JP3601914B2 - Gear transmission structure - Google Patents

Gear transmission structure Download PDF

Info

Publication number
JP3601914B2
JP3601914B2 JP23953496A JP23953496A JP3601914B2 JP 3601914 B2 JP3601914 B2 JP 3601914B2 JP 23953496 A JP23953496 A JP 23953496A JP 23953496 A JP23953496 A JP 23953496A JP 3601914 B2 JP3601914 B2 JP 3601914B2
Authority
JP
Japan
Prior art keywords
gear
spur
spur gear
teeth
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23953496A
Other languages
Japanese (ja)
Other versions
JPH1089419A (en
Inventor
宣夫 幸
加藤  勝秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP23953496A priority Critical patent/JP3601914B2/en
Publication of JPH1089419A publication Critical patent/JPH1089419A/en
Application granted granted Critical
Publication of JP3601914B2 publication Critical patent/JP3601914B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Structure Of Transmissions (AREA)
  • Gear Transmission (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、第1及び第2平ギヤ(内歯ギヤ及び外歯ギヤ)を互いに咬合及び離間させることにより、伝動及び伝動遮断操作できるように構成されたギヤ伝動構造に関する。
【0002】
【従来の技術】
前述のようなギヤ伝動構造としては第1及び第2平ギヤを備えて、第1平ギヤのギヤ歯に第2平ギヤのギヤ歯が咬合する咬合位置、及び第1平ギヤのギヤ歯から第2平ギヤのギヤ歯が離間する離間位置に亘って、第2平ギヤを軸芯方向にスライド操作自在に構成したものがあり、咬合位置において第1平ギヤから第2平ギヤに、又は第2平ギヤから第1平ギヤに動力が伝達される。
【0003】
前述とは別のギヤ伝動構造としては内歯ギヤ及び外歯ギヤを備えて、外歯ギヤ(又は内歯ギヤ)を、内歯ギヤ及び外歯ギヤが咬合する咬合位置、及び内歯ギヤ及び外歯ギヤが離間する離間位置に亘ってスライド操作自在に構成したものがあり、咬合位置において内歯ギヤから外歯ギヤに、又は外歯ギヤから内歯ギヤに動力が伝達される。
【0004】
【発明が解決しようとする課題】
前述のようなギヤ伝動構造において、第2平ギヤを支持軸に沿ってスライド操作自在に構成した場合、支持軸と第2平ギヤとの嵌合部分における公差や機械加工での誤差等によって、第2平ギヤが支持軸に対して少し傾斜する状態になることがある(倒れ現象)(図参照)。
【0005】
このような倒れ現象の発生した状態で、第1及び第2平ギヤにより動力が伝達されると、第1及び第2平ギヤのギヤ歯のギヤ歯面に支持軸と平行なスラスト力が発生し、支持軸に沿って第2平ギヤが次第に移動していき、最後には第2平ギヤのギヤ歯が第1平ギヤのギヤ歯から外れると言う自脱現象が発生する。このような自脱現象は、内歯ギヤ及び外歯ギヤによるギヤ伝動構造においても同様に発生する。
本発明は、平ギヤ(内歯ギヤ又は外歯ギヤ)のスライド操作により伝動及び伝動遮断操作できるように構成されたギヤ伝動構造において、スライド操作される平ギヤ(内歯ギヤ又は外歯ギヤ)の自脱現象を抑えることを目的としている。
【0006】
【課題を解決するための手段】
請求項1の特徴によると、第1平ギヤのギヤ歯のギヤ歯面を、ギヤ歯面の咬合位置側がギヤ歯面の離間位置側も回転方向に沿って先行するように、回転方向に対して傾斜させている。
これにより、第1平ギヤを咬合させた状態で動力が伝達されると、傾斜しているギヤ歯面にスラスト力が発生し、このスラスト力が、スライド操作される第2平ギヤを、咬合位置側に引き戻そうとするように作用する。
従って、スライド操作される第2平ギヤに倒れ現象が発生して、第2平ギヤ第1平ギヤから、咬合位置から離間位置側に移動しようとしても、前述のスラスト力によって、第2平ギヤの離間位置側への移動が阻止される。
【0007】
【発明の実施の形態】
図1は作業車の一例であるコンバインの走行用のミッションケース1の内部を示しており、エンジン(図示せず)の動力が静油圧式無段変速装置2に伝達されて変速操作され、静油圧式無段変速装置2の出力ギヤ3からの動力が、高中低の3段に変速操作自在な副変速装置4に伝達されて、副変速装置4の出力軸6からの動力が下手側のクローラ走行装置(図示せず)に伝達される。
【0008】
次に副変速装置4について説明する。
図1に示すように入力軸5及び出力軸6が配置されて、静油圧式無段変速装置2の出力ギヤ3からの動力が、入力ギヤ7を介して入力軸5に伝達されており、入力軸5にシフトギヤ部材12が、スプライン構造によりスライド操作自在に外嵌されている。出力軸6に高速ギヤ8、中速ギヤ9及び低速ギヤ10がスプライン構造にて固定されており、入力軸5に相対回転自在に外嵌された出力ギヤ11が、出力軸6の高速ギヤ8に咬合している。
【0009】
以上の構造により、図1に示すようにシフトギヤ部材12を紙面右方にスライド操作して、シフトギヤ部材12の低速ギヤ13を、出力軸6の低速ギヤ10に咬合させると、入力軸5の動力がシフトギヤ部材12及び低速ギヤ10を介して低速状態で出力軸6に伝達される。シフトギヤ部材12を紙面中程にスライド操作して、シフトギヤ部材12の中速ギヤ14を、出力軸6の中速ギヤ9に咬合させると、入力軸5の動力がシフトギヤ部材12及び中速ギヤ9を介して中速状態で出力軸6に伝達される。
シフトギヤ部材12を紙面左方にスライド操作して、図4に示すようにシフトギヤ部材12の内歯ギヤ16を、出力ギヤ11の外歯ギヤ15に咬合させると、入力軸5の動力がシフトギヤ部材12、出力ギヤ11及び高速ギヤ8を介して高速状態で出力軸6に伝達される。
【0010】
次に、シフトギヤ部材12の低速ギヤ13と出力軸6の低速ギヤ10との関係について説明する。
図2及び図3(イ)に示すように、出力軸6の低速ギヤ10は平ギヤに構成されており、低速ギヤ10のギヤ歯17において、中速ギヤ9側(紙面左側)の端部17cが円錐面に形成されている。ギヤ歯17の前進側ギヤ歯面17aにおいて、中速ギヤ9とは反対側(紙面右側)が中速ギヤ9側(紙面左側)よりも、前進の回転方向に沿って先行するように、前進の回転方向に対し傾斜角A(例えば40分±5分程度)を持って、前進側ギヤ歯面17aが傾斜している(図3(ロ)参照)。
【0011】
ギヤ歯17の後進側ギヤ歯面17bにおいても同様に、中速ギヤ9とは反対側(紙面右側)が中速ギヤ9側(紙面左側)よりも、後進の回転方向に沿って先行するように、後進の回転方向に対し傾斜角A(例えば40分±5分程度)を持って、後進側ギヤ歯面17bが傾斜している(図3(ハ)参照)。
これに対しシフトギヤ部材12の低速ギヤ13のギヤ歯においては、前進側ギヤ歯面及び後進側ギヤ歯面の両方が、前進及び後進の回転方向に対して直交している(図3(イ)に示す傾斜角Aが零の状態)。
【0012】
以上の構成により、シフトギヤ部材12の低速ギヤ13を出力軸6の低速ギヤ10に咬合させた状態で、静油圧式無段変速装置2から前進の動力が副変速装置4に伝達されてくると、シフトギヤ部材12の低速ギヤ13のギヤ歯が、出力軸6の低速ギヤ10の前進側ギヤ歯面17aに接当して、出力軸6の低速ギヤ10が図2及び図3(ロ)に示すように前進の回転方向に回転駆動される。
【0013】
この場合、出力軸6の低速ギヤ10は位置固定なので、ボス部10a(図1参照)を充分に長いものに設定し、出力軸6と低速ギヤ10との嵌合部分の精度を高いものに設定して、出力軸6の低速ギヤ10に倒れ現象が発生しないようにしている。これにより図及び図3(ロ)に示すように、前述の状態においてシフトギヤ部材12に倒れ現象が発生しても、出力軸6の低速ギヤ10の前進側ギヤ歯面17aに、中速ギヤ9とは反対側(図3(ロ)の紙面右方)のスラスト力が発生して、スラスト力がシフトギヤ部材12に掛かり、シフトギヤ部材12が中速ギヤ9側(図3(ロ)の紙面左方)に移動しようとする自脱現象が防止される。
【0014】
シフトギヤ部材12の低速ギヤ13を出力軸6の低速ギヤ10に咬合させた状態で、静油圧式無段変速装置2から後進の動力が副変速装置4に伝達されてくると、シフトギヤ部材12の低速ギヤ13のギヤ歯が、出力軸6の低速ギヤ10の後進側ギヤ歯面17bに接当して、出力軸6の低速ギヤ10が図2及び図3(ハ)に示すように後進の回転方向に回転駆動される。
この場合においても前述と同様に図及び図3(ハ)に示すように、シフトギヤ部材12に倒れ現象が発生しても、出力軸6の低速ギヤ10の後進側ギヤ歯面17bに、中速ギヤ9とは反対側(図3(ハ)の紙面右方)のスラスト力が発生して、スラスト力がシフトギヤ部材12に掛かり、シフトギヤ部材12が中速ギヤ9側(図3(ハ)に左方)に移動しようとする自脱現象が防止される。
【0015】
次に、シフトギヤ部材12の内歯ギヤ16と出力ギヤ11の外歯ギヤ15との関係について説明する。
図1及び図5に示すように、出力ギヤ11の横側面に外歯ギヤ15が形成されており、図6(イ)に示すように外歯ギヤ15のギヤ歯18の前進側ギヤ歯面18aにおいて、中速ギヤ9とは反対側(紙面左側)が中速ギヤ9側(紙面右側)よりも、前進の回転方向に沿って先行するように、前進の回転方向に対し傾斜角B(例えば2度30分±30分程度)を持って、前進側ギヤ歯面18aが傾斜している(図6(ロ)参照)。
【0016】
ギヤ歯18の後進側ギヤ歯面18bにおいても同様に、中速ギヤ9とは反対側(紙面左側)が中速ギヤ9側(紙面右側)よりも、後進の回転方向に沿って先行するように、後進の回転方向に対し傾斜角B(例えば2度30分±30分程度)を持って、後進側ギヤ歯面18bが傾斜している(図6(ハ)参照)。
【0017】
これに対しシフトギヤ部材12の内歯ギヤ16のギヤ歯19においては、図5及び図6(イ)に示すように、シフトギヤ部材12の横側面とギヤ歯19との間がえぐられるようにして、全周に亘り溝部20が形成されており、シフトギヤ部材12の横側面からギヤ歯19が少し離れている。ギヤ歯19において、前進側ギヤ歯面及び後進側ギヤ歯面の両方が、前進及び後進の回転方向に対して直交している(図6(イ)に示す傾斜角Bが零の状態)。
【0018】
以上の構成により、シフトギヤ部材12の内歯ギヤ16を出力ギヤ11の外歯ギヤ15に咬合させた状態で、静油圧式無段変速装置2から前進の動力が副変速装置4に伝達されてくると、図5及び図6(ロ)に示すようにシフトギヤ部材12の内歯ギヤ16のギヤ歯19が、出力ギヤ11の外歯ギヤ15の前進側ギヤ歯面18aに接当して、出力ギヤ11が前進の回転方向に回転駆動される。
【0019】
この場合、出力ギヤ11は位置固定なので、ボス部11a(図1参照)を充分に長いものに設定し、入力軸5と出力ギヤ11との嵌合部分の精度を高いものに設定して、出力ギヤ11に倒れ現象が発生しないようにしている。これにより、前述の状態においてシフトギヤ部材12に倒れ現象が発生しても、出力ギヤ11の外歯ギヤ15の前進側ギヤ歯面18aに、中速ギヤ9とは反対側(図6(ロ)の紙面左方)のスラスト力が発生して、スラスト力がシフトギヤ部材12に掛かり、シフトギヤ部材12が中速ギヤ9側(図6(ロ)の紙面右方)に移動しようとする自脱現象が防止される。
【0020】
シフトギヤ部材12の内歯ギヤ16を出力ギヤ11の外歯ギヤ15に咬合させた状態で、静油圧式無段変速装置2から後進の動力が副変速装置4に伝達されてくると、図5及び図6(ハ)に示すように、シフトギヤ部材12の内歯ギヤ16のギヤ歯19が、出力ギヤ11の外歯ギヤ15の後進側ギヤ歯面18bに接当して、出力ギヤ11が後進の回転方向に回転駆動される。
この場合においても前述と同様に、シフトギヤ部材12に倒れ現象が発生しても、出力ギヤ11の外歯ギヤ15の後進側ギヤ歯面18bに、中速ギヤ9とは反対側(紙面左方)のスラスト力が発生して、スラスト力がシフトギヤ部材12に掛かり、シフトギヤ部材12が中速ギヤ9側(図6(ハ)に紙面右方)に移動しようとする自脱現象が防止される。
【0021】
シフトギヤ部材12の内歯ギヤ16において、全周に亘り溝部20が形成されており、シフトギヤ部材12の横側面からギヤ歯19が少し離れている。これにより、図5及び図3(ロ)(ハ)に示すように内歯ギヤ16のギヤ歯19が、外歯ギヤ15のギヤ歯18において、前進側及び後進側ギヤ歯面18a,18bの中程に接当する状態となり、中速ギヤ9とは反対側(紙面左方)へのスラスト力が、シフトギヤ部材12に確実に掛かるようにしている。
【0027】
【発明の効果】
請求項1の特徴によると、平ギヤのスライド操作により、伝動及び伝動遮断操作できるように構成されたギヤ伝動構造において、スライド操作される平ギヤの咬合位置からの自脱現象を抑えることができて、ギヤ伝動構造における動力の伝達の確実性及び耐久性を向上させることができた。
この場合、ギヤ歯のギヤ歯面を少し傾斜させる程度の加工を施すだけで自脱現象を抑えることができて、自脱現象を抑える特別な装置を別に備える必要がないので、構造の簡素化の面で有利である。
【図面の簡単な説明】
【図1】副変速装置の低速状態での縦断正面図
【図2】出力軸における低速ギヤのギヤ歯の斜視図
【図3】出力軸における低速ギヤのギヤ歯と、シフトギヤ部材における低速ギヤのギヤ歯との咬合状態を示す平面図
【図4】副変速装置の高速状態での縦断正面図
【図5】入力軸における出力ギヤの外歯ギヤと、シフトギヤ部材の内歯ギヤとの咬合状態を示す縦断側面図
【図6】入力軸における出力ギヤの外歯ギヤと、シフトギヤ部材の内歯ギヤとの咬合状態を示す平面図
【図7】シフトギヤ部材の倒れ現象を示す縦断側面図
符号の説明
10 第1平ギヤ
13 第2平ギヤ
15 外歯ギヤ
16 内歯ギヤ
17 第1平ギヤのギヤ歯
17a,17b 第1平ギヤのギヤ歯のギヤ歯面
18 外歯ギヤのギヤ歯
18a,18b 外歯ギヤのギヤ歯のギヤ歯面
19 内歯ギヤのギヤ歯
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a gear transmission structure configured so that transmission and transmission cutoff operations can be performed by engaging and separating first and second spur gears (an internal gear and an external gear) from each other.
[0002]
[Prior art]
The gear transmission structure as described above includes first and second spur gears, and from the occlusal position where the gear teeth of the second spur gear engage with the gear teeth of the first spur gear, and from the gear teeth of the first spur gear. There is a configuration in which the second spur gear is slidable in the axial direction over a separation position at which the gear teeth of the second spur gear are separated, and from the first spur gear to the second spur gear at the engagement position, or Power is transmitted from the second spur gear to the first spur gear.
[0003]
An internal gear and an external gear are provided as another gear transmission structure, and the external gear (or the internal gear) is engaged with the occlusal position where the internal gear and the external gear engage, and the internal gear and There is a configuration in which the external gear is slidably operable over a separation position where the external gear is separated, and power is transmitted from the internal gear to the external gear or from the external gear to the internal gear at the occlusal position.
[0004]
[Problems to be solved by the invention]
In the above-described gear transmission structure, when the second spur gear is configured to be slidable along the support shaft, due to a tolerance in a fitting portion between the support shaft and the second spur gear, an error in machining, or the like, The second spur gear may be slightly inclined with respect to the support shaft (falling phenomenon) (see FIG. 7 ).
[0005]
When power is transmitted by the first and second spur gears in a state where such a falling phenomenon has occurred, a thrust force parallel to the support shaft is generated on the gear tooth surfaces of the gear teeth of the first and second spur gears. Then, the second spur gear gradually moves along the support shaft, and finally, a self-detachment phenomenon occurs that the gear teeth of the second spur gear are disengaged from the gear teeth of the first spur gear. Such a self-detachment phenomenon also occurs in a gear transmission structure using an internal gear and an external gear.
The present invention relates to a gear transmission structure configured so that transmission and transmission cutoff operations can be performed by sliding operation of a spur gear (an internal gear or an external gear). The purpose is to suppress the self-destroying phenomenon.
[0006]
[Means for Solving the Problems]
According to the feature of the first aspect, the gear tooth surface of the gear tooth of the first spur gear is set in the rotation direction such that the occlusal position side of the gear tooth surface also precedes the separation position side of the gear tooth surface along the rotation direction. Tilted.
Thus, when power is transmitted in a state where the first spur gear is engaged, a thrust force is generated on the inclined gear tooth surface, and the thrust force causes the second flat gear that is slidably operated to engage the second spur gear . Acts to pull back to the position side.
Thus, phenomena fall into the second spur gear is generated to be slid from the second spur gear the first spur gear, attempting to move to the separated position side from the bite position, the thrust force described above, the second flat Movement of the gear to the separated position side is prevented.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows the inside of a transmission case 1 for traveling of a combine, which is an example of a working vehicle, in which the power of an engine (not shown) is transmitted to a hydrostatic continuously variable transmission 2 to perform a gear change operation, The power from the output gear 3 of the hydraulic continuously variable transmission 2 is transmitted to the auxiliary transmission 4 that can freely change the gear into three stages of high, middle and low, and the power from the output shaft 6 of the auxiliary transmission 4 is transmitted to the lower side. It is transmitted to a crawler traveling device (not shown).
[0008]
Next, the auxiliary transmission 4 will be described.
As shown in FIG. 1, an input shaft 5 and an output shaft 6 are arranged, and power from an output gear 3 of a hydrostatic continuously variable transmission 2 is transmitted to the input shaft 5 via an input gear 7. A shift gear member 12 is externally fitted to the input shaft 5 so as to be slidable by a spline structure. A high-speed gear 8, a medium-speed gear 9, and a low-speed gear 10 are fixed to the output shaft 6 in a spline structure. Is biting.
[0009]
With the above-described structure, as shown in FIG. 1, when the shift gear member 12 is slid to the right in the drawing to engage the low-speed gear 13 of the shift gear member 12 with the low-speed gear 10 of the output shaft 6, the power of the input shaft 5 is reduced. Is transmitted to the output shaft 6 at a low speed via the shift gear member 12 and the low speed gear 10. When the middle gear 14 of the shift gear 12 is engaged with the middle gear 9 of the output shaft 6 by sliding the shift gear member 12 in the middle of the page, the power of the input shaft 5 is transmitted to the shift gear member 12 and the middle gear 9. Is transmitted to the output shaft 6 in a medium speed state through
When the shift gear member 12 is slid to the left on the paper surface to engage the internal gear 16 of the shift gear member 12 with the external gear 15 of the output gear 11 as shown in FIG. The power is transmitted to the output shaft 6 at a high speed via the output gear 11 and the high speed gear 8.
[0010]
Next, the relationship between the low-speed gear 13 of the shift gear member 12 and the low-speed gear 10 of the output shaft 6 will be described.
As shown in FIGS. 2 and 3A, the low-speed gear 10 of the output shaft 6 is configured as a spur gear, and an end of the gear teeth 17 of the low-speed gear 10 on the medium-speed gear 9 side (left side in the drawing). 17c is formed in a conical surface. In the forward gear tooth surface 17 a of the gear teeth 17, the side opposite to the medium-speed gear 9 (right side in the drawing) advances ahead of the medium-speed gear 9 side (left side in the drawing) in the forward rotation direction. The forward gear tooth surface 17a is inclined with an inclination angle A (for example, about 40 minutes ± 5 minutes) with respect to the rotation direction (see FIG. 3B).
[0011]
Similarly, on the reverse gear tooth surface 17b of the gear tooth 17, the opposite side (right side in the drawing) of the medium-speed gear 9 precedes the medium-speed gear 9 side (left side in the drawing) in the reverse rotation direction. In addition, the reverse gear tooth surface 17b is inclined with an inclination angle A (for example, about 40 minutes ± 5 minutes) with respect to the reverse rotation direction (see FIG. 3C).
On the other hand, in the gear teeth of the low-speed gear 13 of the shift gear member 12, both the forward gear tooth surface and the reverse gear tooth surface are orthogonal to the forward and reverse rotation directions (FIG. 3A). (A state where the inclination angle A shown in FIG.
[0012]
With the above configuration, when the forward power is transmitted from the hydrostatic continuously variable transmission 2 to the auxiliary transmission 4 in a state where the low speed gear 13 of the shift gear member 12 is engaged with the low speed gear 10 of the output shaft 6. The gear teeth of the low-speed gear 13 of the shift gear member 12 abut against the forward gear tooth surface 17a of the low-speed gear 10 of the output shaft 6, and the low-speed gear 10 of the output shaft 6 is moved as shown in FIGS. As shown, it is driven to rotate in the forward rotation direction.
[0013]
In this case, since the position of the low-speed gear 10 of the output shaft 6 is fixed, the boss 10a (see FIG. 1) is set to be sufficiently long so that the accuracy of the fitting portion between the output shaft 6 and the low-speed gear 10 is improved. The setting is made so that the falling phenomenon does not occur in the low-speed gear 10 of the output shaft 6. As a result, as shown in FIGS. 7 and 3 (b), even if the shift gear member 12 falls down in the above-described state, the medium-speed gear 9, a thrust force is generated on the opposite side (right side of the paper of FIG. 3B), and the thrust force is applied to the shift gear member 12, and the shift gear member 12 is moved to the medium speed gear 9 side (the paper surface of FIG. The self-disengagement phenomenon that moves to the left) is prevented.
[0014]
When the reverse power is transmitted from the hydrostatic continuously variable transmission 2 to the auxiliary transmission 4 in a state where the low-speed gear 13 of the shift gear member 12 is engaged with the low-speed gear 10 of the output shaft 6, the shift gear member 12 The gear teeth of the low-speed gear 13 abut on the reverse gear tooth surface 17 b of the low-speed gear 10 of the output shaft 6, and the low-speed gear 10 of the output shaft 6 moves backward as shown in FIGS. It is driven to rotate in the rotation direction.
Also in this case, as shown in FIGS. 7 and 3 (c), even if the shift gear member 12 falls down as described above, the middle gear face 17b of the low-speed gear 10 of the output shaft 6 has a middle gear. A thrust force is generated on the side opposite to the high-speed gear 9 (rightward on the paper surface of FIG. 3C), and the thrust force is applied to the shift gear member 12, and the shift gear member 12 is moved toward the medium-speed gear 9 (FIG. 3C). Self-disengagement phenomena trying to move to the left) is prevented.
[0015]
Next, the relationship between the internal gear 16 of the shift gear member 12 and the external gear 15 of the output gear 11 will be described.
As shown in FIGS. 1 and 5, an external gear 15 is formed on a lateral side surface of the output gear 11, and a forward gear tooth surface of gear teeth 18 of the external gear 15 as shown in FIG. At 18a, the inclination angle B (to the forward rotation direction is set so that the side opposite to the medium speed gear 9 (left side in the drawing) precedes the medium speed gear 9 side (right side in the drawing) in the forward rotation direction. The forward gear tooth surface 18a is inclined with an angle of, for example, 2 degrees 30 minutes ± 30 minutes (see FIG. 6B).
[0016]
Similarly, in the reverse gear tooth surface 18b of the gear tooth 18, the opposite side (left side in the drawing) of the medium speed gear 9 is arranged to precede the medium speed gear 9 side (right side in the drawing) in the reverse rotation direction. In addition, the reverse gear tooth surface 18b is inclined with an inclination angle B (for example, about 2 degrees 30 minutes ± 30 minutes) with respect to the reverse rotation direction (see FIG. 6C).
[0017]
On the other hand, in the gear teeth 19 of the internal gear 16 of the shift gear member 12, as shown in FIGS. 5 and 6 (a), the gap between the lateral side surface of the shift gear member 12 and the gear teeth 19 is formed. A groove 20 is formed over the entire circumference, and the gear teeth 19 are slightly separated from the lateral side surface of the shift gear member 12. In the gear teeth 19, both the forward gear tooth surface and the reverse gear tooth surface are orthogonal to the forward and reverse rotation directions (the state in which the inclination angle B shown in FIG. 6A is zero).
[0018]
With the above configuration, in a state where the internal gear 16 of the shift gear member 12 is engaged with the external gear 15 of the output gear 11, the forward power is transmitted from the hydrostatic continuously variable transmission 2 to the auxiliary transmission 4. 5 and 6 (b), the gear teeth 19 of the internal gear 16 of the shift gear member 12 come into contact with the forward gear tooth surface 18a of the external gear 15 of the output gear 11, and The output gear 11 is driven to rotate in the forward rotation direction.
[0019]
In this case, since the output gear 11 has a fixed position, the boss 11a (see FIG. 1) is set to be sufficiently long, and the accuracy of the fitting portion between the input shaft 5 and the output gear 11 is set to be high. The output gear 11 is prevented from falling down. Thus, even if the shift gear member 12 falls down in the above-described state, the forward gear tooth surface 18a of the external gear 15 of the output gear 11 is on the opposite side to the medium speed gear 9 (FIG. 6B). , A thrust force is generated on the shift gear member 12, and the shift gear member 12 tends to move toward the medium-speed gear 9 (to the right in FIG. 6B). Is prevented.
[0020]
When the reverse power is transmitted from the hydrostatic continuously variable transmission 2 to the auxiliary transmission 4 in a state where the internal gear 16 of the shift gear member 12 is engaged with the external gear 15 of the output gear 11, FIG. As shown in FIG. 6C, the gear teeth 19 of the internal gear 16 of the shift gear member 12 abut against the reverse gear tooth surface 18b of the external gear 15 of the output gear 11, and the output gear 11 is It is driven to rotate in the reverse rotation direction.
Even in this case, as described above, even if the shift gear member 12 falls down, the reverse gear tooth surface 18b of the external gear 15 of the output gear 11 is placed on the opposite side of the medium speed gear 9 (leftward on the paper). ) Is generated, the thrust force is applied to the shift gear member 12, and the shift gear member 12 is prevented from moving toward the medium-speed gear 9 (to the right in FIG. 6C). .
[0021]
In the internal gear 16 of the shift gear member 12, a groove 20 is formed over the entire circumference, and the gear teeth 19 are slightly separated from the lateral side surface of the shift gear member 12. As a result, as shown in FIGS. 5 and 3 (b) and (c), the gear teeth 19 of the internal gear 16 are shifted from the gear teeth 18 of the external gear 15 by the gear teeth surfaces 18a and 18b of the forward and reverse gears. The shift gear member 12 is brought into contact with the middle speed gear 9 so that the thrust force on the opposite side (left side in the drawing) from the middle speed gear 9 is reliably applied to the shift gear member 12.
[0027]
【The invention's effect】
According to the features of claim 1, the sliding operation of the spur gear, in the produced gear transmission structure to allow transmission and transmission blocking operation, it is possible to suppress the self-removal phenomenon from the occlusal position of the spur gear to be slid As a result, the reliability and durability of power transmission in the gear transmission structure can be improved.
In this case, it is possible to suppress the self-removal phenomenon only by performing processing to incline the gear tooth surface of the gear teeth a little, and it is not necessary to separately provide a special device for suppressing the self-removal phenomenon. It is advantageous in terms of.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional front view of a subtransmission in a low speed state. FIG. 2 is a perspective view of gear teeth of a low speed gear on an output shaft. FIG. 3 is a view of gear teeth of a low speed gear on an output shaft and low speed gears on a shift gear member. FIG. 4 is a plan view showing a state in which the sub-transmission is engaged with the gear teeth at a high speed. FIG. 5 is an engagement state between the external gear of the output gear on the input shaft and the internal gear of the shift gear member. and the external gear of the output gear in a vertical sectional side view and FIG. 6 input shaft showing a vertical sectional side shows the phenomenon collapse of a plan view and FIG. 7 shift gear member showing the occlusion of the internal gear of the shift gear member Figure [code Description ]
10 First spur gear 13 Second spur gear 15 External gear 16 Internal gear 17 Gear teeth 17a, 17b of first spur gear Gear tooth surface 18 of gear teeth of first spur gear 18 Gear teeth 18a, 18b of external gear Gear tooth surface 19 of the gear tooth of the external gear Gear tooth of the internal gear

Claims (1)

第1平ギヤ及び第2平ギヤを備えて、
前記第1平ギヤのギヤ歯に前記第2平ギヤのギヤ歯が咬合する咬合位置、及び前記第1平ギヤのギヤ歯から前記第2平ギヤのギヤ歯が離間する離間位置に亘って、前記第2平ギヤを軸芯方向にスライド操作自在に構成したギヤ伝動構造であって、
前記第1平ギヤを、該第1平ギヤを軸支する軸が貫入されるボス部を備えた一枚の平ギヤで構成し、前記ボス部の軸芯方向の長さを、前記第1平ギヤのギヤ歯の幅より長く構成し、前記第2平ギヤを、回転軸芯が共通の平行な複数枚の平ギヤを隣接させた一体の多段ギヤのいずれかの平ギヤで構成し、前記第2平ギヤのギヤ歯面を、回転軸芯と平行な面に形成してあるとともに、
前記第1平ギヤのギヤ歯面を、前記ギヤ歯面の咬合位置側が前記ギヤ歯面の離間位置側よりも回転方向に沿って先行するように、回転方向に対して傾斜させてあるギヤ伝動構造。
With a first spur gear and a second spur gear,
Over an occlusal position where the gear teeth of the second spur gear engage with the gear teeth of the first spur gear, and a separation position where the gear teeth of the second spur gear separate from the gear teeth of the first spur gear; A gear transmission structure in which the second spur gear is configured to be slidable in the axial direction,
The first spur gear is constituted by a single spur gear provided with a boss into which a shaft for supporting the first spur gear is inserted, and the length of the boss in the axial center direction is defined by the first spur gear. The second spur gear is configured to be longer than the gear teeth width of the spur gear, and the second spur gear is constituted by one of an integrated multi-stage gear in which a plurality of parallel spur gears having a common rotation axis are adjacent to each other; The gear tooth surface of the second spur gear is formed on a surface parallel to the rotation axis,
A gear transmission in which a gear tooth surface of the first spur gear is inclined with respect to the rotation direction such that an occlusal position side of the gear tooth surface precedes a separation position side of the gear tooth surface in a rotation direction. Construction.
JP23953496A 1996-09-10 1996-09-10 Gear transmission structure Expired - Fee Related JP3601914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23953496A JP3601914B2 (en) 1996-09-10 1996-09-10 Gear transmission structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23953496A JP3601914B2 (en) 1996-09-10 1996-09-10 Gear transmission structure

Publications (2)

Publication Number Publication Date
JPH1089419A JPH1089419A (en) 1998-04-07
JP3601914B2 true JP3601914B2 (en) 2004-12-15

Family

ID=17046245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23953496A Expired - Fee Related JP3601914B2 (en) 1996-09-10 1996-09-10 Gear transmission structure

Country Status (1)

Country Link
JP (1) JP3601914B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2023882B1 (en) * 2019-09-23 2021-05-25 Mci Mirror Controls Int Netherlands B V gear assembly

Also Published As

Publication number Publication date
JPH1089419A (en) 1998-04-07

Similar Documents

Publication Publication Date Title
US4192196A (en) Blocked change gear transmission and improved blocker and jaw clutch assembly therefor
US20060079366A1 (en) Belt for continuously variable transmission
JPH03358A (en) V-belt type continuously variable transmission
JP2001508162A (en) Back gear synchronous transmission for automobile
JP2003194097A (en) Gear fall preventing mechanism for transmission
US2535388A (en) Transmission coupling device
US4922767A (en) Helical gear transmission device
JP3601914B2 (en) Gear transmission structure
US5052535A (en) Positive clutch structure
KR930013528A (en) Sliding gear
SE417544B (en) EXCHANGE SYNCHRONIZING DEVICE
JPS58149421A (en) Dog clutch for switching two wheels to four in transfer device
JP2658539B2 (en) Synchro mechanism
US5732595A (en) Slidable transmission shaft for a manual transmission
KR950008809B1 (en) Reversing gear assembly for yachts
JP2907645B2 (en) Transmission structure
JPH0650410A (en) Planetary gear transmission
JPH0625737Y2 (en) Work vehicle traveling transmission
JP2593072Y2 (en) Gear transmission
JPH0514707U (en) Mission structure
EP0009775A1 (en) Blocked change gear transmission utilizing resilient shifting mechanisms and improved jaw clutch assembly therefor
JP2501363B2 (en) Power extractor for tractor
JPH0435622Y2 (en)
JPS6017560Y2 (en) Continuously variable transmission capable of forward and reverse rotation
JPS628451Y2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040921

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees