amount of the rubbery polymer B should be 5 to 70% by weight, preferably 8 to 50% by weight. If the amount is less than 5% by weight, the impact resistance of the obtained resin composition will be low, and if it exceeds 70% by weight, the moldability and heat resistance will be reduced and the tension during melt drawing will be low.
[0026]
In the resin composition of the present invention, a polymer of ethylenic monomers may be further added. The amount is such that the resin composition has a methyl methacrylate polymer A having a branched structure of 30% by weight or more and a rubbery polymer of 5% by weight or more. Examples of such a polymer include an acrylic resin, a styrene resin, a vinyl chloride resin, an acrylonitrile resin, and a vinylidene fluoride resin.
[0027]
The resin composition of the present invention comprises a general thermoplastic resin composition from the methyl methacrylate polymer A having a branched structure and the rubbery polymer B to obtain the resin composition of the present invention. Well-known methods of making can be applied.
That is, it is obtained by mixing these polymers and then melt-kneading them with a single-screw or twin-screw extruder.
At that time, polymers of the above ethylenic monomers and, if necessary, release agents, ultraviolet absorbers, coloring agents, antioxidants, heat stabilizers, plasticizers, fillers, dyes, pigments, light diffusing materials And other additives for acrylic resins.
[0028]
【The invention's effect】
ADVANTAGE OF THE INVENTION The resin composition of this invention is excellent in impact resistance, is also excellent in solvent resistance, has high melt tension and excellent fluidity, and the molded article excellent in necking resistance at the time of heat deformation is obtained. When this resin is injection molded, the moldability of large molded products and molded products that are thick at the end is excellent, the meltdown during sheeting with an extruder is reduced, and the extrusion processing characteristics are good. Become. Further, when the formed sheet or the like is heat-formed, a good product with less uneven thickness can be obtained. In addition, the range of molding conditions for injection blow molding and direct blow molding is widened, and uneven wall thickness of the resulting molded product is reduced. Further, while a satisfactory foam cannot be obtained with the conventional methacrylic resin, a foam having a high expansion ratio with little outgassing during foam molding can be obtained.
[0029]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited thereto. In addition, the evaluation in an Example was performed using the following methods.
Melt flow index (MFR): Measured at 230 ° C., 3.8 kg load, 10 minutes (g / 10 minutes) in accordance with JIS K7210.
Die swell ratio: expressed as the ratio of the strand diameter of the polymer and the diameter of the orifice of the measuring instrument when the above MFR was measured.
-Solvent resistance: A 150 x 150 x 3 mm flat plate was molded using an injection molding machine (M140-SJ, manufactured by Meiki Seisakusho Mugato Co., Ltd.) and a mold for filling flat plate, immersed in ethanol at 25 ° C for 1 day, and then visually cracked. Was checked.
-Reduced viscosity: Based on JIS Z8803, reduced viscosity is a value at a concentration of 1 g / dl, and was measured and measured at 25 ° C in a chloroform solution (dl / g).
Weight-average molecular weight (Mw) and Z-average molecular weight (Mz): ゲ ル molecular weight-elution of a standard methyl methacrylate polymer using a gel permeation chromatography with a differential refractometer and a viscometer (GPC150-CV manufactured by Waters). The time was determined from the calibration curve.
The molecular weight between branch points (Mzb) at the Z-average molecular weight: from the calibration curve and the {intrinsic viscosity-elution time} calibration curve of the standard methyl methacrylate polymer, the standard methyl methacrylate polymer having the same molecular weight as the Mz value was obtained. The intrinsic viscosity [η 2 ] is obtained, and then the intrinsic viscosity [η 1 ] corresponding to Mz is obtained from the {absolute molecular weight / intrinsic viscosity-elution time} universal calibration curve of the standard methyl methacrylate polymer. 1] and [Equation 2].
Impact resistance: Izod impact value was measured with a 3.2 mm thick notched sample according to ASTM D-256 (kgf · cm / cm 2 ).
[0030]
Abbreviations of various monomers and chain transfer agents used in the examples are as follows.
· MMA: methyl methacrylate · MA: · methyl acrylate DDSH: · n- dodecyl mercaptan HDA: 1, 6- hexanediol diacrylate [0031]
Reference Example 1
In a 200-liter SUS autoclave, 96 parts by weight of MMA, 4 parts by weight of MA, 0.113 parts by weight of HDA, 0.36 parts by weight of DDSH, 0.3 parts by weight of lauroyl peroxide, 200 parts by weight of ion-exchanged water, 1 part by weight of sodium polymethacrylate Was added, mixed, heated and heated to start polymerization at 80 ° C. After 90 minutes, polymerization was further performed at 100 ° C. for 60 minutes. After polymerization, washing, dehydration and dried to obtain a polymer A 1 having a bead-like branched structure.
To evaluate the physical properties of the polymer A 1, the results are shown in Table 1.
[0032]
Reference Example 2
Was used in Reference Example 1, MMA, MA, DDSH, except that the amount of HDA was as shown in Table 1, a polymer was obtained A 2 performed in the same manner as in Reference Example 1.
To evaluate the physical properties of the polymer A 2, and the results are shown in Table 1.
[0033]
Examples 1-4, Comparative Examples 1-3
Reference Example 1 or 2 obtained in the polymer A 1 or polymer A 2 and Patent rubber component content was obtained by the method described in 6-80739 JP Example 3 36 wt% of 3-layer structure polymer and MFR = After mixing with the general-purpose methacrylic resin of No. 7 at a weight ratio shown in [Table 2], a resin composition was obtained by melt-kneading at a cylinder temperature of 190 to 260 ° C. using a twin-screw extruder with a 30 mm vent.
The physical properties of this resin composition were evaluated. The results are shown in [Table 2].
[0034]
Example 5
A rubbery polymer containing 7% by weight of butadiene rubber prepared in accordance with the description of Example 3 of JP-A-55-147514 in place of the three-layer polymer having a rubber component content of 36% by weight of Example 1. The procedure was performed in the same manner as in Example 1 except that the composition of each polymer was changed as shown in [Table 2]. The results are shown in [Table 2].
[0035]
[Table 1]
Figure 0003603402
[0036]
[Table 2]
Figure 0003603402

Claims (1)

重量平均分子量が8万〜40万で、Z平均分子量における分岐点間分子量が3万〜50万である分岐構造を有するメタクリル酸メチル系重合体A30〜95重量%および以下のゴム状重合体B5〜70重量%とからなるメタクリル酸メチル系樹脂組成物。
ゴム状重合体B:アクリル系多層構造重合体または5〜80重量部のゴム状重合体にエチレン性不飽和単量体95〜20重量部をグラフト重合したグラフト共重合体
30 to 95% by weight of a methyl methacrylate-based polymer A having a branched structure having a weight average molecular weight of 80,000 to 400,000 and a molecular weight between branch points in the Z average molecular weight of 30,000 to 500,000, and the following rubbery polymer B5 To 70% by weight of a methyl methacrylate resin composition.
Rubber-like polymer B: graft copolymer obtained by graft-polymerizing 95 to 20 parts by weight of an ethylenically unsaturated monomer to an acrylic multi-layer structure polymer or 5-80 parts by weight of a rubber-like polymer
JP21711095A 1995-08-25 1995-08-25 Methyl methacrylate resin composition Expired - Fee Related JP3603402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21711095A JP3603402B2 (en) 1995-08-25 1995-08-25 Methyl methacrylate resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21711095A JP3603402B2 (en) 1995-08-25 1995-08-25 Methyl methacrylate resin composition

Publications (2)

Publication Number Publication Date
JPH0959472A JPH0959472A (en) 1997-03-04
JP3603402B2 true JP3603402B2 (en) 2004-12-22

Family

ID=16699012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21711095A Expired - Fee Related JP3603402B2 (en) 1995-08-25 1995-08-25 Methyl methacrylate resin composition

Country Status (1)

Country Link
JP (1) JP3603402B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101170034B1 (en) 2006-06-27 2012-07-31 파나소닉 주식회사 Methacrylic resin composition and molded article thereof
US8759450B2 (en) * 2009-07-07 2014-06-24 Evonik Röhm Gmbh Plastics moulding compositions, and mouldings and production processes
JPWO2013121697A1 (en) 2012-02-13 2015-05-11 パナソニックIpマネジメント株式会社 (Meth) acrylate resin composition and cured product thereof
WO2018051870A1 (en) * 2016-09-16 2018-03-22 住友化学株式会社 Thermoplastic resin composition and molded article thereof

Also Published As

Publication number Publication date
JPH0959472A (en) 1997-03-04

Similar Documents

Publication Publication Date Title
EP1006152B1 (en) Methyl methacrylate resin composition
JP3275209B2 (en) Thermoformable chemically resistant polymer blends
US4894416A (en) Low gloss thermoplastic blends
JPH09216985A (en) Methacrylate resin blend
JP3508454B2 (en) Methyl methacrylate resin and molded product thereof
JP3603402B2 (en) Methyl methacrylate resin composition
EP1398348A1 (en) Thermoplastic compositions providing matt surface
JP3378485B2 (en) Methyl methacrylate resin injection molding
JP3817993B2 (en) Methyl methacrylate resin composition
US5741860A (en) Thermoplastic resin composition and trim parts for interior decoration of automobile
JP3232983B2 (en) Methyl methacrylate polymer
JP3454072B2 (en) Resin and its molded body
JPH09208789A (en) Methyl methacrylate resin composition, pushing board using the same and production thereof
JP3601143B2 (en) Methyl methacrylate resin composition and method for producing the same
US6608139B1 (en) Thermoplastic molding materials
JP3653897B2 (en) Methyl methacrylate resin foam and method for producing the same
JP3340631B2 (en) Thermoplastic resin composition
JP3557732B2 (en) Method for manufacturing acrylic resin plate
JP3538489B2 (en) Thermoplastic resin composition
JP2000103933A (en) Styrene-based resin composition and its production
JP3538491B2 (en) Thermoplastic resin composition
JPH11279366A (en) Methacrylate-based resin plate excellent in impact resistance
JPH04180949A (en) Aas resin composition with good flowability
JPH04185663A (en) High-impact high-rigidity aas resin composition
JPH04146910A (en) Multilayer graft copolymer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040920

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees