JP3603369B2 - Method and apparatus for heating and drying membrane material - Google Patents

Method and apparatus for heating and drying membrane material Download PDF

Info

Publication number
JP3603369B2
JP3603369B2 JP04844195A JP4844195A JP3603369B2 JP 3603369 B2 JP3603369 B2 JP 3603369B2 JP 04844195 A JP04844195 A JP 04844195A JP 4844195 A JP4844195 A JP 4844195A JP 3603369 B2 JP3603369 B2 JP 3603369B2
Authority
JP
Japan
Prior art keywords
heating
film
airflow
film material
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04844195A
Other languages
Japanese (ja)
Other versions
JPH08243463A (en
Inventor
大道 光明寺
孝夫 井上
直巳 西木
順治 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP04844195A priority Critical patent/JP3603369B2/en
Publication of JPH08243463A publication Critical patent/JPH08243463A/en
Application granted granted Critical
Publication of JP3603369B2 publication Critical patent/JP3603369B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coating Apparatus (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Drying Of Solid Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、被着面に配置された膜材料を加熱乾燥させる方法および装置に関する。
【0002】
【従来の技術】
各種の電子機器(例えばCRT管や液晶表示装置)や精密機器などの製造の際に、部材表面に装飾を行ったり表面保護を行ったり各種の機能を発揮させたりするための膜を形成することがある。このような膜の形成手段として、液体状の膜材料を塗工し加熱乾燥させて膜材料を固化させる方法がある。
【0003】
膜材料の加熱乾燥方法として、膜材料の表面に空気を吹き付けながら加熱ヒータで加熱することによって乾燥を促進させる方法がある。
【0004】
【発明が解決しようとする課題】
上記従来の方法では、空気が吹き付けられた液状態の膜材料の表面に波打ちが生じ、固化したあとの膜面に凹凸や厚みの不均一が表れるという問題がある。
特に、膜を形成する部材の表面が単純な平面ではなく曲面や屈曲個所を有するものの場合、膜材料の位置によって空気の吹き付け強さにばらつきが生じ易く、余計に膜材料表面の波打ちが起きる。
【0005】
また、従来の方法では、膜材料の場所によって加熱乾燥のムラが生じて、形成された膜に場所による品質性能の不均一が生じ易いという問題もある。これは、膜材料の場所によって空気の吹き付け強さにばらつきがあると、加熱乾燥にもムラが生じるのである。また、膜材料の場所によって加熱ヒータの熱の強さにもばらつきが生じる。特に、前記したような曲面な屈曲個所があると、空気の吹き付け量や加熱ヒータの熱の強さにばらつきが生じやすい。この問題を解決するには、屈曲性の良い薄型ヒーターが必要になるが、この要求を十分に満足させる薄形ヒーターは未だ存在しない。
【0006】
本発明の目的は、様々な形状の被着面に配置された膜材料を加熱乾燥させる際に、膜材料の表面に生じる凹凸や厚みの不均一を防ぎ、膜材料の全体を均一かつ効率的に加熱乾燥できるようにすることである。
【0007】
【課題を解決するための手段】
本発明に係る膜材料の加熱乾燥方法は、被着面に配置された膜材料を加熱乾燥させる方法であり、下記の工程を含む。
加熱部材を前記被着面との間に狭い隙間をあけて対面させて配置する工程。
前記隙間に層流である気流を流通させると共に、前記気流の上流側よりも下流側が高温になるように温度勾配をつけて前記膜材料を加熱する工程。
【0009】
本発明に係る膜材料の加熱乾燥装置は、被着面に配置された膜材料を加熱乾燥させる装置であって、加熱部材と気流供給手段を備える。加熱部材は、前記被着面との間に狭い隙間をあけて対面して配置され通電により発熱し前記隙間に沿って温度勾配を生じさせる発熱部材と、前記発熱部材を支持し多孔薄板を含む支持部材と、前記発熱層に通電する通電手段とを有する。気流供給手段は、前記被着面に向かって気流を吹き出す吹出口を前記加熱部材側に備えている。
【0012】
【作用】
本発明に係る膜材料の加熱乾燥方法は、被着面に配置された膜材料を、狭い隙間をあけて対面する加熱部材で加熱するので、熱が効率的に膜材料に伝わり、膜材料の全体を均一かつ効率的に加熱して乾燥させることができる。
加熱部材と被着面との間の隙間に実質的に層流である乾燥気流を流通させるので、乾燥気流による膜材料の乾燥作用の促進が図られる。膜材料から蒸発する液体成分が乾燥気流に運び去られるので、膜材料の乾燥が促進される。乾燥気流が実質的に層流であれば、乾燥気流による膜材料の波立ちや凹凸の発生が起こり難い。
【0013】
なお、前記隙間で気流の上流側よりも下流側が高温になるように温度勾配をつけて膜材料を加熱すれば、膜材料の加熱乾燥が気流の上流側と下流側の何れでも良好に達成できる。上流側では乾燥気流がそのまま流通するので膜材料からの液体成分の蒸発を良好に行われるが、下流側では上流側で蒸発した液体成分を含む気流が流通することになるので、膜材料からの液体成分の蒸発が悪くなる。そこで、下流側で上流側よりも高温に加熱すれば、液体成分を含む気流であっても膜材料からの液体成分の蒸発は良好に行えるのである。これは、温度を変えることで気流の飽和蒸気圧が変わることによる。
【0015】
気流を、加熱部材側に備えた吹出口から被着面に向かって吹き出し隙間に沿って流通させれば、気流の供給および流通がスムーズに行え、隙間内で実質的な層流を構成させるのも容易である。
【0016】
本発明に係る膜材料の加熱乾燥装置は、加熱部材と気流供給手段を備えていることにより、前記した加熱乾燥方法が実施でき、その作用効果が達成できる。特に、発熱部材を支持部材で支持しているので、薄い発熱部材を用いることができる。薄い発熱部材は、熱容量が小さいので、加熱電力の無駄がなく効率的に発熱する。温度勾配をつけるのが容易である。被着面の面形状に対応して曲面などに成形するのも容易である。また、支持部材が、多数の細孔を有する薄板を含んでいれば、気流を細孔を通じて供給することも可能になる。
また、気流供給手段が、気流を被着面に向かって吹き出す吹出口を加熱部材側に備えていれば、加熱部材と被着面との隙間への気流の供給構造が簡略化され、気流を層流状態で隙間に流通させるのも容易である。
【0021】
【実施例】
図1に示す膜材料の加熱乾燥方法は、CRT管30の内面32に蛍光体液などの膜材料40を塗布して加熱乾燥させる方法である。CRT管30の内面32に形成される膜としては、ダック、PVA、RGB3色それぞれの蛍光体、Alなどの膜である。これらの膜は、内面32の全面に一様に形成される場合と、適宜パターンを描くように部分的に形成される場合がある。CRT管内面32は、緩やかに湾曲した碗形の曲面を有している。
【0022】
CRT管内面32に対面して加熱部材10が配置されている。加熱部材10は、CRT管内面32に対応する曲面形状に湾曲していて発熱部材となる高結晶グラファイトフィルム20と、高結晶グラファイトフィルム20の背面側に積層されたイミド樹脂フィルム22とを有する。
高結晶グラファイトフィルム20は、厚さ25μmのポリイミド(Dupont社、カプトンHフィルム)から得られたものである。高結晶グラファイトフィルム20は、グラファイト結晶が面方向に配向し、ロッキング特性が20度以下の高配向性を有している。イミド樹脂フィルム22は、高結晶グラファイトフィルム20の発熱温度に耐える耐熱性を有する。イミド樹脂フィルム22の背面側には少し間隔をあけて配置された多孔薄板24を有する。多孔薄板24はインバー材からなり、高結晶グラファイトフィルム20の発熱温度に耐える耐熱性を有している。図1(b) に示すように、多孔薄板24には多数の細孔25が一面に形成されている。
【0023】
図2(b)(c)に示すように、高結晶グラファイトフィルム20は中心部分から前後左右の両方向に湾曲した碗形をなしており、前記したCRT管内面32の湾曲形状に対応する形状である。図2(a) に示すように、高結晶グラファイトフィルム20の全体の平面形は矩形状をなすとともに、細い帯状部分が左右に折り返すように並んでつながっている。長手方向の中心線に近い帯状部分よりも遠いほうの帯状部分のほうが幅が太くなっている。長手方向の中心線部分で両側の連続した帯状部分が途切れており、この部分に気流吹出口12を備えている。気流吹出口12で分割された両側の高結晶グラファイトフィルム20にはそれぞれ直流電源26、26が配線接続されている。イミド樹脂フィルム22は、高結晶グラファイトフィルム20の外形全体を覆う矩形状をなすとともに、気流吹出口12の部分には孔があいている。
【0024】
多孔薄板24は、高結晶グラファイトフィルム20およびイミド樹脂フルィム22に対して、湾曲形状の中央部分では間隔をあけていて、外周縁部分で固定されている。高結晶グラファイトフィルム20はイミド樹脂フィルム22および多孔薄板24で支持されることになる。
多孔薄板24の背面側には気流供給手段(図示せず)を備えており、多孔薄板24の背面から気流吹出口12に気流を供給する。気流供給手段としては、通常の機械装置における気流の供給装置が用いられ、ブロワやコンプレッサなどの送風機と気流を導くダクトや気流を整流する整流機構、気流を乾燥させる乾燥機構などを備えていることができる。
【0025】
上記のような加熱乾燥装置を用いる加熱乾燥方法を説明する。
CRT管内面32に前記したような膜を形成するための液体からなる膜材料40を塗布する。膜材料40は、内面32の曲面形状に沿って薄く拡がって液体の膜を作る。膜材料40が塗布されたCRT管内面32に加熱部材10を配置する。加熱部材10と膜材料40の表面との間には2〜10mmの隙間があくように加熱部材10を配置する。
【0026】
加熱部材10の高結晶グラファイトフィルム20に電源26、25から通電して高結晶グラファイトフィルム20を発熱させる。気流供給手段から加熱部材10の気流吹出口12を経て、加熱部材10とCRT管内面32との間の隙間に気流を送り込む。気流は、予め乾燥された乾燥気流である。隙間に流通する気流が実質的に層流になるように、気流の流速や圧力を調整する。ここで実質的に層流とは、膜材料40に波立ちや凹凸を生じさせない範囲内で部分的に層流が乱れる個所が存在していてもよいが、主要部分は層流であるとみなせる気流を意味している。気流は、気流吹出口12から膜材料40の表面に向かって流れ込んだあと、隙間内を膜材料40の表面に沿って流れ外周縁から外部に放出される。図2(a) に示すように、矩形状の加熱部材10の中心線に存在する吹出口12から両側に向かって気流が流れる。気流吹出口12から膜材料40の表面に向かう気流の流速を10m/s 以下に設定しておく。
【0027】
高結晶グラファイトフィルム20は、通電によって発熱するが、その帯状部分のパターン形状により、気流吹出口12の近くよりも気流吹出口12から遠い位置のほうが、発熱温度が高くなる。すなわち、気流の上流側よりも下流側のほうが発熱温度が高くなる。
膜材料40は、高結晶グラファイトフィルム20の発熱によって加熱されるとともに、気流との接触によって乾燥する。
【0028】
膜材料40の加熱乾燥が終了すれば、CRT管内面32から加熱部材10を取り去り、つぎに形成する膜材料40を塗布する。このような膜材料40の塗布工程と加熱乾燥工程を順次繰り返すことで、CRT管内面32に必要な膜が形成される。加熱乾燥工程の後で、形成された膜面をエッチングするなどの加工を施してから、次の膜材料40の塗布を行うこともできる。
〔別の実施例〕
図3に示す加熱部材10は、基本的には前記実施例と同様の構造を有しているが、支持部材としてイミド樹脂フィルム22を用いていない。高結晶グラファイトフィルムからなる発熱部材10と多孔薄板24とが全面で両面接着テープ28を介して積層接合されている。発熱部材10と多孔薄板24の間には隙間はあいていない。両面接着テープ28は、合成樹脂などからなる基材テープの両面に粘着剤が配置されている。両面接着テープ28のうち、気流吹出口12に相当する場所が切り欠かれており、多孔薄板24の細孔25を通過した気流が発熱部材10の表面側へと流通するようになっている。
〔高結晶グラファイトフィルム〕
本発明で用いる高結晶グラファイトフィルムは、グラファイト結晶の配向方向がそろった高結晶グラファイトである。とくにロッキング特性が20度以下のグラファイトが好ましい。具体的には、高分子化合物のフィルムを不活性ガス中で2000℃以上の温度で熱処理及び圧延処理してグラファイト化したもの、フィラーを添加した高分子化合物のフィルムを不活性ガス中で2400℃以上の温度で熱処理してグラファイト化したものを挙げることができる。ここで測定したロッキング特性は、理学電機社製ロータフレックスRU−200B型X線回折装置を用い、グラファイト(0002)線のピーク位置におけるロッキング特性である。
【0029】
高分子化合物としては、各種ポリオキサジアゾール(POD)、ポリベンゾチアゾール(PBT)、ポリベンゾビスチアゾール(PBBT)、ポリベンゾオキサゾール(PBO)、ポリベンゾビスオキサゾール(PBBO)、各種ポリイミド(PI)、各種ポリアミド(PA)、ポリフェニレンベンゾイミダゾール(PBI)、ポリフェニレンベンゾビスイミダゾール(PPBI)、ポリチアゾール(PT)、ポリパラフェニレンビニレン(PPV)からなる群の中から選ばれる少なくとも1つを使用することができる。
【0030】
上記各種ポリオキサジアゾールとしては、ポリパラフェニレン−1,3,4−オキサジアゾールおよびそれらの異性体がある。
上記各種ポリイミドには下記の一般式(1)で表される芳香族ポリイミドがある。
【0031】
【化1】

Figure 0003603369
【0032】
【化2】
Figure 0003603369
【0033】
【化3】
Figure 0003603369
【0034】
上記各種ポリアミドには下記一般式(2)で表される芳香族ポリアミドがある。
【0035】
【化4】
Figure 0003603369
【0036】
使用されるポリイミド、ポリアミドはこれらの構造を有するものに限定されない。
この発明で上記高分子化合物のフィルムに無機質や有機質のフィラーを添加することができる。この目的に使用されるフィラーとしては、リン酸エステル系、リン酸カルシウム系、ポリエステル系、エポキシ系、ステアリン酸系、トリメット酸系、酸化金属系、有機錫系、鉛系、アゾ系、ニトロソ系及びスルホニルヒドラジド系の各化合物を挙げることができる。
【0037】
フィラーの添加量としては0.2〜20重量%の範囲が好ましく、より好ましくは1〜10重量%の範囲である。その最適添加量は、高分子化合物の厚さによって異なり、高分子化合物の厚さが薄い場合には添加量が多い方がよく、厚い場合には添加量は少なくてもよい。
フィラーの役割は熱処理後のフィルムを均一発泡の状態にすることにある。即ち、添加されたフィラーは、加熱中にガスを発生し、このガスが発生した後の空洞が通り道となってフィルム内部から分解ガスの穏やかな通過を助ける。フィラーは、こうして均一発泡状態をつくり出すのに役立つ。
【0038】
高分子化合物のフィルムをグラファイト化する熱処理条件は、特に限定されないが、2400℃以上、好ましくは3000℃近辺の温度域に達するように熱処理すると、より高配向性が優れたものができるため好ましい。熱処理は、普通、不活性ガス中で行われる。熱処理の際、グラファイト化の過程で発生するガスの影響を抑えるためには、高分子化合物のフィルム厚みが5μm以上であるのが好ましい。焼成時の圧力は常圧でよい。最高温度が2000℃未満で焼成する場合は、得られたグラファイトは硬くて脆くなる傾向がある。熱処理後、さらに必要に応じて圧延処理するようにしてもよい。前記高分子化合物のフィルムのグラファイト化は、たとえば、高分子化合物のフィルムを適当な大きさに切断し、切断されたフィルムを焼成炉に入れ、2400℃以上に昇温してグラファイト化するプロセスで製造される。熱処理後、さらに必要に応じて圧延処理される。
【0039】
このようにして得られる高配向性グラファイト素材のフィルムが、この発明の高結晶グラファイトフィルムとなる。たとえば、芳香族ポリイミドを焼成して得られた可撓性を有する高配向性グラファイト素材は、比重が0.5〜1.5、熱伝導性がAB面方向で860kcal/m・h・℃(Cuの2.5倍,Alの4.4倍)であり、AB面方向の電気伝導性が250,000S/cm、AB面方向の弾性率が84,300kgf/mmである。
【0040】
高配向性グラファイト素材として、フィルム状のものを使用する場合は、原料の高分子化合物のフィルムの厚さは200μm以下の範囲であるのが好ましく、より好ましくは5〜200μmである。原料フィルムの厚さが200ミクロンを超えると、熱処理過程時にフィルム内部より発生するガスによって、フィルムがボロボロの崩壊状態になり、単独で良質の材料として使用することは難しい。
〔その他の実施例〕
(a) 膜材料40は、前記したCRT管用膜材料の他、必要とされる機能や用途に合わせて、任意の無機有機材料からなるものが用いられる。膜材料40は、粘度が低く流れやすい液状態のものから、比較的粘度が高い粘液状態のものまで用いられる。膜材料40に液体成分と粉体成分とが混合されていてもよい。被着面に形成する膜材料40の厚みは、目的に応じて自由に設定できる。通常は、膜材料40の厚みは数十μm以下となる。
【0041】
(b) 被着面の面形状は、前記した実施例のCRT管内面32のような湾曲面のほか、球面や円柱面その他の曲面、曲面と平面とが組み合わせられたもの、平面同士が異なる角度でつながった屈曲面などが採用できる。単純な平面の場合にも適用できるが、この発明の作用効果は、少なくとも一部に曲面部分を有する場合に好適に発揮される。
【0042】
(c) 発熱部材10は、前記した高結晶グラファイトフィルム20を用いるほか、通常のグラファイトフィルムを用いることもできる。グラファイト以外の材料からなる発熱フィルムを用いることもできる。ニクロム線やセラミックヒータを用いることもできる。但し、何れの材料であっても、被着面の面形状に対応する面形状に加工あるいは配置することの出来る材料である必要がある。発熱部材10の熱容量が小さなものほど、気流の上流側と下流側との間における温度勾配をつけやすい。
【0043】
(d) 高結晶グラファイトフィルム20の配置形状は、前記した帯状部分を蛇行配置するもののほか、適用する被着面の形状や加熱乾燥に必要な温度勾配条件などに合わせて配置パターンを変更することができる。
(e) イミド樹脂フィルム22や多孔薄板24などの発熱部材を支持する支持部材としては、発熱部材の支持が可能な範囲で出来るだけ薄いもののほうが熱容量が小さくなり好ましい。
【0044】
(f) 気流の吹出口12は、前記した実施例のように加熱部材10に備えておくほか、加熱部材10とは別個に気流の吹出口12を設けておくことができる。前記した図2(a) で、加熱部材10の中心線に沿って吹出口12を配置する代わりに、加熱部材10の一方の側端辺に沿って吹出口12を配置し、気流を他方の側端辺に向かって流通させることもできる。気流の吹出口12を複数個所に設けておくこともできる。
【0045】
(g) 加熱部材10と被着面32との隙間は、全体で同じ大きさであってもよいし、気流を乱さない範囲で場所によって隙間の大きさが違っていてもよい。例えば、上流側から下流側へと隙間が変化するようになっていてもよい。
(h) 発熱部材20と支持部材22、24あるいは複数の支持部材22、24同士の接合は、接着剤や前記した両面接着テープなどの接着部材による接合のほか、熱融着による接合、凹凸係合や嵌合による機械的な接合、金具を用いる接合など各種の接合手段が適用できる。
【0046】
【発明の効果】
本発明に係る膜材料の加熱乾燥方法は、前記のような構成の加熱部材、気流を用いることにより、膜材料に波立ちや凹凸が生じるのを防止でき、形成された膜面が平滑で均一な厚みになる。また、膜材料の全体を均一かつ効率的に加熱乾燥できることで、加熱乾燥工程の作業能率を高め生産性を向上させることができる。
【0047】
なお、前記隙間で気流の上流側よりも下流側が高温になるように温度勾配をつけて膜材料を加熱すれば、膜材料の全体を均一かつ効率的に加熱乾燥することができる。
【0049】
本発明に係る膜材料の加熱乾燥装置は、前記のような構成の加熱部材と気流供給手段を備えていることにより、前記した加熱乾燥方法と同様の作用効果が達成できるとともに、発熱部材と支持部材とを組み合わせることで、加熱乾燥をより均一かつ効率的に行うことができる。
【図面の簡単な説明】
【図1】(a)本発明の実施例となる加熱乾燥方法を表す断面図
(b)同要部拡大図
【図2】(a)加熱部材の詳細構造を表す平面図
(b)同長手方向断面図
(c)同短手方向断面図
【図3】加熱部材の別の実施例を表す要部拡大断面図
【符号の説明】
10 加熱部材
20 高結晶グラファイトフィルム
22 イミド樹脂フィルム
24 多孔薄板
30 CRT管
32 内面
40 膜材料[0001]
[Industrial applications]
The present invention relates to a method and an apparatus for heating and drying a film material disposed on an adherend surface.
[0002]
[Prior art]
When manufacturing various electronic devices (for example, CRT tubes and liquid crystal display devices) and precision devices, forming a film on the surface of the members to perform decoration, protect the surface, and perform various functions. There is. As a means for forming such a film, there is a method in which a liquid film material is applied and dried by heating to solidify the film material.
[0003]
As a method of heating and drying the film material, there is a method of promoting drying by heating the film material with a heater while blowing air on the surface.
[0004]
[Problems to be solved by the invention]
In the above-mentioned conventional method, there is a problem that the surface of the liquid-state film material to which the air is blown is wavy, and the solidified film surface has irregularities and uneven thickness.
In particular, when the surface of the member forming the film has a curved surface or a bent portion instead of a simple flat surface, the blowing strength of air tends to vary depending on the position of the film material, and the surface of the film material is undesirably wavy.
[0005]
Further, in the conventional method, there is a problem that unevenness in heating and drying occurs depending on the location of the film material, and the formed film tends to have uneven quality performance depending on the location. This is because if the air blowing strength varies depending on the location of the film material, unevenness also occurs in heating and drying. Further, the intensity of heat of the heater varies depending on the location of the film material. In particular, if there is a curved portion as described above, the amount of air blown and the intensity of heat of the heater tend to vary. In order to solve this problem, a thin heater with good flexibility is required. However, there is no thin heater that sufficiently satisfies this demand.
[0006]
An object of the present invention is to prevent unevenness and unevenness in thickness of a surface of a film material when heating and drying the film material disposed on an adherend having various shapes, and to make the entire film material uniform and efficient. To be able to dry by heating.
[0007]
[Means for Solving the Problems]
The method for heating and drying a film material according to the present invention is a method for heating and drying a film material disposed on an adherend surface, and includes the following steps.
A step of arranging the heating member so as to face the adhesion surface with a small gap therebetween.
A step of flowing a laminar airflow through the gap and heating the film material with a temperature gradient such that a temperature downstream of the airflow is higher than upstream.
[0009]
An apparatus for heating and drying a film material according to the present invention is an apparatus for heating and drying a film material disposed on an adherend surface, and includes a heating member and an airflow supply unit. The heating member includes a heating member that is disposed to face the adhesion surface with a small gap therebetween, generates heat by energization and generates a temperature gradient along the gap, and a porous thin plate that supports the heating member. It has a support member and an energizing means for energizing the heat generating layer. The airflow supply means includes an outlet on the heating member side for blowing an airflow toward the adherend surface.
[0012]
[Action]
In the method of heating and drying a film material according to the present invention, the film material disposed on the surface to be adhered is heated by a heating member facing the body with a small gap therebetween, so that heat is efficiently transmitted to the film material and the film material is heated. The whole can be uniformly and efficiently heated and dried.
Since the drying airflow, which is substantially a laminar flow, flows through the gap between the heating member and the surface to be adhered, the drying action of the film material by the drying airflow is promoted. Since the liquid component evaporating from the film material is carried away to the drying air stream, drying of the film material is promoted. If the dry airflow is substantially laminar, it is difficult for the dry airflow to generate waving and irregularities of the film material.
[0013]
In addition, if the film material is heated with a temperature gradient so that the downstream side is higher in temperature than the upstream side in the gap, the heating and drying of the film material can be achieved satisfactorily on both the upstream side and the downstream side of the air flow. . On the upstream side, the dry air stream flows as it is, so that the evaporation of the liquid component from the film material is carried out satisfactorily.On the downstream side, an air stream containing the liquid component evaporated on the upstream side flows. Evaporation of the liquid component worsens. Thus, if the downstream side is heated to a higher temperature than the upstream side, the liquid component can be satisfactorily evaporated from the film material even in an air stream containing the liquid component. This is because changing the temperature changes the saturated vapor pressure of the airflow.
[0015]
If the air flow is blown out from the outlet provided on the heating member side toward the surface to be adhered and blows along the gap, the supply and flow of the air flow can be performed smoothly, and a substantial laminar flow is formed in the gap. Is also easy.
[0016]
Since the apparatus for heating and drying a film material according to the present invention includes the heating member and the airflow supply means, the above-described heating and drying method can be performed, and the operation and effect thereof can be achieved. In particular, since the heating member is supported by the support member, a thin heating member can be used. Since the thin heat generating member has a small heat capacity, it generates heat efficiently without wasting heating power. It is easy to make a temperature gradient. It is also easy to form a curved surface or the like corresponding to the surface shape of the adhered surface. In addition, if the support member includes a thin plate having a large number of pores, it becomes possible to supply an airflow through the pores.
Further, if the airflow supply means has an outlet on the heating member side for blowing the airflow toward the adherend surface, the structure for supplying the airflow to the gap between the heating member and the adherend surface is simplified, and the airflow is reduced. It is easy to circulate through the gap in a laminar state.
[0021]
【Example】
The method of heating and drying the film material shown in FIG. 1 is a method in which a film material 40 such as a phosphor liquid is applied to the inner surface 32 of the CRT tube 30 and heated and dried. The film formed on the inner surface 32 of the CRT tube 30 is a film made of duck, PVA, RGB three-color phosphors, Al, or the like. These films may be formed uniformly over the entire inner surface 32, or may be formed partially so as to draw an appropriate pattern. The CRT tube inner surface 32 has a bowl-shaped curved surface that is gently curved.
[0022]
The heating member 10 is arranged so as to face the inner surface 32 of the CRT tube. The heating member 10 includes a high-crystal graphite film 20 which is curved into a curved shape corresponding to the inner surface 32 of the CRT tube and serves as a heat-generating member, and an imide resin film 22 laminated on the back side of the high-crystal graphite film 20.
The high crystalline graphite film 20 is obtained from a polyimide (Dupont, Kapton H film) having a thickness of 25 μm. The high-crystal graphite film 20 has a high orientation in which the graphite crystal is oriented in the plane direction and the locking characteristic is 20 degrees or less. The imide resin film 22 has heat resistance enough to withstand the heat generation temperature of the highly crystalline graphite film 20. On the back side of the imide resin film 22, there are provided porous thin plates 24 arranged with a small space therebetween. The porous thin plate 24 is made of an invar material, and has heat resistance enough to withstand the heat generated by the highly crystalline graphite film 20. As shown in FIG. 1B, a large number of pores 25 are formed on one surface of the porous thin plate 24.
[0023]
As shown in FIGS. 2B and 2C, the high-crystal graphite film 20 has a bowl shape curved from the center in both front, rear, left, and right directions, and has a shape corresponding to the curved shape of the CRT tube inner surface 32 described above. is there. As shown in FIG. 2A, the high-crystal graphite film 20 has a rectangular planar shape as a whole, and thin strip-shaped portions are connected so as to be folded right and left. The band portion farther than the band portion near the center line in the longitudinal direction has a larger width. A continuous band-like portion on both sides is cut off at a longitudinal centerline portion, and an airflow outlet 12 is provided at this portion. DC power supplies 26 are respectively connected to the high-crystal graphite films 20 on both sides divided by the airflow outlet 12. The imide resin film 22 has a rectangular shape that covers the entire outer shape of the high-crystal graphite film 20, and has a hole in the airflow outlet 12.
[0024]
The porous thin plate 24 is spaced from the high-crystal graphite film 20 and the imide resin film 22 at the center portion of the curved shape, and is fixed at the outer peripheral edge portion. The high crystalline graphite film 20 is supported by the imide resin film 22 and the porous thin plate 24.
An airflow supply means (not shown) is provided on the back side of the porous thin plate 24, and supplies an airflow to the airflow outlet 12 from the back surface of the porous thin plate 24. As the airflow supply means, an airflow supply device in a normal mechanical device is used, and a blower, a compressor or other blower and a duct for guiding the airflow, a rectification mechanism for rectifying the airflow, a drying mechanism for drying the airflow, and the like are provided. Can be.
[0025]
A heating and drying method using the above-described heating and drying apparatus will be described.
A film material 40 made of a liquid for forming a film as described above is applied to the inner surface 32 of the CRT tube. The film material 40 spreads thinly along the curved shape of the inner surface 32 to form a liquid film. The heating member 10 is disposed on the inner surface 32 of the CRT tube to which the film material 40 has been applied. The heating member 10 is arranged so that a gap of 2 to 10 mm is provided between the heating member 10 and the surface of the film material 40.
[0026]
Power is supplied to the high-crystal graphite film 20 of the heating member 10 from the power supplies 26 and 25 to cause the high-crystal graphite film 20 to generate heat. The airflow is sent from the airflow supply means to the gap between the heating member 10 and the inner surface 32 of the CRT tube via the airflow outlet 12 of the heating member 10. The airflow is a previously dried airflow. The flow velocity and pressure of the airflow are adjusted so that the airflow flowing through the gap becomes substantially laminar. Here, the term “substantially laminar flow” means that there may be a portion where the laminar flow is partially disturbed within a range where the film material 40 does not have waving or irregularities, but the main portion is a laminar flow which can be regarded as laminar flow. Means The airflow flows from the airflow outlet 12 toward the surface of the film material 40, and then flows through the gap along the surface of the film material 40, and is discharged from the outer peripheral edge to the outside. As shown in FIG. 2A, an airflow flows from the air outlet 12 existing on the center line of the rectangular heating member 10 toward both sides. The flow velocity of the airflow from the airflow outlet 12 toward the surface of the film material 40 is set to 10 m / s or less.
[0027]
The high-crystal graphite film 20 generates heat when energized. However, due to the pattern shape of the band portion, the heat generation temperature is higher at a position farther from the airflow outlet 12 than near the airflow outlet 12. That is, the heat generation temperature is higher on the downstream side than on the upstream side of the airflow.
The film material 40 is heated by the heat generated by the highly crystalline graphite film 20 and is dried by contact with an air current.
[0028]
When the heating and drying of the film material 40 is completed, the heating member 10 is removed from the inner surface 32 of the CRT tube, and the film material 40 to be subsequently formed is applied. By sequentially repeating such a coating process of the film material 40 and a heating and drying process, a necessary film is formed on the inner surface 32 of the CRT tube. After the heating and drying step, the next film material 40 may be applied after processing such as etching the formed film surface.
[Another embodiment]
The heating member 10 shown in FIG. 3 has basically the same structure as that of the above embodiment, but does not use the imide resin film 22 as a support member. The heat-generating member 10 made of a high-crystal graphite film and the porous thin plate 24 are laminated and bonded on the entire surface via a double-sided adhesive tape 28. There is no gap between the heat generating member 10 and the porous thin plate 24. The double-sided adhesive tape 28 has adhesives disposed on both sides of a base tape made of a synthetic resin or the like. A portion of the double-sided adhesive tape 28 corresponding to the airflow outlet 12 is cut out, so that the airflow that has passed through the pores 25 of the porous thin plate 24 flows to the surface of the heat generating member 10.
(High crystal graphite film)
The highly crystalline graphite film used in the present invention is a highly crystalline graphite in which the orientation directions of graphite crystals are aligned. Particularly, graphite having a locking characteristic of 20 degrees or less is preferable. Specifically, a film of a polymer compound is heat-treated and rolled at a temperature of 2000 ° C. or more in an inert gas to be graphitized, and a film of a polymer compound with a filler added is heated to 2400 ° C. in an inert gas. Examples thereof include those which have been heat-treated at the above-mentioned temperatures to be graphitized. The rocking characteristic measured here is a rocking characteristic at a peak position of a graphite (0002) line using a rotor flex RU-200B type X-ray diffractometer manufactured by Rigaku Corporation.
[0029]
As the polymer compound, various polyoxadiazole (POD), polybenzothiazole (PBT), polybenzobisthiazole (PBBT), polybenzoxazole (PBO), polybenzobisoxazole (PBBO), various polyimides (PI) And at least one selected from the group consisting of various polyamides (PA), polyphenylene benzimidazole (PBI), polyphenylene benzobisimidazole (PPBI), polythiazole (PT), and polyparaphenylene vinylene (PPV). Can be.
[0030]
The various polyoxadiazoles include polyparaphenylene-1,3,4-oxadiazole and isomers thereof.
The above-mentioned various polyimides include aromatic polyimides represented by the following general formula (1).
[0031]
Embedded image
Figure 0003603369
[0032]
Embedded image
Figure 0003603369
[0033]
Embedded image
Figure 0003603369
[0034]
The various polyamides include aromatic polyamides represented by the following general formula (2).
[0035]
Embedded image
Figure 0003603369
[0036]
Polyimides and polyamides used are not limited to those having these structures.
In the present invention, an inorganic or organic filler can be added to the polymer compound film. Fillers used for this purpose include phosphate esters, calcium phosphates, polyesters, epoxies, stearic acids, trimet acids, metal oxides, organotins, lead, azos, nitrosos and sulfonyls. Each compound of the hydrazide type can be mentioned.
[0037]
The amount of the filler added is preferably in the range of 0.2 to 20% by weight, and more preferably in the range of 1 to 10% by weight. The optimum amount of addition differs depending on the thickness of the polymer compound. It is preferable that the amount of addition is large when the thickness of the polymer compound is small and small when the thickness of the polymer compound is large.
The role of the filler is to bring the film after heat treatment into a state of uniform foaming. That is, the added filler generates a gas during heating, and the cavity after the generation of the gas serves as a passage to assist the gentle passage of the decomposition gas from inside the film. Fillers thus help to create a uniform foam state.
[0038]
The heat treatment conditions for graphitizing the polymer compound film are not particularly limited, but it is preferable to perform the heat treatment so as to reach a temperature range of 2400 ° C. or higher, and preferably around 3000 ° C., since a film having higher orientation can be obtained. The heat treatment is usually performed in an inert gas. In order to suppress the influence of the gas generated during the graphitization process during the heat treatment, the thickness of the polymer compound film is preferably 5 μm or more. The pressure during firing may be normal pressure. When firing at a maximum temperature of less than 2000 ° C., the obtained graphite tends to be hard and brittle. After the heat treatment, a rolling process may be performed as necessary. Graphitization of the polymer compound film is, for example, a process of cutting the polymer compound film into an appropriate size, placing the cut film in a baking furnace, and raising the temperature to 2400 ° C. or more to graphitize. Manufactured. After the heat treatment, a rolling treatment is further performed as necessary.
[0039]
The highly oriented graphite material film thus obtained is the highly crystalline graphite film of the present invention. For example, a highly oriented graphite material obtained by firing aromatic polyimide has a specific gravity of 0.5 to 1.5 and a thermal conductivity of 860 kcal / m · h · ° C. in the AB plane direction ( 2.5 times that of Cu, 4.4 times that of Al), the electrical conductivity in the AB plane direction is 250,000 S / cm, and the elastic modulus in the AB plane direction is 84,300 kgf / mm 2 .
[0040]
When a film-like material is used as the highly oriented graphite material, the thickness of the film of the polymer compound as a raw material is preferably in the range of 200 μm or less, more preferably 5 to 200 μm. When the thickness of the raw material film exceeds 200 microns, the gas generated from the inside of the film during the heat treatment process causes the film to be in a tattered collapse state, and it is difficult to use it alone as a good quality material.
[Other Examples]
(A) As the film material 40, other than the above-described film material for a CRT tube, a material made of an arbitrary inorganic organic material is used in accordance with a required function or use. The film material 40 may be used in a liquid state having a low viscosity and flowing easily, or in a liquid state having a relatively high viscosity. A liquid component and a powder component may be mixed in the film material 40. The thickness of the film material 40 formed on the adhered surface can be freely set according to the purpose. Usually, the thickness of the film material 40 is several tens μm or less.
[0041]
(B) In addition to the curved surface such as the inner surface 32 of the CRT tube of the above-described embodiment, the surface shape of the surface to be adhered, a spherical surface, a cylindrical surface, other curved surfaces, a combination of a curved surface and a flat surface, and different flat surfaces. A bent surface connected at an angle can be adopted. Although the present invention can be applied to the case of a simple plane, the operation and effect of the present invention are suitably exhibited when at least a part has a curved surface portion.
[0042]
(C) As the heat-generating member 10, besides using the high-crystal graphite film 20 described above, an ordinary graphite film can also be used. A heating film made of a material other than graphite can also be used. Nichrome wires or ceramic heaters can also be used. However, any material needs to be a material that can be processed or arranged in a surface shape corresponding to the surface shape of the adhered surface. The smaller the heat capacity of the heat generating member 10, the easier it is to set a temperature gradient between the upstream side and the downstream side of the airflow.
[0043]
(D) The arrangement shape of the high-crystal graphite film 20 may be changed in accordance with the shape of the adherend surface to be applied or the temperature gradient condition required for heating and drying, in addition to the above-mentioned meandering arrangement of the belt-like portions. Can be.
(E) As the supporting member for supporting the heat generating member such as the imide resin film 22 and the porous thin plate 24, a member as thin as possible within a range in which the heat generating member can be supported is preferable because the heat capacity is small.
[0044]
(F) The airflow outlet 12 is provided in the heating member 10 as in the above-described embodiment, and the airflow outlet 12 can be provided separately from the heating member 10. In FIG. 2A described above, instead of arranging the air outlets 12 along the center line of the heating member 10, the air outlets 12 are arranged along one side edge of the heating member 10, and the airflow is reduced. It can also be distributed toward the side edges. The airflow outlets 12 may be provided at a plurality of locations.
[0045]
(G) The gap between the heating member 10 and the adherend surface 32 may have the same size as a whole, or may have a different size depending on the location within a range that does not disturb the airflow. For example, the gap may change from the upstream side to the downstream side.
(H) The bonding between the heat generating member 20 and the support members 22 and 24 or the plurality of support members 22 and 24 may be performed by bonding using an adhesive or an adhesive member such as the above-described double-sided adhesive tape, bonding by heat fusion, and unevenness. Various joining means such as mechanical joining by joining or fitting and joining using metal fittings can be applied.
[0046]
【The invention's effect】
The heating and drying method of the film material according to the present invention can prevent the film material from being wavy and uneven by using the heating member having the above-described structure and airflow, and the formed film surface is smooth and uniform. Become thick. In addition, since the entire film material can be uniformly and efficiently heated and dried, the work efficiency of the heating and drying step can be increased and the productivity can be improved.
[0047]
If the film material is heated with a temperature gradient so that the temperature of the downstream side of the air flow becomes higher than that of the upstream side in the gap, the entire film material can be uniformly and efficiently heated and dried .
[0049]
The apparatus for heating and drying a film material according to the present invention can achieve the same operation and effect as the above-described heating and drying method by including the heating member having the above-described configuration and the airflow supply means, and can also support the heating member and the supporting member. By combining with a member, heat drying can be performed more uniformly and efficiently .
[Brief description of the drawings]
1A is a cross-sectional view illustrating a heating and drying method according to an embodiment of the present invention. FIG. 1B is an enlarged view of the main part. FIG. 2A is a plan view illustrating a detailed structure of a heating member, and FIG. FIG. 3 is an enlarged cross-sectional view of a main part showing another embodiment of the heating member.
Reference Signs List 10 heating member 20 high-crystal graphite film 22 imide resin film 24 porous thin plate 30 CRT tube 32 inner surface 40 film material

Claims (2)

被着面に配置された膜材料を加熱乾燥させる方法であって、
加熱部材を前記被着面との間に狭い隙間をあけて対面させて配置する工程と、
前記隙間に層流である気流を流通させると共に、前記気流の上流側よりも下流側が高温になるように温度勾配をつけて前記膜材料を加熱する工程と
を含む膜材料の加熱乾燥方法。
A method of heating and drying a film material disposed on an adherend surface,
A step of arranging the heating member facing each other with a small gap between the surface and the adherend,
Heating the film material by flowing a laminar airflow through the gap and applying a temperature gradient so that a temperature downstream of the airflow is higher than that of the airflow .
被着面に配置された膜材料を加熱乾燥させる装置であって、An apparatus for heating and drying the film material disposed on the surface to be adhered,
前記被着面との間に狭い隙間をあけて対面して配置され通電により発熱し前記隙間に沿って温度勾配を生じさせる発熱部材と、前記発熱部材を支持し多孔薄板を含む支持部材と、前記発熱部材に通電する通電手段とを有する加熱部材と、  A heating member that is arranged facing each other with a narrow gap between the adherend surface and generates heat by energization and generates a temperature gradient along the gap, a supporting member that supports the heating member and includes a porous thin plate, A heating member having an energizing means for energizing the heating member,
前記被着面に向かって気流を吹き出す吹出口を前記加熱部材側に備えている気流供給手段と、  Airflow supply means provided on the heating member side with an outlet for blowing airflow toward the adherend surface;
を備える膜材料の加熱乾燥装置。A heating and drying device for a membrane material comprising:
JP04844195A 1995-03-08 1995-03-08 Method and apparatus for heating and drying membrane material Expired - Fee Related JP3603369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04844195A JP3603369B2 (en) 1995-03-08 1995-03-08 Method and apparatus for heating and drying membrane material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04844195A JP3603369B2 (en) 1995-03-08 1995-03-08 Method and apparatus for heating and drying membrane material

Publications (2)

Publication Number Publication Date
JPH08243463A JPH08243463A (en) 1996-09-24
JP3603369B2 true JP3603369B2 (en) 2004-12-22

Family

ID=12803449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04844195A Expired - Fee Related JP3603369B2 (en) 1995-03-08 1995-03-08 Method and apparatus for heating and drying membrane material

Country Status (1)

Country Link
JP (1) JP3603369B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63225451A (en) * 1987-03-13 1988-09-20 Nec Home Electronics Ltd Formation of phosphor film
JPS63305965A (en) * 1987-06-06 1988-12-13 Toyo Seikan Kaisha Ltd Method for drying or baking film
JPH01236966A (en) * 1988-03-16 1989-09-21 Hitachi Ltd Silica coat baking furnace and baking method for cathode ray tube
JPH04310569A (en) * 1991-04-09 1992-11-02 Matsushita Electric Ind Co Ltd Production of graphite film
JP2986300B2 (en) * 1993-01-26 1999-12-06 東京エレクトロン株式会社 Coating device and coating method
JP3253691B2 (en) * 1992-08-31 2002-02-04 大日本印刷株式会社 Drying method of resist
JPH0691216A (en) * 1992-09-17 1994-04-05 Toshiba Corp Film drying apparatus
JPH06134917A (en) * 1992-10-28 1994-05-17 Taenaka Kogyo Kk Expanded graphite laminated sheet, expanded graphite laminated composite material and production thereof

Also Published As

Publication number Publication date
JPH08243463A (en) 1996-09-24

Similar Documents

Publication Publication Date Title
JP3885246B2 (en) Plasma display panel
JP4106395B2 (en) Metal-based carbon fiber composite material and method for producing the same
CN101010791A (en) Electrostatic chuck
JP5762798B2 (en) Ceiling electrode plate and substrate processing placement
JP2638649B2 (en) Electrostatic chuck
US20090126903A1 (en) Heat transfer member, convex structural member, electronic apparatus, and electric product
JP2002237375A (en) Ceramic plate for semiconductor manufacturing/testing device, and manufacturing method of the same
JPH07109171A (en) Graphite thermal conductor and cold plate using the same
US10531695B2 (en) Cartridge for an aerosol-generating system
JP2003174203A (en) Thermoelectric conversion device
KR20180018335A (en) Substrate fixing device and method of manufacturing thereof
JP6645319B2 (en) Electrostatic chuck device
JP2001135464A (en) Ceramic heater
JP2008078380A (en) Heat dissipation sheet
JPH0631185B2 (en) Method for manufacturing silicon carbide heating element
KR20120082366A (en) Electrode production apparatus and electrode production method and computer storage medium
JP3603369B2 (en) Method and apparatus for heating and drying membrane material
JPH05301336A (en) Cylinder or roller heated or cooled using electronic heating/cooling element and manufacturing method thereof
JP2000161588A (en) Composite heat insulating material
JP2007273930A (en) Cooling member
CN105979750B (en) Flexibility heat conduction graphite patch
JP2004031938A (en) Electrostatic chuck
JP2002198297A (en) Wafer heating equipment
JP2002246305A (en) Hot plate unit
JPH09156913A (en) Production of heat-conductive sheet and sputtering apparatus using the sheet

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040920

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees