JP3601846B2 - Method for producing glutaryl-7-aminocephalosporanic acid - Google Patents

Method for producing glutaryl-7-aminocephalosporanic acid Download PDF

Info

Publication number
JP3601846B2
JP3601846B2 JP05829894A JP5829894A JP3601846B2 JP 3601846 B2 JP3601846 B2 JP 3601846B2 JP 05829894 A JP05829894 A JP 05829894A JP 5829894 A JP5829894 A JP 5829894A JP 3601846 B2 JP3601846 B2 JP 3601846B2
Authority
JP
Japan
Prior art keywords
cpc
esterase
7aca
compound
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05829894A
Other languages
Japanese (ja)
Other versions
JPH06315376A (en
Inventor
令 曽我
健二 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Pharma Corp
Original Assignee
Asahi Kasei Pharma Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Pharma Corp filed Critical Asahi Kasei Pharma Corp
Priority to JP05829894A priority Critical patent/JP3601846B2/en
Publication of JPH06315376A publication Critical patent/JPH06315376A/en
Application granted granted Critical
Publication of JP3601846B2 publication Critical patent/JP3601846B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【0001】
【産業上の利用分野】
本発明は、セファロスポリンCからD−アミノ酸オキシダーゼ含有物を用いてグルタリル−7−アミノセファロスポラン酸に酵素変換する方法の改良法に関する。さらに詳しくは該酵素中に共存するエステラーゼ酵素を選択的に不活性化またはエステラーゼ酵素反応を選択的に阻害する方法に関する。
【0002】
【従来の技術】
グルタリル−7−アミノセファロスポラン酸(以下「GL−7ACA」と称する)はセファロスポリンC(以下「CPC」と称する)から7−アミノセファロスポラン酸を製造するための製造中間体であることはよく知られている。GL−7ACAを高い収率で得るために、トリゴノプシス・バリアビリス(Trigonopsis variabilis)のD−アミノ酸オキシダーゼ(以下「DAO」と称する)の作用を利用して、CPCからGL−7ACAへ酵素的に変換する種々の方法が知られている。
【0003】
例えば、特公昭50−7158号公報、特公昭55−35119号公報等には、カタラーゼによるHの分解を防止するために、無機アザイド類や過ホウ酸塩などのカタラーゼ阻害剤の存在下でCPCの酵素的酸化を行い、GL−7ACAを得る方法、特公昭59−15635号公報には、カタラーゼ阻害剤を存在させる代わりに、カタラーゼで分解される以上の過酸化水素の存在下で反応させる方法が述べられている。特公昭55−35118号公報には、トリゴノプシス・バリアビリスの活性化細胞にナトリウムアジドなどのカタラーゼ阻害剤を用いることによってCPCの酵素的酸化反応を行い、高い収率のGL−7ACAを得る方法が述べられている。特開平3−53879号公報には、pH約11〜12の塩基性水溶液で処理してカタラーゼ活性を不活化したDAOを使用する方法が述べられている。
【0004】
また、特開平3−53879号公報には、デスアセチル−CPCおよびデスアセチル−GL−7ACAの副生を防止するために、トリゴノプシス・バリアビリスの細胞をアセトン/水で処理して、エステラーゼ活性を不活性化したDAOを使用する方法が述べられている。
【0005】
【発明が解決しようとする課題】
しかし、前記の酵素反応を工業スケールで経済的に実施するには、いくつかの問題を含んでいた。それらの課題の1つに、トリゴノプシス・バリアビリスに由来するエステラーゼの存在による収率の低下がある。
エステラーゼは、CPCからGL−7ACAへの酸化反応中に、そこに生成したα−ケト−アジポイル−7−アミノセファロスポラン酸(以下「KETO−CPC」と称する)反応中間体ならびにCPCおよびGL−7ACAの3位のアセトキシメチル基のアセチル基を脱離(脱アセチル化)し、GL−7ACAの収量を減少させる。
【0006】
また、該エステラーゼによって副生されるデスアセチル−CPCおよびデスアセチル−GL−7ACAは、不純物としてGL−7ACAの品質に多大な悪影響を及ぼす。したがって、GL−7ACAの収率および品質を向上させるために、該エステラーゼの不活性化あるいは該エステラーゼ反応の阻害は重要である。
一方、エステラーゼの不活性化を図る方法として、DAO生産菌を90〜50%の水/アセトン(2:1、v:v)混合液で処理することによってエステラーゼを除去する方法(特開平3−53879号公報)等が知られている。しかし、アセトンを除去する等の処理が複雑かつ面倒であり、さらに、工業レベルに応用できる簡易かつ効率的なエステラーゼ活性の不活性化法の確立が望まれていた。
【0007】
【課題を解決するための手段】
以上の点に鑑みて本発明者らは鋭意研究を重ねた結果、DAO生産菌であるトリゴノプシス・バリアビリス由来のDAO含有物にCu化合物、例えば、CuSOを接触させることによって、DAO活性存在下でエステラーゼを選択的に不活性化することができることを、また、該DAO含有物およびCPCを含有した液に、Cu化合物を接触させることによって、DAOによる酵素的酸化反応中にエステラーゼ反応のみを特異的に阻害することができることを見出し、本発明を完成するに至った。
【0008】
すなわち、本発明は、DAOの存在下でエステラーゼを不活性化させる方法であって、該酵素混合物にCu化合物を接触させることを特徴とするエステラーゼの不活性化方法であり、また、本発明は、CPCからDAO含有物を用いてGL−7ACAを製造する方法において、Cu化合物と接触させた、DAO含有物を用いることを特徴とするGL−7ACAの製造方法、前記の方法においてDAO含有物およびCPCを含有した液に、Cu化合物を接触させることを特徴とするGL−7ACAの製造方法である。
【0009】
本発明において酸化反応に用いるCPC溶液は、CPC粉末を水に溶解した水溶液、あるいはCPC生産菌であるアクレモニウム・クリソゲナムを適当な培地、例えば、シュークロース2%、炭酸カルシウム0.5%、硫酸カルシウム1.25%、酢酸アンモニウム0.8%、コーンスターチ3%、ビートモラセス5%、脱脂大豆6%、メチルオレート3%等を含む培地、またはその他CPC生産菌に好適な栄養培地によって培養され菌体、固形分等が除去された培養液を挙げることができる。
【0010】
DAO含有物にCu化合物を接触させるエステラーゼの不活性化方法は、該酵素が未精製の状態あるいは部分的に精製された状態の如何なる形態であってもよく、例えば、トリゴノプシス・バリアビリスの細胞、部分的に破壊した細胞、膜透過性にした細胞、それから該酵素を抽出した細胞不含の抽出液、固定化酵素等として存在している場合が挙げられる。これらは、従来公知の方法で得ることができる。
本発明において用いられるDAO含有物は、トリゴノプシス・バリアビリスに由来するものが好ましいが、KETO−CPCの副生を阻止するためには、カタラーゼを欠損した菌株、例えば、トリゴノプシス・バリアビリス KC−103株(受託番号:微工研菌寄第13074号、国際寄託番号;FERM BP−4359)などを使用するのがより好ましい。
【0011】
DAO含有物の水溶液または懸濁液に、10〜2000ppm濃度のCu化合物を溶解させ、5〜25℃で2〜24時間接触処理することにより、エステラーゼ活性が選択的に低減される。この処理により、エステラーゼ活性を半分以下にすることができる。前記処理において、Cu化合物濃度を10〜400ppm程度の範囲で行えば、DAO活性に全く影響することなくエステラーゼを不活性化することができる。さらに、Cu化合物濃度を50〜400ppmの範囲で前記処理を行えば、エステラーゼ活性が1/10以下に低減し、エステラーゼ/DAOの活性比を1%以下にすることができるので好ましい。
【0012】
本発明においては、共存するエステラーゼの不活性化は、酵素的酸化反応前だけでなく、共存するエステラーゼを不活性化させていないDAO含有物を作用させて、CPCからGL−7ACAに酵素的酸化反応する段階においてCu化合物を接触させてもよい。すなわち、前記のCu化合物の接触を、エステラーゼが共存するDAO含有物に前もって直接行うのではなく、該酵素含有物をCPC溶液に反応させる際に、Cu化合物を添加することにより行われる。この場合においても、前記反応液中のCu化合物の濃度が10〜2000ppmの範囲になるようにCu化合物を接触させればよい。さらに、Cu化合物濃度を50〜400ppmの範囲で前記反応を行えば、エステラーゼ/DAOの活性比を1%以下にすることができるので好ましい。本発明で使用するCu化合物は、CuSOなどが挙げられる。
【0013】
エステラーゼ活性は、適量の酵素サンプルを、0.2Mリン酸バッファー(pH7.5)に溶解した2g/L濃度のGL−7ACA溶液に添加し、25℃で30分間反応させた後、等量のメタノールを添加することによって反応を停止させ、生成したデスアセチル−GL−7ACAの量を高速液体クロマトグラフィー(HPLC)にて定量することにより求めることができる。
また、DAO活性は、適量の酵素サンプルを0.1Mリン酸バッファー(pH7.5)に溶解した10g/L濃度のCPC溶液に添加し、25℃で15分間反応させた後、等量のメタノールを添加することによって反応を停止させ、生成したGL−7ACAおよびKETO−CPCをHPLCにて定量することにより求めることができる。
DAO含有物を酵素的酸化反応中にCu化合物と接触させる場合は、酵素的酸化反応の前後のデスアセチル−CPCとデスアセチル−GL−7ACAを定量する。CPCに対するデスアセチル誘導体の増加分を、エステラーゼ/DAOの活性比とする。
【0014】
CPC含有液にDAO含有物を作用させることにより酵素的酸化反応を行うに当たっては、通常、反応液に酸素を吹き込みながら行われる。反応温度は通常20〜30℃の範囲で行われる。反応時間はCPC濃度、DAO含有物の使用量または活性度合い、反応温度、pHにより左右されるが、HPLC,薄層クロマトグラフィー等により、反応の経過を追跡することができるので、GL−7ACAが最大に生成される時期を待って適宜反応を終了すればよい。通常は30分〜4時間程度である。KETO−CPCの残存量を低減させるために、過酸化水素を反応液に加えてもよい。
得られた反応液から目的とするGL−7ACAを採取、精製するには、公知の方法により行えばよい。
【0015】
【実施例】
以下に,本発明について実施例および参考例を挙げて,さらに詳しく説明するが、本発明は,これらの実施例により何等限定されるものではない。
(実施例1)
トリゴノプシス・バリアビリス KC−103株をグルコース2%、コーンスチープリカー2%およびDL−メチオニン0.2%を含む培地により、25℃で60時間培養し、得られた培養液60ml(湿菌体6gを含む)にトルエン0.3mlを加え、25℃で2時間撹拌して菌体の膜透過性を付与した。
【0016】
得られたトルエン含有培養液に、23.6mgのCuSO・5HOを溶解し、室温で2時間放置した。得られたトルエン−Cu含有培養液から適量の酵素サンプルを取り出し、これを0.2mol/Lリン酸カリウムバッファー(pH7.5)に溶解した2g/LのGL−7ACA溶液に添加し、25℃で30分間反応させた後、等量のメタノールを加えることによって反応を停止させた。生成したデスアセチル−GL−7ACAの量をHPLCで定量したところ、新たに生成したデスアセチル−GL−7ACAは定量できず、該酵素サンプル中のエステラーゼは十分に不活性化されていることがわかった。
次いで、10gのCPC粉末を1000mlの水に溶解し、これをpH7.5に調節したCPC溶液を、前記のトルエン−Cu含有培養液と混合し、該混合液中に酸素を吹き込みながら、20℃で約180分間反応させたところ、93.2%の収率でGL−7ACAが得られた。
【0017】
(実施例2)
実施例1と同様の方法によって培養を行い、該培養液に膜透過性を付与し、かつ、エステラーゼを不活性化させたトリゴノプシス・バリアビリス KC−103株のトルエン−Cu含有培養液を得た。一方、8.5g/L濃度のCPCを含むアクレモニウム・クリソゲナムの培養液をpH2.5で除菌した後、pH7.5に調節し,得られたCPC培養液1200mlを前記トルエン−Cu含有培養液60mlと混合した。
次いで、前記混合培養液に酸素を吹き込み、かつ、3.5%濃度の過酸化水素23.9mlを連続的に添加しながら,20℃で約240分間反応させたところ、92.8%の収率でGL−7ACAが得られた。
【0018】
(実施例3)
実施例1と同様の方法によって培養を行い、該培養液に膜透過性を付与したトリゴノプシス・バリアビリス KC−103株のトルエン含有培養液を得た。一方、10gのCPC粉末を1000mlの水に溶解し、これをpH7.5に調節したCPC溶液を前記トルエン含有培養液60mlと混合した。
次いで、該混合液に0.5gのCuSO・5HOを添加溶解し、酸素を吹き込みながら、20℃で約180分間反応させたところ、92.2%の収率でGL−7ACAが得られた。
なお、反応の前後でエステラーゼによるデスアセチル−CPC、デスアセチル−GL−7ACAの増加は、両者を合わせても、添加したCPCの量の1%以下であった。
【0019】
(実施例4)
実施例1と同様の方法によって培養を行い、該培養液に膜透過性を付与したトリゴノプシス・バリアビリス KC−103株のトルエン含有培養液60mlと、実施例2と同様の方法によって得られたCPC培養液1200mlとを混合した。
次いで、該混合液に0.5gのCuSO・5HOを添加溶解し、酸素を吹き込み、かつ、3.5%濃度の過酸化水素23.9mlを連続的に添加しながら、20℃で約240分間反応させたところ、92.0%の収率でGL−7ACAが得られた。
なお、反応の前後でエステラーゼによるデスアセチル−CPC、デスアセチル−GL−7ACAの増加は、両者を合わせても、添加したCPCの量の1%以下であった。
【0020】
(実施例5)
実施例1と同様の方法によって培養を行い、得られたトリゴノプシス・バリアビリス KC−103株の培養液400ml(湿菌体40gを含む)にトルエン2.0mlを加え、実施例1と同様の方法で処理した。
該トルエン含有培養液に157.3mgのCuSO・5HOを溶解し,室温で2時間放置した。得られたトルエン−Cu含有培養液から適量の酵素サンプルを取り出し、実施例1と同様の方法でエステラーゼ活性を測定したところ、該酵素サンプル中のエステラーゼは、実施例1と同様に十分に不活性化されていることがわかった。
次いで、10gのCPC粉末を1000mlの水に溶解し、これをpH7.5に調節したCPC溶液を、前記のトルエン−Cu含有培養液と混合し、該混合液中に酸素を吹き込みながら、20℃で約30分間反応させたところ、99.0%の収率でGL−7ACAが得られた。
【0021】
(実施例6)
実施例1と同様の方法によって培養を行い、該培養液に膜透過性を付与したトリゴノプシス・バリアビリス KC−103株のトルエン含有培養液400mlと、実施例1と同様の方法によって得られたCPC溶液1000mlとを混合した。
次いで、該混合液に0.66gのCuSO・5HOを添加溶解し、酸素を吹き込みながら、20℃で約30分間反応させたところ、98.1%の収率でGL−7ACAが得られた。
なお、反応の前後でエステラーゼによるデスアセチル−CPC、デスアセチル−GL−7ACAの増加は、両者をあわせても、添加したCPCの量の1%以下であった。
【0022】
(参考例1)
実施例1と同様の方法によって培養を行い、該培養液に膜透過性を付与したトリゴノプシス・バリアビリス KC−103株のトルエン含有培養液60mlと、実施例1と同様の方法によって得られたCPC溶液1000mlを混合した。次いで、該混合液に酸素を吹き込みながら、20℃で約180分間反応させたところ、83.0%の収率でGL−7ACAが得られた。
【0023】
【発明の効果】
本発明の方法によれば、D−アミノ酸オキシダーゼと共存するエステラーゼを、特異的に不活性化、あるいは該エステラーゼ反応のみを阻害することができるので、極めて高収率で高品質のGL−7ACAが得られる。また、本発明は、極めて簡単かつ安全性がよいので、工業スケールで実施可能である。
[0001]
[Industrial applications]
The present invention relates to an improved method for enzymatically converting cephalosporin C to glutaryl-7-aminocephalosporanic acid using a substance containing D-amino acid oxidase. More specifically, the present invention relates to a method for selectively inactivating an esterase enzyme coexisting in the enzyme or selectively inhibiting an esterase enzyme reaction.
[0002]
[Prior art]
Glutaryl-7-aminocephalosporanic acid (hereinafter referred to as "GL-7ACA") is a production intermediate for producing 7-aminocephalosporanic acid from cephalosporin C (hereinafter referred to as "CPC"). well known. In order to obtain GL-7ACA in high yield, enzymatic conversion of CPC to GL-7ACA is carried out by utilizing the action of Trigonopsis variabilis D-amino acid oxidase (hereinafter referred to as "DAO"). Various methods are known.
[0003]
For example, Japanese Patent Publication No. 50-7158 and Japanese Patent Publication No. 55-35119 disclose the existence of catalase inhibitors such as inorganic azides and perborate in order to prevent the decomposition of H 2 O 2 by catalase. Japanese Patent Publication No. 59-15635 discloses a method for obtaining GL-7ACA by enzymatic oxidation of CPC under the following conditions. In the presence of a catalase inhibitor, instead of the presence of a catalase inhibitor, A method of reacting is described. Japanese Patent Publication No. 55-35118 discloses a method for obtaining a high yield of GL-7ACA by performing an enzymatic oxidation reaction of CPC by using a catalase inhibitor such as sodium azide in activated cells of Trigonopsis variabilis. Have been. JP-A-3-53879 describes a method of using a DAO in which catalase activity has been inactivated by treatment with a basic aqueous solution having a pH of about 11 to 12.
[0004]
JP-A-3-53879 discloses that in order to prevent by-products of desacetyl-CPC and desacetyl-GL-7ACA, Trigonopsis variabilis cells are treated with acetone / water to inhibit esterase activity. A method using activated DAO is described.
[0005]
[Problems to be solved by the invention]
However, economically carrying out the enzymatic reaction on an industrial scale involves several problems. One of those challenges is the reduction in yield due to the presence of esterase from Trigonopsis variabilis.
Esterase reacts with α-keto-adipoyl-7-aminocephalosporanic acid (hereinafter referred to as “KETO-CPC”) reaction intermediate formed during the oxidation reaction of CPC to GL-7ACA, and CPC and GL-7ACA. The acetyl group of the acetoxymethyl group at position 3 is eliminated (deacetylated) to reduce the yield of GL-7ACA.
[0006]
In addition, desacetyl-CPC and desacetyl-GL-7ACA by-produced by the esterase have a great adverse effect on the quality of GL-7ACA as impurities. Therefore, in order to improve the yield and quality of GL-7ACA, inactivating the esterase or inhibiting the esterase reaction is important.
On the other hand, as a method for inactivating the esterase, a method of removing the esterase by treating a DAO-producing bacterium with a 90-50% water / acetone (2: 1, v: v) mixed solution (Japanese Unexamined Patent Publication No. No. 53879) is known. However, treatments such as removal of acetone are complicated and troublesome, and furthermore, a simple and efficient method for inactivating esterase activity applicable to an industrial level has been desired.
[0007]
[Means for Solving the Problems]
In view of the above points, the present inventors have conducted intensive studies, and as a result, by contacting a DAO-containing substance derived from a DAO-producing bacterium Trigonopsis variabilis with a Cu compound, for example, CuSO 4 , in the presence of DAO activity The fact that the esterase can be selectively inactivated and that the solution containing the DAO-containing substance and the CPC is brought into contact with a Cu compound to specifically inhibit only the esterase reaction during the enzymatic oxidation reaction by DAO. And found that the present invention was completed.
[0008]
That is, the present invention relates to a method for inactivating esterase in the presence of DAO, which is a method for inactivating esterase, which comprises contacting the enzyme mixture with a Cu compound. A method for producing GL-7ACA from a CPC using a DAO-containing material, wherein the method comprises the step of using the DAO-containing material in contact with a Cu compound; A method for producing GL-7ACA, comprising contacting a Cu compound with a liquid containing CPC.
[0009]
The CPC solution used for the oxidation reaction in the present invention is an aqueous solution obtained by dissolving CPC powder in water, or a CPC-producing bacterium, Acremonium chrysogenum, in a suitable medium, for example, sucrose 2%, calcium carbonate 0.5%, sulfuric acid Cultured and cultured in a medium containing 1.25% calcium, 0.8% ammonium acetate, 3% corn starch, 5% beet molasses, 6% defatted soybean, 3% methyl oleate, or other nutrient medium suitable for CPC producing bacteria A culture solution from which the body, solid content, etc. have been removed can be mentioned.
[0010]
The method of inactivating an esterase in which a DA compound is brought into contact with a Cu compound may be in any form in which the enzyme is in an unpurified state or in a partially purified state, for example, a cell, a part of Trigonopsis variabilis. Examples include cells that have been disrupted, cells that have been made membrane permeable, cell-free extracts from which the enzyme has been extracted, and immobilized enzymes. These can be obtained by a conventionally known method.
The DAO-containing substance used in the present invention is preferably derived from Trigonopsis variabilis, but in order to prevent KETO-CPC by-product, a strain deficient in catalase, for example, Trigonopsis variabilis KC-103 strain ( Accession No .: No. 13074, Microcosms International Deposit No .; FERM BP-4359) is more preferable.
[0011]
Esterase activity is selectively reduced by dissolving a Cu compound at a concentration of 10 to 2,000 ppm in an aqueous solution or suspension of a DAO-containing substance and subjecting it to a contact treatment at 5 to 25 ° C for 2 to 24 hours. By this treatment, the esterase activity can be reduced to half or less. If the concentration of the Cu compound is in the range of about 10 to 400 ppm in the above treatment, the esterase can be inactivated without any influence on the DAO activity. Further, it is preferable to perform the above treatment at a Cu compound concentration of 50 to 400 ppm, since the esterase activity can be reduced to 1/10 or less and the esterase / DAO activity ratio can be reduced to 1% or less.
[0012]
In the present invention, inactivation of the coexisting esterase is carried out not only before the enzymatic oxidation reaction but also by enzymatic oxidation of CGL to GL-7ACA by reacting a DAO-containing substance which does not inactivate the coexisting esterase. A Cu compound may be brought into contact at the stage of reacting. That is, the above-mentioned contact of the Cu compound is not performed directly beforehand with the DAO-containing substance in which the esterase coexists, but by adding the Cu compound when reacting the enzyme-containing substance with the CPC solution. Also in this case, the Cu compound may be brought into contact so that the concentration of the Cu compound in the reaction solution is in the range of 10 to 2000 ppm. Further, it is preferable to carry out the above reaction at a Cu compound concentration in the range of 50 to 400 ppm, since the esterase / DAO activity ratio can be reduced to 1% or less. Examples of the Cu compound used in the present invention include CuSO 4 .
[0013]
Esterase activity was determined by adding an appropriate amount of an enzyme sample to a 2 g / L GL-7ACA solution dissolved in 0.2 M phosphate buffer (pH 7.5) and reacting at 25 ° C. for 30 minutes. The reaction can be stopped by adding methanol, and the amount of produced desacetyl-GL-7ACA can be determined by quantifying the amount of desacetyl-GL-7ACA by high performance liquid chromatography (HPLC).
The DAO activity was determined by adding an appropriate amount of an enzyme sample to a 10 g / L CPC solution in 0.1 M phosphate buffer (pH 7.5), reacting it at 25 ° C. for 15 minutes, and adding an equal amount of methanol. Is added to stop the reaction, and the resulting GL-7ACA and KETO-CPC can be determined by quantification by HPLC.
If the DAO-containing material is contacted with a Cu compound during the enzymatic oxidation reaction, desacetyl-CPC and desacetyl-GL-7ACA before and after the enzymatic oxidation reaction are quantified. The increase of the desacetyl derivative relative to CPC is defined as the esterase / DAO activity ratio.
[0014]
In performing an enzymatic oxidation reaction by allowing a DAO-containing substance to act on a CPC-containing liquid, the reaction is usually performed while blowing oxygen into the reaction liquid. The reaction temperature is usually in the range of 20 to 30 ° C. The reaction time depends on the CPC concentration, the amount or activity of the DAO-containing substance, the reaction temperature, and the pH. However, the progress of the reaction can be monitored by HPLC, thin-layer chromatography, or the like. The reaction may be appropriately terminated after waiting for the maximum generation time. Usually, it is about 30 minutes to 4 hours. Hydrogen peroxide may be added to the reaction solution in order to reduce the remaining amount of KETO-CPC.
The target GL-7ACA can be collected and purified from the obtained reaction solution by a known method.
[0015]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and Reference Examples, but the present invention is not limited to these Examples.
(Example 1)
Trigonopsis variabilis KC-103 strain was cultured at 25 ° C. for 60 hours in a medium containing 2% glucose, 2% corn steep liquor and 0.2% DL-methionine, and 60 ml of the resulting culture solution (wet 6 g of wet cells) 0.3 ml of toluene was added thereto, and the mixture was stirred at 25 ° C. for 2 hours to impart membrane permeability to the cells.
[0016]
In the obtained toluene-containing culture solution, 23.6 mg of CuSO 4 .5H 2 O was dissolved and left at room temperature for 2 hours. An appropriate amount of an enzyme sample was taken out from the obtained toluene-Cu-containing culture solution, added to a 2 g / L GL-7ACA solution dissolved in 0.2 mol / L potassium phosphate buffer (pH 7.5), and added at 25 ° C. After reaction for 30 minutes, the reaction was stopped by adding an equal amount of methanol. When the amount of the produced desacetyl-GL-7ACA was quantified by HPLC, newly produced desacetyl-GL-7ACA could not be quantified, and it was found that the esterase in the enzyme sample was sufficiently inactivated. Was.
Next, 10 g of CPC powder was dissolved in 1000 ml of water, and a CPC solution adjusted to pH 7.5 was mixed with the above-mentioned toluene-Cu-containing culture solution. And GL-7ACA was obtained with a yield of 93.2%.
[0017]
(Example 2)
Culture was carried out in the same manner as in Example 1 to obtain a toluene-Cu-containing culture solution of Trigonopsis variabilis KC-103 strain in which the culture solution was imparted with membrane permeability and esterase was inactivated. On the other hand, a culture solution of Acremonium chrysogenum containing 8.5 g / L of CPC was sterilized at pH 2.5, adjusted to pH 7.5, and 1200 ml of the obtained CPC culture solution was cultured in the toluene-Cu-containing culture. The solution was mixed with 60 ml.
Subsequently, the mixture was reacted at 20 ° C. for about 240 minutes while blowing oxygen into the mixed culture medium and continuously adding 23.9 ml of 3.5% hydrogen peroxide. GL-7ACA was obtained at a rate.
[0018]
(Example 3)
Culture was carried out in the same manner as in Example 1 to obtain a toluene-containing culture solution of Trigonopsis variabilis KC-103 strain in which the culture solution was imparted with membrane permeability. On the other hand, 10 g of CPC powder was dissolved in 1000 ml of water, and a CPC solution adjusted to pH 7.5 was mixed with 60 ml of the toluene-containing culture solution.
Then, 0.5 g of CuSO 4 .5H 2 O was added and dissolved in the mixture, and the mixture was reacted at 20 ° C. for about 180 minutes while blowing oxygen, whereby GL-7ACA was obtained at a yield of 92.2%. Was done.
In addition, before and after the reaction, the increase of desacetyl-CPC and desacetyl-GL-7ACA by esterase was 1% or less of the amount of CPC added even when both were added.
[0019]
(Example 4)
Cultivation was carried out in the same manner as in Example 1, and 60 ml of a toluene-containing culture solution of Trigonopsis variabilis KC-103 strain having membrane permeability imparted to the culture medium, and CPC culture obtained in the same manner as in Example 2. The solution and 1200 ml were mixed.
Next, 0.5 g of CuSO 4 .5H 2 O was added and dissolved in the mixture, oxygen was blown in, and 23.9 ml of 3.5% hydrogen peroxide was continuously added at 20 ° C. After reacting for about 240 minutes, GL-7ACA was obtained with a yield of 92.0%.
In addition, before and after the reaction, the increase of desacetyl-CPC and desacetyl-GL-7ACA by esterase was 1% or less of the amount of CPC added even when both were added.
[0020]
(Example 5)
Cultivation was carried out in the same manner as in Example 1, and 2.0 ml of toluene was added to 400 ml (containing 40 g of wet bacterial cells) of the obtained culture solution of Trigonopsis variabilis KC-103, followed by the same method as in Example 1. Processed.
157.3 mg of CuSO 4 .5H 2 O was dissolved in the toluene-containing culture solution and left at room temperature for 2 hours. When an appropriate amount of an enzyme sample was taken out from the obtained toluene-Cu-containing culture solution and the esterase activity was measured in the same manner as in Example 1, the esterase in the enzyme sample was sufficiently inactive as in Example 1. It turned out that it was.
Next, 10 g of CPC powder was dissolved in 1000 ml of water, and a CPC solution adjusted to pH 7.5 was mixed with the above-mentioned toluene-Cu-containing culture solution. For about 30 minutes, GL-7ACA was obtained in a yield of 99.0%.
[0021]
(Example 6)
Culture was carried out in the same manner as in Example 1, and 400 ml of a toluene-containing culture solution of Trigonopsis variabilis KC-103 strain having membrane permeability imparted to the culture medium, and a CPC solution obtained by the same method as in Example 1. 1000 ml.
Next, 0.66 g of CuSO 4 .5H 2 O was added and dissolved in the mixture, and the mixture was reacted at 20 ° C. for about 30 minutes while blowing oxygen. As a result, GL-7ACA was obtained at a yield of 98.1%. Was done.
In addition, before and after the reaction, the increase of desacetyl-CPC and desacetyl-GL-7ACA by esterase was 1% or less of the amount of CPC added even if both were added.
[0022]
(Reference Example 1)
Culture was performed in the same manner as in Example 1, and 60 ml of a toluene-containing culture solution of Trigonopsis variabilis KC-103 strain having membrane permeability imparted to the culture solution, and a CPC solution obtained by the same method as in Example 1. 1000 ml were mixed. Next, the mixture was allowed to react at 20 ° C. for about 180 minutes while blowing oxygen, whereby GL-7ACA was obtained at a yield of 83.0%.
[0023]
【The invention's effect】
According to the method of the present invention, esterase coexisting with D-amino acid oxidase can be specifically inactivated or only the esterase reaction can be inhibited, so that GL-7ACA of very high yield and high quality can be obtained. can get. Further, the present invention can be implemented on an industrial scale because it is extremely simple and has good safety.

Claims (5)

D−アミノ酸オキシダーゼ酵素の存在下でエステラーゼを不活性化させる方法であって、該酵素混合物にCu化合物を接触させることを特徴とするエステラーゼの不活性化方法。A method for inactivating esterase in the presence of a D-amino acid oxidase enzyme, comprising contacting a Cu compound with the enzyme mixture. セファロスポリンCからD−アミノ酸オキシダーゼ含有物を用いてグルタリル−7−アミノセファロスポラン酸を製造する方法において、Cu化合物と接触させた、該D−アミノ酸オキシダーゼ含有物を用いることを特徴とするグルタリル−7−アミノセファロスポラン酸の製造方法。A method for producing glutaryl-7-aminocephalosporanic acid from cephalosporin C using a D-amino acid oxidase-containing substance, comprising using the D-amino acid oxidase-containing substance contacted with a Cu compound. A method for producing -7-aminocephalosporanic acid. セファロスポリンCからD−アミノ酸オキシダーゼ含有物を用いてグルタリル−7−アミノセファロスポラン酸を製造する方法において、D−アミノ酸オキシダーゼ含有物およびセファロスポリンCを含有した液に、Cu化合物を接触させることを特徴とするグルタリル−7−アミノセファロスポラン酸の製造方法。In a method for producing glutaryl-7-aminocephalosporanic acid from cephalosporin C using a D-amino acid oxidase-containing substance, a Cu compound is brought into contact with a liquid containing the D-amino acid oxidase-containing substance and cephalosporin C. A method for producing glutaryl-7-aminocephalosporanic acid, comprising: D−アミノ酸オキシダーゼ含有物が、トリゴノプシス・バリアビリスの細胞、部分的に破壊された前記細胞、膜透過性の付与された前記細胞、前記細胞から抽出された酵素抽出液、または固定化酵素である請求項2または3記載の方法。The D-amino acid oxidase-containing substance is a cell of Trigonopsis variabilis, the partially disrupted cell, the cell having membrane permeability, an enzyme extract extracted from the cell, or an immobilized enzyme. Item 4. The method according to item 2 or 3. Cu化合物の濃度が10〜2000ppmである請求項1ないし4のいずれかに記載の方法。The method according to any one of claims 1 to 4, wherein the concentration of the Cu compound is 10 to 2000 ppm.
JP05829894A 1993-03-09 1994-03-04 Method for producing glutaryl-7-aminocephalosporanic acid Expired - Fee Related JP3601846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05829894A JP3601846B2 (en) 1993-03-09 1994-03-04 Method for producing glutaryl-7-aminocephalosporanic acid

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7277793 1993-03-09
JP5-72777 1993-03-09
JP05829894A JP3601846B2 (en) 1993-03-09 1994-03-04 Method for producing glutaryl-7-aminocephalosporanic acid

Publications (2)

Publication Number Publication Date
JPH06315376A JPH06315376A (en) 1994-11-15
JP3601846B2 true JP3601846B2 (en) 2004-12-15

Family

ID=26399355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05829894A Expired - Fee Related JP3601846B2 (en) 1993-03-09 1994-03-04 Method for producing glutaryl-7-aminocephalosporanic acid

Country Status (1)

Country Link
JP (1) JP3601846B2 (en)

Also Published As

Publication number Publication date
JPH06315376A (en) 1994-11-15

Similar Documents

Publication Publication Date Title
JPH04504362A (en) Enzymatic production of 7-aminocephalosporanic acid
JP3523285B2 (en) Production method for glycolytic enzymes
EP0206904B1 (en) Process for the enzymatic production of l-alpha amino acids from alpha keto acids
JPH0249580A (en) Acetyl esterase
JP3117092B2 (en) Method for continuously converting cephalosporin derivative to glutaryl-7-aminocephalosporanic acid derivative
JP3601846B2 (en) Method for producing glutaryl-7-aminocephalosporanic acid
EP0517200B1 (en) Process for the enzymatic production of cephalosporane derivatives
US4492757A (en) Process for preparing L-threonine
JPH06315396A (en) Method for converting cephalosporin c into glutaryl-7-aminocephalosporanic acid with enzyme
JPS5920360B2 (en) Method for producing 7-aminocephalosporanic acid and its derivatives
JP3638425B2 (en) Process for producing optically active α-aminoadipic acid-γ-semialdehyde ethylene acetal
JP3085783B2 (en) Process for producing optically active 2-phenylpropionic acid and 2-phenylpropionamide
JPH06189761A (en) Production of glutaryl-7-aminocephalosporanic acid
JPH01300892A (en) Urethanase and production thereof
JPH07327691A (en) Production of trehalose
JP3093039B2 (en) Novel esterase A and method for producing the same
JP4012176B2 (en) A novel microorganism that converts validamycin to valienamine and validamine.
US5322782A (en) Method of synthesizing optically active β-halolactic acid
JP3152855B2 (en) Novel sorbitol dehydrogenase, method for producing the same, reagent and method for quantifying sorbitol using the enzyme
JPH0361481A (en) Dehydrogenating enzyme for formic acid and production of the same enzyme
JPS5915635B2 (en) Method for producing 7-(4-carboxybutanamide)-3-cephem-4-carboxylic acid compound
US4661448A (en) Method for producing reduced-form coenzyme
JP3011472B2 (en) Production method of indigo by enzymatic method
JPS62107798A (en) Production of cephalosporin derivative
JP3917723B2 (en) Lactone hydrolase and process for producing the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040921

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees