JP3602493B2 - Waveguide bandpass filter - Google Patents

Waveguide bandpass filter Download PDF

Info

Publication number
JP3602493B2
JP3602493B2 JP2001359433A JP2001359433A JP3602493B2 JP 3602493 B2 JP3602493 B2 JP 3602493B2 JP 2001359433 A JP2001359433 A JP 2001359433A JP 2001359433 A JP2001359433 A JP 2001359433A JP 3602493 B2 JP3602493 B2 JP 3602493B2
Authority
JP
Japan
Prior art keywords
band
iris
waveguide
inductive
pass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001359433A
Other languages
Japanese (ja)
Other versions
JP2003163507A (en
Inventor
敦 毛塚
保裕 風間
新平 南館
誠 注連野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP2001359433A priority Critical patent/JP3602493B2/en
Publication of JP2003163507A publication Critical patent/JP2003163507A/en
Application granted granted Critical
Publication of JP3602493B2 publication Critical patent/JP3602493B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は導波管バンドパスフィルタに関し、特に導波管内が複数の誘導性アイリスで区切られた構造を成して設定周波数帯域の信号を通過させる、導波管バンドパスフィルタに属する。
【0002】
【従来の技術】
導波管バンドパスフィルタの代表的なものとして、導波管内を複数の誘導性アイリスで区切り、この区切られた区間の長さや区間の数、アイリス幅等に基づいて通過周波数帯域が定まる構造のものがある。このような構造の、従来の導波管バンドパスフィルタの一例を図5及び図6に示す。
【0003】
この導波管バンドパスフィルタは、導波管100内に、アイリス幅w1の誘導性アイリス111x、アイリス幅w2の誘導性アイリス112x、アイリス幅w3の誘導性アイリス113x、以下同様に、アイリス幅w4〜w7の誘導性アイリス114x〜117xを順次、その相互間隔がl1,l2,……,l6となるように配設した構成、構造となっている。
【0004】
この導波管バンドパスフィルタにおける通過帯域特性は、アイリス幅w1〜w7及びアイリス相互間隔l1〜l6等により決まり、その特性の一例を図7に示す。
この図7においてS11は反射係数、S21は透過係数であり、導波管100として方形導波管WRJ−220 を使用し、誘導性アイリス111x〜117xの厚さは総て0.5 mmとしている。この導波管バンドパスフィルタでは、1.2 %の通過帯域幅を有し、この通過帯域における挿入損失が1.6 dB以下となっており、またその通過帯域外では、中心周波数±1.6 %の周波数で、59 dB 程度の減衰量が得られる。
【0005】
【発明が解決しようとする課題】
上述した従来の導波管バンドパスフィルタは、導波管100内に、アイリス幅w1の誘導性アイリス111x〜アイリス幅w7の誘導性アイリス117xを順次、その相互間隔がl1〜l6となるように配設し、そのアイリス幅w1〜w7及びアイリス相互間隔l1〜l6を選定して所望の特性を得る構成、構造となっており、例えば、1.2 %の通過帯域幅でその挿入損失が1.6 dB以下、通過帯域外の、中心周波数±1.6 %の周波数で減衰量59 dB 程度の特性を得ることができるが、通過帯域外で更に急峻な減衰特性が必要な場合があり、このような場合に、より一層急峻な減衰特性のものを実現するには、誘導性アイリスの段数を増やすとか、これら誘導性アイリス111x〜117xによる通過帯域形成部分の外側に独立して、帯域阻止型のフィルタ、例えば、導波管の上面板に結合穴を明けてその外側に空胴共振器を設けた構造のものを、1/4 波長間隔で複数配設した構成、構造のフィルタ(電子通信ハンドブック(オーム社)755頁、3・2・1 導波管フィルタのb.帯域阻止形の項等、参照)を配備する、などの手段があるが、誘導性アイリスの段数を増やすと、通過帯域における挿入損失が増大するという問題点があり、通過帯域形成部分の外側に独立して帯域阻止型フィルタを配備すると、導波管バンドパスフィルタ全体の大きさが極めて大きくなる上、帯域阻止型フィルタの減衰帯域外での反射が、この導波管バンドパスフィルタの通過帯域における反射量に影響を与えてその特性が劣化する、という問題点がある。
【0006】
そこで、本発明の目的は、上記従来技術の問題点に鑑みて通過帯域における挿入損失の増大及び反射特性の劣化を招くことなく、通過帯域の外側における、より一層急峻な減衰特性、及び設定周波数成分のより一層大きな減衰量を得ることができ、しかも、フィルタ全体の大きさが大型化するのを抑えることができる、導波管バンドパスフィルタを提供することにある。
【0007】
【課題を解決するための手段】
本発明の導波管バンドパスフィルタは、次の各構成を有することを特徴とする。
(イ)導波管内に、それぞれのアイリス幅が設定寸法に形成された複数の誘導性アイリスを順次、設定された相互間隔で配備して成り、前記導波管内を通過する信号の、通過帯域を決定する帯域通過ろ波部
(ロ)前記導波管の、前記帯域通過ろ波部の複数の誘導性アイリス配備領域外側でかつ、その最外端の誘導性アイリスに近接した位置に設置されて、導波管管壁部分に配備された設定アイリス幅の誘導性アイリスと、この誘導性アイリスを介して導波管外側に配備された設定長さの空胴部と、を含んで成り、前記帯域通過ろ波部と結合して、この帯域通過ろ波部による通過帯域の外側の、設定された周波数成分を減衰させるノッチ部
【0008】
また、前記ノッチ部が、前記複数の誘導性アイリスの両最外端アイリスのうちの一方に近接して設置され、前記帯域通過ろ波部による通過帯域の外側の、高域側周波数成分及び低域側周波数成分のうちの一方を減衰させる周波数特性を有するか、前記複数の誘導性アイリスの両最外端アイリスそれぞれに近接して設置され、そのうちの一方で前記帯域通過ろ波部による通過帯域の外側の高域側周波数成分を減衰させ、そのうちの他方で前記通過帯域の外側の低域側周波数成分を減衰させる周波数特性を有して、構成される。
【0009】
また、前記帯域通過ろ波部の、複数の誘導性アイリスそれぞれのアイリス幅及びその相互間隔、並びに前記ノッチ部の誘導性アイリスのアイリス幅、及びこのノッチ部の、前記複数の誘導性アイリスのうちの最外端アイリスからの距離、の各寸法を、前記帯域通過ろ波部と前記ノッチ部とを結合、一体化した構造体として決定し、所望の周波数特性が得られるようにした、構成を有している。
【0010】
【発明の実施の形態】
本発明の一実施の形態は、導波管内に、それぞれのアイリス幅が設定寸法に形成された複数の誘導性アイリスを順次、設定された相互間隔で配備して成り、上記導波管内を通過する信号の、通過帯域を決定する帯域通過ろ波部と、上記導波管の、上記帯域通過ろ波部の複数の誘導性アイリス配備領域外側でかつ、その最外端の誘導性アイリスに近接した位置に設置されて、導波管管壁部分に配備された設定アイリス幅の誘導性アイリスと、この誘導性アイリスを介して導波管外側に配備された設定長さの空胴部と、を含んで成り、上記帯域通過ろ波部と結合して、この帯域通過ろ波部による通過帯域の外側の、設定された周波数成分を減衰させるノッチ部と、を有して構成される。
【0011】
なお、上記ノッチ部が、上記複数の誘導性アイリスの両最外端アイリスのうちの一方に近接して設置され、上記帯域通過ろ波部による通過帯域の外側の、高域側周波数成分及び低域側周波数成分のうちの一方を減衰させる周波数特性を有する、構成としてもよいし、また、上記複数の誘導性アイリスの両最外端アイリスそれぞれに近接して設置され、そのうちの一方で上記帯域通過ろ波部による通過帯域の外側の高域側周波数成分を減衰させ、そのうちの他方で上記通過帯域の外側の低域側周波数成分を減衰させる周波数特性を有する、構成であってもよい。
【0012】
そして、上記帯域通過ろ波部の、複数の誘導性アイリスそれぞれのアイリス幅及びその相互間隔、並びに上記ノッチ部の誘導性アイリスのアイリス幅、及びこのノッチ部の、上記複数の誘導性アイリスのうちの最外端アイリスからの距離、の各寸法を、上記帯域通過ろ波部と上記ノッチ部とを結合、一体化した構造体として決定し、所望の周波数特性が得られるようにした、構成となっている。
【0013】
このような構成、構造とすることにより、フィルタ全体が大型化するのを抑え、かつ通過帯域における、挿入損失の増大化及び反射特性の劣化を招くことなく、通過帯域の外側における、減衰特性のより一層の急峻化及び減衰量の増大化をはかることができる。
【0014】
【実施例】
次に、本発明の実施例について図面を参照して説明する。
図1は本発明の一実施例を示す部分断面平面図、図2は、図1に示された実施例の斜視図である。
この実施例は、導波管100内に、アイリス幅W1の誘導性アイリス111、アイリス幅W2の誘導性アイリス112、アイリス幅W3の誘導性アイリス113、以下同様に、アイリス幅W4〜W7の誘導性アイリス114〜117を順次、その相互間隔がL1,L2,……,L6となるように配備して成り、導波管100内を通過する信号の通過帯域を決定する帯域通過ろ波部110と、導波管100の、複数の誘導性アイリス111〜117配備領域外側で、その最外端アイリスのうちの一方の、誘導性アイリス111に近接した位置に設置されて、導波管100の管壁部分に配備されたアイリス幅W8の誘導性アイリス211、及びこの誘導性アイリス211を介して導波管外側に配備された長さLn1の空胴部212を含んで成り、帯域通過ろ波部110と結合して、この帯域通過ろ波部110による通過帯域の外側の設定された周波数成分、例えばこの通過帯域より高域側の設定周波数成分を減衰させるノッチ部210と、導波管100の、複数の誘導性アイリス111〜117配備領域外側で、その最外端の他方の、誘導性アイリス117に近接した位置に設置されて、導波管100の管壁部分に配備されたアイリス幅W9の誘導性アイリス221、及びこの誘導性アイリス221の外側に配備された長さLn2の空胴部222を含んで成り、帯域通過ろ波部110と結合して、この帯域通過ろ波部110による通過帯域の外側の設定された周波数成分、例えばこの通過帯域より低域側の設定周波数成分を減衰させるノッチ部220と、を有する構成、構造となっている。
【0015】
なお、ノッチ部210の、誘導性アイリス111に近接した位置として、誘導性アイリス111の外側の面と、誘導性アイリス211のアイリス幅W8端との間の寸法をD1としてこのD1の寸法を導波管100の管内波長よりも小さくし、また、ノッチ部220の、誘導性アイリス117に近接した位置として、誘導性アイリス117の外側の面と、誘導性アイリス221のアイリス幅W9端との間の寸法をD2としてこのD2の寸法を導波管100の管内波長よりも小さくしている。
【0016】
そして、複数の誘導性アイリス111〜117のアイリス幅W1〜W7及びその相互間隔L1〜L6、並びにノッチ部210,220の誘導性アイリス211,221のアイリス幅W8,W9及びその最外端誘導性アイリス111,117との距離D1,D2等の寸法を、複数の誘導性アイリス111〜117とノッチ部210,220とが結合、一体化した構造体として、最適の周波数特性が得られるように調整し、決定する。また、ノッチ部210,220の空胴部212,222の長さLn1,Ln2により、通過帯域外側の減衰極を決定する。
【0017】
例えば、導波管100としてWRJ−220 を用い、各誘導性アイリスの厚さをすべて0.5 mmとし、各部の寸法を、W1=3.6450,W2=1.7656,W3=1.6168,W4=1.6004,W5=1.6427,W6=1.8260,W7=3.4970,W8=4.2047,W9=4.4733,L1=6.4576,L2=6.9047,L3=6.9227,L4=6.9207,L5=6.8940,L6=6.4807,Ln1=13.0014 ,Ln2=13.5283 ,D1=1.0690,D2=1.0636(単位mm)とし、このときの、反射係数S11及び透過係数S21の特性を図3に示す。
【0018】
図3において、実線の特性がこの実施例の特性、すなわち、ノッチ2段の特性であり、点線の特性がノッチなしの、即ち、従来例による特性である。このように、通過帯域及びその近傍では、ノッチなしの場合とほぼ同等の特性が得られ、1.2 %の帯域幅を有する通過帯域において挿入損失を1.6 dB以下に抑えることができ、しかも、中心周波数に対する1.6 %以上の減衰帯域では、70dB以上の減衰量を得ることができる。
【0019】
そして、その大きさは、ノッチ部210,220が、帯域通過ろ波部110の外側の、複数の誘導性アイリス111〜117のうちの最外端アイリス(111,117)に近接した位置に設置されるので、全体が大型化するのを抑えることができる。
【0020】
この実施例においては、帯域通過ろ波部110の外側の、両最外端アイリス(111,117)それぞれに近接してノッチ部210,220が設置されていて、その一方で、通過帯域の外側の、高域側周波数成分を減衰させ、その他方で、低域側周波数成分を減衰させる構成となっているが、両最外端アイリス(111,117)のうちの一方にノッチ部を設けて、帯域通過ろ波部110による通過帯域の外側の、高域側周波数成分及び低域側周波数成分のうちの一方、例えば、高域側周波数成分を更に減衰させる、構成とすることもできる。この場合の周波数特性を図4に示す。
【0021】
【発明の効果】
以上説明したように本発明は、導波管内に、それぞれ設定されたアイリス幅を有する複数の誘導性アイリスが順次、設定された相互間隔で配置されて、信号の通過帯域を決定する帯域通過ろ波部と、この帯域通過ろ波部の外側で、かつその最外端誘導性アイリスに近接する位置に設置されて、導波管管壁部分に配備された設定アイリス幅の誘導性アイリスと、この誘導性アイリスを介して導波管外側に配備された設定長さの空胴部と、を含んで形成され、帯域通過ろ波部と結合し、この帯域通過ろ波部による通過帯域の外側の、設定された周波数成分を減衰させるノッチ部と、を有する構成、構造とすることにより、通過帯域における、挿入損失の増大及び反射特性の劣化を招くことなく、通過帯域の外側における、より一層急峻な減衰特性、及び設定周波数成分のより一層大きな減衰量を得ることができ、しかも、フィルタ全体が大型化するのを抑えることができる、という効果がある。
【図面の簡単な説明】
【図1】本発明の一実施例を示す部分断面平面図である。
【図2】図1に示された実施例の、部分断面斜視図である。
【図3】図1及び図2に示された実施例の、反射係数S11及び透過係数S21の周波数特性図である。
【図4】本発明の他の実施例の、反射係数S11及び透過係数S21の周波数特性図である。
【図5】従来の導波管バンドパスフィルタの一例を示す部分断面平面図である。
【図6】図5に示された導波管バンドパスフィルタの、部分断面斜視図である。
【図7】図5及び図6に示された導波管バンドパスフィルタの、反射係数S11及び透過係数S21の周波数特性図である。
【符号の説明】
100 導波管
110 帯域通過ろ波部
111〜117,111x〜117x 誘導性アイリス
210 ノッチ部
211 誘導性アイリス
212 空胴部
220 ノッチ部
221 誘導性アイリス
222 空胴部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a waveguide bandpass filter, and more particularly to a waveguide bandpass filter that has a structure in which the inside of a waveguide is divided by a plurality of inductive irises and passes a signal in a set frequency band.
[0002]
[Prior art]
As a typical example of a waveguide bandpass filter, a structure in which the inside of a waveguide is divided by a plurality of inductive irises, and a pass frequency band is determined based on the length of the divided section, the number of sections, the iris width, and the like. There is something. One example of a conventional waveguide bandpass filter having such a structure is shown in FIGS.
[0003]
The waveguide band-pass filter includes an inductive iris 111x having an iris width w1, an inductive iris 112x having an iris width w2, an inductive iris 113x having an iris width w3, and similarly an iris width w4 in the waveguide 100. .., 16 are arranged in such a manner that their mutual intervals are 11, 12,..., 16 respectively.
[0004]
The pass band characteristics of this waveguide band pass filter are determined by the iris widths w1 to w7 and the iris intervals l1 to l6, and an example of the characteristics is shown in FIG.
In FIG. 7, S11 is a reflection coefficient, S21 is a transmission coefficient, a rectangular waveguide WRJ-220 is used as the waveguide 100, and the thicknesses of the inductive irises 111x to 117x are all 0.5 mm. . This waveguide bandpass filter has a pass band width of 1.2%, the insertion loss in this pass band is 1.6 dB or less, and the center frequency ± 1. At a frequency of 6%, an attenuation of about 59 dB is obtained.
[0005]
[Problems to be solved by the invention]
The above-described conventional waveguide bandpass filter includes, in the waveguide 100, an inductive iris 111x having an iris width w1 to an inductive iris 117x having an iris width w7 in order such that their mutual intervals are 11 to 16. The iris widths w1 to w7 and the iris spacings 11 to 16 are selected to obtain desired characteristics. For example, the insertion loss is 1% at a pass bandwidth of 1.2%. Although a characteristic of about 59 dB can be obtained at a frequency of 1.6 dB or less and a center frequency of ± 1.6% outside the pass band, a steeper attenuation characteristic may be required outside the pass band. In such a case, in order to realize a steeper attenuation characteristic, the number of stages of the inductive iris may be increased, or the inductive iris 111x to 117x may be independently provided outside the pass band forming portion. A structure and a structure in which a plurality of band rejection filters, for example, those having a structure in which a coupling hole is formed in an upper surface plate of a waveguide and a cavity is provided outside the filter, are arranged at quarter wavelength intervals. (Refer to page 755 of “Electronic Communication Handbook (Ohm Co., Ltd.), b., Section 3.2.1 of waveguide filter, etc.”), the number of stages of inductive iris. Increases the insertion loss in the pass band, there is a problem that, if a band rejection filter is independently provided outside the pass band forming portion, the entire size of the waveguide band pass filter becomes extremely large. In addition, there is a problem that the reflection outside the attenuation band of the band rejection filter affects the amount of reflection in the pass band of the waveguide band-pass filter, and the characteristics thereof are deteriorated.
[0006]
Therefore, an object of the present invention is to provide a steeper attenuation characteristic outside the pass band and a set frequency without causing an increase in insertion loss and a deterioration in reflection characteristics in the pass band in view of the above-mentioned problems of the related art. It is an object of the present invention to provide a waveguide bandpass filter capable of obtaining a larger attenuation of components and suppressing an increase in the size of the entire filter.
[0007]
[Means for Solving the Problems]
A waveguide bandpass filter according to the present invention has the following configurations.
(A) A plurality of inductive irises each having an iris width set to a set dimension are sequentially arranged in a waveguide at a set mutual interval, and a pass band of a signal passing through the waveguide is provided. (B) The waveguide is installed at a position outside the region where the plurality of inductive iris is provided in the band-pass filter and close to the outermost inductive iris of the waveguide. And an inductive iris having a set iris width provided on the waveguide wall portion, and a cavity having a set length provided outside the waveguide via the inductive iris, A notch portion coupled to the band-pass filter portion to attenuate a set frequency component outside a pass band by the band-pass filter portion
Further, the notch portion is provided near one of both outermost irises of the plurality of inductive irises, and a high-frequency component and a low-frequency component outside a pass band by the band-pass filtering portion. It has a frequency characteristic of attenuating one of the band-side frequency components, or is installed close to each of the outermost irises of the plurality of inductive iris, and one of them is a pass band by the band-pass filtering unit. , And has a frequency characteristic of attenuating the high frequency components outside the pass band and the other low frequency components outside the pass band.
[0009]
In addition, the iris width of each of the plurality of inductive irises and the mutual interval thereof, and the iris width of the inductive iris of the notch portion, and the notch portion of the plurality of inductive irises of the band-pass filtering portion. Of the distance from the outermost iris of the band-pass filter unit and the notch unit are determined as an integrated structure, so that a desired frequency characteristic is obtained. Have.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
In one embodiment of the present invention, a plurality of inductive irises each having an iris width formed to a set size are sequentially arranged in a waveguide at a set mutual interval, and pass through the waveguide. A band-pass filter for determining a pass band of a signal to be transmitted, and a plurality of inductive iris arrangement regions of the waveguide, outside the band-pass filter, and close to the outermost inductive iris. It is installed in the position, the inductive iris of the set iris width deployed on the waveguide wall portion, the cavity of the set length deployed outside the waveguide via this inductive iris, And a notch unit that is coupled to the band-pass filter unit and attenuates a set frequency component outside a pass band of the band-pass filter unit.
[0011]
In addition, the notch portion is installed close to one of both outermost irises of the plurality of inductive irises, and a high-frequency component and a low-frequency component outside a pass band by the band-pass filtering portion. It has a frequency characteristic of attenuating one of the band-side frequency components, and may be configured, and may be installed close to each of the outermost end irises of the plurality of inductive iris, and one of the band It may be configured to have a frequency characteristic of attenuating high-frequency components outside the pass band by the pass filter unit and attenuating low-frequency components outside the pass band on the other side.
[0012]
Then, the iris width of each of the plurality of inductive irises and the mutual interval of the band-pass filtering section, the iris width of the inductive iris of the notch section, and the plurality of inductive iris of the notch section. The distance from the outermost iris, the dimensions of each, the band-pass filter unit and the notch unit are coupled, determined as an integrated structure, so as to obtain the desired frequency characteristics, Has become.
[0013]
By adopting such a configuration and structure, it is possible to suppress an increase in the size of the entire filter, and to reduce the attenuation characteristic outside the pass band without causing an increase in insertion loss and deterioration of the reflection characteristic in the pass band. It is possible to further increase the steepness and increase the amount of attenuation.
[0014]
【Example】
Next, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a partial sectional plan view showing an embodiment of the present invention, and FIG. 2 is a perspective view of the embodiment shown in FIG.
In this embodiment, an inductive iris 111 having an iris width W1, an inductive iris 112 having an iris width W2, an inductive iris 113 having an iris width W3, and so on are provided in the waveguide 100. Irises 114 to 117 are sequentially arranged so that their mutual intervals are L1, L2,..., L6, and a band-pass filter 110 that determines a pass band of a signal passing through the waveguide 100. Outside the area where the plurality of inductive irises 111 to 117 are provided on the waveguide 100, and installed at a position close to the inductive iris 111 of one of its outermost irises. inductive iris 211 of the iris width W8 deployed tube wall portion, and comprises a cavity portion 212 of the inductive iris 211 through to length deployed outside waveguide Ln1, A notch section 210 that is coupled to the band-pass filter section 110 and attenuates a set frequency component outside the pass band by the band-pass filter section 110, for example, a set frequency component higher than the pass band. The waveguide 100 is installed at a position outside the region where the plurality of inductive iris 111 to 117 are provided, in the vicinity of the other of the outermost ends and the inductive iris 117, and is provided on the tube wall portion of the waveguide 100. An inductive iris 221 having an iris width W9, and a cavity 222 having a length Ln2 provided outside the inductive iris 221. Notch part 220 for attenuating frequency components set outside the pass band by filtering unit 110, for example, set frequency components lower than the pass band, has a configuration and structure. .
[0015]
As the position of the notch portion 210 close to the inductive iris 111, the dimension between the outer surface of the inductive iris 111 and the end of the iris width W8 of the inductive iris 211 is D1, and the dimension of D1 is derived. The position of the notch 220 is smaller than the guide wavelength of the waveguide 100, and the position of the notch 220 is close to the inductive iris 117, between the outer surface of the inductive iris 117 and the end of the iris width W <b> 9 of the inductive iris 221. Is set to D2, and the size of D2 is set to be smaller than the guide wavelength of the waveguide 100.
[0016]
Then, the iris widths W1 to W7 of the plurality of inductive irises 111 to 117 and their mutual intervals L1 to L6, and the iris widths W8 and W9 of the inductive iris 211 and 221 of the notch portions 210 and 220 and the outermost end inductivity. The dimensions such as the distances D1 and D2 from the irises 111 and 117 are adjusted so that the plurality of inductive irises 111 to 117 and the notch portions 210 and 220 are combined and integrated to obtain an optimal frequency characteristic. And decide. The attenuation pole outside the pass band is determined by the lengths Ln1 and Ln2 of the cavities 212 and 222 of the notches 210 and 220.
[0017]
For example, WRJ-220 is used as the waveguide 100, the thickness of each inductive iris is all 0.5 mm, and the dimensions of each part are W1 = 3.6450, W2 = 1.656, W3 = 1.6168. , W4 = 1.604, W5 = 1.42727, W6 = 1.8260, W7 = 3.4970, W8 = 4.247, W9 = 4.4733, L1 = 6.4576, L2 = 6.99047, L3 = 6.9227, L4 = 6.9207, L5 = 6.8940, L6 = 6.4807, Ln1 = 13.00014, Ln2 = 13.5283, D1 = 1.0690, D2 = 1.0636 (unit mm) FIG. 3 shows the characteristics of the reflection coefficient S11 and the transmission coefficient S21 at this time.
[0018]
In FIG. 3, the characteristics of the solid line are the characteristics of this embodiment, that is, the characteristics of the two notches, and the characteristics of the dotted line are the characteristics without the notch, that is, the characteristics of the conventional example. As described above, in the pass band and the vicinity thereof, almost the same characteristics as in the case without the notch are obtained, and the insertion loss can be suppressed to 1.6 dB or less in the pass band having a bandwidth of 1.2%. Moreover, in an attenuation band of 1.6% or more with respect to the center frequency, an attenuation of 70 dB or more can be obtained.
[0019]
The size of the notches 210 and 220 is set at a position outside the band-pass filter 110 and close to the outermost iris (111, 117) of the plurality of inductive irises 111 to 117. Therefore, it is possible to suppress an increase in size as a whole.
[0020]
In this embodiment, notches 210 and 220 are provided outside the band-pass filter 110 and in close proximity to the two outermost irises (111 and 117), respectively. Is configured to attenuate the high-frequency component and the other to attenuate the low-frequency component. A notch is provided on one of the outermost irises (111, 117). Alternatively, one of the high-frequency component and the low-frequency component, for example, the high-frequency component outside the pass band by the band-pass filter 110 may be further attenuated. FIG. 4 shows the frequency characteristics in this case.
[0021]
【The invention's effect】
As described above, the present invention provides a bandpass filter in which a plurality of inductive irises each having a set iris width are sequentially arranged at a set mutual interval in a waveguide to determine a passband of a signal. A wave portion and an inductive iris having a set iris width disposed outside the band-pass filtering portion and at a position close to the outermost inductive iris and disposed on the waveguide wall portion; And a cavity of a set length disposed outside the waveguide through the inductive iris , and coupled to the band-pass filter, outside the pass band by the band-pass filter. And a notch portion for attenuating the set frequency component, and further, outside the pass band, without causing an increase in insertion loss and deterioration of reflection characteristics in the pass band. Steep attenuation characteristics And it is possible to obtain a more large attenuation of the set frequency components, moreover, may be the entire filter suppressed from increasing in size, there is an effect that.
[Brief description of the drawings]
FIG. 1 is a partial sectional plan view showing one embodiment of the present invention.
FIG. 2 is a partial sectional perspective view of the embodiment shown in FIG.
FIG. 3 is a frequency characteristic diagram of a reflection coefficient S11 and a transmission coefficient S21 of the embodiment shown in FIGS. 1 and 2;
FIG. 4 is a frequency characteristic diagram of a reflection coefficient S11 and a transmission coefficient S21 according to another embodiment of the present invention.
FIG. 5 is a partial sectional plan view showing an example of a conventional waveguide bandpass filter.
FIG. 6 is a partial cross-sectional perspective view of the waveguide bandpass filter shown in FIG. 5;
FIG. 7 is a frequency characteristic diagram of a reflection coefficient S11 and a transmission coefficient S21 of the waveguide band-pass filter shown in FIGS. 5 and 6;
[Explanation of symbols]
REFERENCE SIGNS LIST 100 Waveguide 110 Band-pass filtering sections 111 to 117, 111x to 117x Inductive iris 210 Notch section 211 Inductive iris 212 Cavity section 220 Notch section 221 Inductive iris 222 Cavity section

Claims (4)

次の各構成を有することを特徴とする導波管バンドパスフィルタ。
(イ)導波管内に、それぞれのアイリス幅が設定寸法に形成された複数の誘導性アイリスを順次、設定された相互間隔で配備して成り、前記導波管内を通過する信号の、通過帯域を決定する帯域通過ろ波部
(ロ)前記導波管の、前記帯域通過ろ波部の複数の誘導性アイリス配備領域外側でかつ、その最外端の誘導性アイリスに近接した位置に設置されて、導波管管壁部分に配備された設定アイリス幅の誘導性アイリスと、この誘導性アイリスを介して導波管外側に配備された設定長さの空胴部と、を含んで成り、前記帯域通過ろ波部と結合して、この帯域通過ろ波部による通過帯域の外側の、設定された周波数成分を減衰させるノッチ部
A waveguide bandpass filter having the following configurations.
(A) A plurality of inductive irises each having an iris width set to a set dimension are sequentially arranged in a waveguide at a set mutual interval, and a pass band of a signal passing through the waveguide is provided. (B) The waveguide is installed at a position outside the region where the plurality of inductive iris is provided in the band-pass filter and close to the outermost inductive iris of the waveguide. And an inductive iris having a set iris width provided on the waveguide wall portion, and a cavity having a set length provided outside the waveguide via the inductive iris, Notch part which is coupled with the band-pass filter and attenuates a set frequency component outside a pass band by the band-pass filter.
前記ノッチ部が、前記複数の誘導性アイリスの両最外端アイリスのうちの一方に近接して設置され、前記帯域通過ろ波部による通過帯域の外側の、高域側周波数成分及び低域側周波数成分のうちの一方を減衰させる周波数特性を有する、請求項1記載の導波管バンドパスフィルタ。The notch portion is installed near one of both outermost irises of the plurality of inductive iris, outside a pass band by the band-pass filtering portion, a high-frequency component and a low-frequency component. The waveguide band pass filter according to claim 1, wherein the filter has a frequency characteristic of attenuating one of the frequency components. 前記ノッチ部が、前記複数の誘導性アイリスの両最外端アイリスそれぞれに近接して設置され、そのうちの一方で前記帯域通過ろ波部による通過帯域の外側の高域側周波数成分を減衰させ、そのうちの他方で前記通過帯域の外側の低域側周波数成分を減衰させる周波数特性を有する、請求項1記載の導波管バンドパスフィルタ。The notch portion is installed in proximity to each of both outermost irises of the plurality of inductive iris, one of which attenuates a high-frequency component outside a pass band by the band-pass filtering portion, 2. The waveguide band-pass filter according to claim 1, wherein the other side has a frequency characteristic of attenuating a low-frequency component outside the pass band. 前記帯域通過ろ波部の、複数の誘導性アイリスそれぞれのアイリス幅及びその相互間隔、並びに前記ノッチ部の誘導性アイリスのアイリス幅、及びこのノッチ部の、前記複数の誘導性アイリスのうちの最外端アイリスからの距離、の各寸法を、前記帯域通過ろ波部と前記ノッチ部とを結合、一体化した構造体として決定し、所望の周波数特性が得られるようにした、請求項1記載の導波管バンドパスフィルタ。The iris width of each of the plurality of inductive irises and the mutual interval thereof, the iris width of the inductive iris of the notch, and the maximum of the plurality of inductive iris of the notch in the band-pass filter. The distance from the outer end iris is determined as a structure in which the band-pass filter unit and the notch unit are combined and integrated so as to obtain a desired frequency characteristic. Waveguide bandpass filter.
JP2001359433A 2001-11-26 2001-11-26 Waveguide bandpass filter Expired - Fee Related JP3602493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001359433A JP3602493B2 (en) 2001-11-26 2001-11-26 Waveguide bandpass filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001359433A JP3602493B2 (en) 2001-11-26 2001-11-26 Waveguide bandpass filter

Publications (2)

Publication Number Publication Date
JP2003163507A JP2003163507A (en) 2003-06-06
JP3602493B2 true JP3602493B2 (en) 2004-12-15

Family

ID=19170441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001359433A Expired - Fee Related JP3602493B2 (en) 2001-11-26 2001-11-26 Waveguide bandpass filter

Country Status (1)

Country Link
JP (1) JP3602493B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2629035A1 (en) 2008-03-27 2009-09-27 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Industry, Through The Communications Research Centre Canada Waveguide filter with broad stopband based on sugstrate integrated waveguide scheme
JP5093137B2 (en) * 2009-02-02 2012-12-05 三菱電機株式会社 High frequency module
JP5340015B2 (en) * 2009-04-27 2013-11-13 日本無線株式会社 Waveguide bandpass filter
EP2960981B1 (en) 2013-02-19 2018-07-25 Osaka Prefecture University Public Corporation Waveguide-type image rejection filter, single-sideband receiver utilizing same

Also Published As

Publication number Publication date
JP2003163507A (en) 2003-06-06

Similar Documents

Publication Publication Date Title
RU2602756C2 (en) Band-pass filter
EP1161775B1 (en) Waveguide filter having asymmetrically corrugated resonators
JP3531603B2 (en) High frequency filter, filter device using the same, and electronic device using the same
EP1052721B1 (en) Corrugated waveguide filter having coupled resonator cavities
JP3632576B2 (en) Filter, multiplexer and communication device
JP3602493B2 (en) Waveguide bandpass filter
JPH06120706A (en) Strip line filter
JP5459225B2 (en) Band pass filter
RU2400874C1 (en) Strip-line filter
US6677836B2 (en) Dielectric filter device having conductive strip removed for improved filter characteristics
JP2000357903A (en) Planar filter
KR100392341B1 (en) Band pass filter using DGS
JP5094524B2 (en) High frequency coupled line and high frequency filter
JP4411315B2 (en) Band stop filter
KR100449226B1 (en) Dielectric Duplexer
RU2237320C1 (en) Band-pass filter
EP1492194A1 (en) Bandpass filter and diplexer
JPS6219081B2 (en)
US6249195B1 (en) Dielectric filter, dielectric duplexer, and transceiver having circular and polygonal electrode openings
JPH11312902A (en) Dielectric filter, transmission/reception equipment and communication equipment
JP4209352B2 (en) Interdigital filter
JPS62278801A (en) Microstrip band pass filter
US7256666B2 (en) Band rejection filter with attenuation poles
SU1474763A1 (en) Microstrip bandpass filter
JP4873642B2 (en) Waveguide bandpass filter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040922

R150 Certificate of patent or registration of utility model

Ref document number: 3602493

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees