JP3601413B2 - Metal halide lamp - Google Patents

Metal halide lamp Download PDF

Info

Publication number
JP3601413B2
JP3601413B2 JP2000155558A JP2000155558A JP3601413B2 JP 3601413 B2 JP3601413 B2 JP 3601413B2 JP 2000155558 A JP2000155558 A JP 2000155558A JP 2000155558 A JP2000155558 A JP 2000155558A JP 3601413 B2 JP3601413 B2 JP 3601413B2
Authority
JP
Japan
Prior art keywords
arc tube
electrode
temperature
heat insulating
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000155558A
Other languages
Japanese (ja)
Other versions
JP2001338610A (en
Inventor
和彦 酒井
淳典 岡田
真吾 東坂
拓磨 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2000155558A priority Critical patent/JP3601413B2/en
Publication of JP2001338610A publication Critical patent/JP2001338610A/en
Application granted granted Critical
Publication of JP3601413B2 publication Critical patent/JP3601413B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Discharge Lamps And Accessories Thereof (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、金属ハロゲン化物を封入してなるメタルハライドランプに関するものである。
【0002】
【従来の技術】
メタルハライドランプは高輝度、高効率、高演色性という特長をもつことから幅広い分野で用いられている。一般的なメタルハライドランプには、ランプを始動させるための希ガスと、バッファガスの役割を果たす水銀と、所望の光を発する金属ハロゲン化物が封入されている。例えば、金属ハロゲン化物として、沃化ナトリウム、沃化タリウム、及び沃化インジウムが発光管に封入されたメタルハライドランプや、金属ハロゲン化物として沃化ナトリウム及び沃化スカンジウムが発光管に封入されたメタルハライドランプが広く利用されている。
【0003】
しかし、ランプが多数設置されている場所では、いわゆる青みが強い、あるいは赤みが強い等と言われる全体の色の感じからずれたランプがある場合や、数が少なくても隣のランプとの比較で色ムラとして問題となることがある。例えば、赤成分の光を主に発する沃化ナトリウム、緑成分の光を主に発する沃化タリウム、及び青成分の光を主に発する沃化インジウムが発光管に封入されたメタルハライドランプでは以下の原因により色ムラが発生する。
【0004】
ランプの点灯中は、水銀、沃化タリウム、沃化インジウムはほとんど蒸発している。これに対し、沃化ナトリウムは、点灯中に消耗することを考慮して発光管に余剰に封入されているので、ランプの点灯中であっても大部分が液状で発光管内の温度の一番低い場所(いわゆる最冷点)に存在している。ところで、最冷点の温度(以下、最冷点温度と称す)は、例えば電源電圧の変動によるランプ入力の変動や製造時の形状ばらつき等の様々な要因でばらつきを生じ、このメタルハライドランプでは、最冷点部温度にばらつきがあるとナトリウムの蒸発量が変化してナトリウムの発光強度が変化するので、3原色の発光バランスがくずれて色ムラが発生する。すなわち発光管の最冷点温度が低い場合にはナトリウムの発光強度が低下し青みを帯び、発光管の最冷点温度が高い場合にはナトリウムの発光強度が上昇し赤みを帯びることになる。
【0005】
一方、沃化ナトリウム及び沃化スカンジウムが発光管に封入されたメタルハライドランプの場合には、スカンジウムが連続したスペクトルで発光しているので、ナトリウムの発光強度が少々変化しても光色の変化は目立ちにくい。
【0006】
しかしながら、光特性をほぼ一定に保ったまま入力を変化させることにより光出力を自由に変化させる点灯(いわゆる調光点灯)は、以下の理由から実現が困難であった。
【0007】
金属の発光量は金属ハロゲン化物の蒸気圧に依存するが、封入された水銀や金属ハロゲン化物は、温度に対する蒸気圧特性が全て異なるので、それぞれの蒸発量は最冷点温度の変化により大きく影響を受ける。したがって、発光量は最冷点温度の影響を大きく受ける。そこで、メタルハライドランプにおいては、所望の発光色が得られるように定格ランプ電力時の最冷点温度に合わせて水銀や金属ハロゲン化物の封入比率等のランプ設計を行なっている。
【0008】
このようにして設計されたメタルハライドランプにおいて、入力電力を増減させると、最冷点温度がそれに伴って上下し、各金属の発光スペクトルがそれぞれ変動するので、色バランスが崩れてしまったり、光色が大幅に変化してしまう。例えば、アルゴン、水銀、沃化ナトリウム及び沃化スカンジウムが発光管に封入されたメタルハライドランプにおいて、入力電力を定格電力よりも下げると、ナトリウム及びスカンジウムの発光は大幅に弱まる。それに対して水銀は、蒸気圧が高いので、多少最冷点温度が低下しても発光は弱まらない。したがって、入力電力を定格時よりも下げると、ナトリウムやスカンジウムの発光に対して水銀の発光の相対比率が高まるので、光色に対する水銀の発光の影響が増加する。ここにおいて、水銀は主に青領域に発光を持っているので、ランプからの放射光は白色から青白い色に変化し、光色に大きな変化を生じてしまう。
【0009】
また、発光物質としてヨウ化スカンジウムの代わりにヨウ化セリウムを封入した場合にも同様の効果が生じ、ランプへの入力電力を定格時よりも下げると光色に大きな変化を生じてしまう。
【0010】
このような光色の変化を低減させたメタルハライドランプとして、沃化ナトリウムおよび沃化スカンジウムを封入したランプは、特開平6−84496号公報(以下、従来例1と称す)、特開平6−11172号公報(以下、従来例2と称す)、特開平8−203471号公報(以下、従来例3と称す)に開示されたメタルハライドランプがある。
【0011】
また、最冷点温度や発光物質が効率、寿命、アークの安定性に与える影響については、例えば特開昭55−32355号公報(以下、従来例4と称す)、特開昭56−109447号公報(以下、従来例5と称す)に開示されている。
【0012】
また、ヨウ化セリウムを封入したランプは、米国特許第3,786,297号(以下、従来例6と称す)に開示されている
【0013】
【発明が解決しようとする課題】
上述した従来例1ないし従来例3には、ランプへの入力電力を変化させた時の色温度の変化、演色評価数の変化について開示されているが、発光管の最冷点温度の影響や発光物質の封入量、封入比率が色特性へ与える影響について明確な記載がない。そして、従来例1ないし従来例3に開示されたランプでは、ランプ個々における発光管の封止部の形状、寸法のばらつき、ランプ電力のばらつき等のようなランプ製造段階で生じるランプばらつき、電源電圧の変動や安定器出力のばらつき等により、光色にばらつきが生じているのが現状である。さらに、ランプへ供給される電力(または電圧)が低下した場合に、発光効率の低下が大きい。
【0014】
また、上述した従来例4及び従来例5には、最冷点温度や発光物質が効率、寿命、アークの安定性に与える影響について開示されているが、色特性への影響については開示されていない。また、従来例4及び従来例5に記載されたランプ全て定格点灯時の特性について言及したものであり、ランプ電力、電源電圧変動による色特性のばらつきについては解消できていない。
【0015】
また、従来例6においては、セラミック発光管における封入物がヨウ化セリウムとヨウ化ナトリウムを封入したセラミック発光管の条件が記載されているが、ばらつき改善方法に関しては開示されておらず、このときの発光効率の変化についても開示されていない。
【0016】
本発明は上記事由に鑑みて為されたものであり、その目的は、電源電圧変動あるいは安定器出力のばらつき、ランプ製造段階で生じるランプばらつき等が発生してもランプ点灯時の発光色の色ばらつきが少なく、しかも、調光点灯時の発光効率の低下が少なく色温度変化が少ないメタルハライドランプを提供することにある。
【0017】
【課題を解決するための手段】
請求項1の発明は、上記目的を達成するために、発光管の放電空間の両端近傍に配設された一対の主電極と、点灯時における最冷点温度部が放電空間の両端近傍よりも中央側になるように放電空間の両端近傍を保温する保温手段とを備え、発光管は上記一対の主電極が上下方向に沿って位置するように配設されたものであって、上下方向において発光管の放電空間の上側で主電極が封止された電極封止部を備え、保温手段は、上下方向における発光管の管壁外表面の下端部に主電極よりも高い位置まで設けた第1の保温膜と、上下方向における発光管の管壁外表面の上端部において当該上端部と当該電極封止部との境界近傍に設けた第2の保温膜を備え、点灯時における第1の保温膜の上端の温度と放電空間の下端部の主電極近傍の第1の保温膜の温度との温度差を50℃以内とすることを特徴とするものであり、点灯時における最冷点温度部が放電空間の両端近傍よりも中央側になるように放電空間の両端近傍を保温する保温手段を備えていることにより、電源電圧変動あるいは安定器出力のばらつき、ランプ製造段階で生じるばらつき等が発生してもランプ点灯時の発光色の色ばらつきを少なくすることができ、また、調光点灯時の発光効率が定格点灯時の発光効率に比べて低下するのを抑制することができるとともに、調光点灯時の色温度の変化を少なくすることができる。
【0020】
請求項の発明は、請求項の発明において、上下方向において発光管の放電空間の上側で主電極の近傍に配置される始動補助電極と、当該主電極および始動補助電極が封止された電極封止部とを備え、当該電極封止部の表面積を当該電極封止部からの放熱が抑制されるように小さくしてなることを特徴とする。
【0021】
請求項の発明は、請求項の発明において、上記電極封止部内でそれぞれ主電極、始動補助電極と各電極導入線との間に挿入された一対の金属箔導体を備え、上記一対の金属箔導体は厚み方向で重なるように対向配置されてなることを特徴とする。
【0022】
【発明の実施の形態】
本実施形態のメタルハライドランプは、図1に示すように、一端部に口金10を設けた外管3内に発光管1が収納されている。要するに、外管3は発光管1を包んでいる。発光管1は外管3に溶着されたステム4に接続された2つの発光管支柱5を介して外管3に支持されている。ここに一方の発光管支柱5の一部は発光管1の側方を通るように配置されている。また、外管3の内部(外管3と発光管1の間の空間)は不活性ガスたる窒素が封入されている。
【0023】
発光管1は石英ガラス等により円筒状に形成され、少なくとも数種類の金属ハロゲン化物(主としてハロゲン化ナトリウム及びハロゲン化セリウム、またはハロゲン化スカンジウム)と希ガスとが封入されている。
【0024】
発光管1の長手方向の両端部内には、それぞれ発光管1の両端の電極封止部11に封着された主電極たる電極2,2が配設されている。すなわち、一対の電極2,2が、発光管1の放電空間の両端近傍に配設されている。電極2は、電極封止部11内で例えばモリブデンよりなる金属箔導体8の一端に接続されている。金属箔導体8の他端は電極導入線9を介して発光管支柱5に接続されている。
【0025】
発光管1は上記一対の電極2,2が上下方向(図1においては左右方向)に沿って位置するように配設されたものであって、発光管1の上端部(図1における左端部)および下端部(図1における右端部)の管壁外表面には、酸化ジルコニウム等からなる保温膜14が設けられている(保温膜14は、図1中にクロスハッチングを施した部位に設けられている)。ここに、発光管1の下端部側の保温膜14は、電極封止部11及び電極2周囲を覆うように設け(電極2よりも高い位置まで設け)、発光管1の上端部側の保温膜14は、電極封止部11との境界近傍に設けてある。また、外管3の他端部側でジルコニウム・アルミニウムゲッタ7が取り付けられている。外管3内が真空である場合には、上記一方の発光管支柱5には外管3の上記一端部側でバリウムゲッタ6が取り付けられる。さらに、本実施形態では、発光管1を囲む円筒状のスリーブ12が外管3内に収納されている。ここに、スリーブ12は、発光管支柱5に接続されたスリーブ支柱13により支持されている。なお、口金10は、発光管支柱5、電極導入線9、金属箔導体8を介して電極2と電気的に接続されている。また、スリーブ12は透光性材料により形成されている。
【0026】
図1に示したメタルハライドランプを点灯させる放電灯点灯装置は、始動時に両電極2,2間へ印加するパルス電圧を発生させるパルス発生器(始動装置)を内蔵した安定器等を介して商用電源に接続される(図示せず)。ここにおいて、安定器はメタルハライドランプへ供給する電力を変化させる機能を有しており、該安定器が点灯手段を構成している。要するに、この放電灯点灯装置では、安定器によってメタルハライドランプに供給される電力を変化させることができ、メタルハライドランプの調光が可能になる。
【0027】
ところで、本実施形態では、発光管1の管壁外表面の上端部および下端部に設けた保温膜14が、点灯時における最冷点温度部が放電空間の両端近傍よりも中央側になるように放電空間の両端近傍を保温する保温手段を構成している。ここにおいて、保温膜14の形成位置や材料は、点灯時における発光管1の下端部側の保温膜14の上端の温度と放電空間の下端近傍の当該保温膜14の温度との温度差を50℃以内とするように設計されている。
【0028】
しかして、本実施形態のメタルハライドランプでは、点灯時における最冷点温度部が放電空間の両端近傍よりも中央側になるように放電空間の両端近傍を保温する保温手段を備えていることにより、定格点灯時に高い発光効率が得られるとともに調光点灯時の発光効率の低下を抑制することができ、また、電源電圧変動あるいは安定器出力のばらつき、ランプ製造段階で生じるばらつき等が発生してもランプ点灯時の発光色の色ばらつきを少なくすることができ、また、発光管1に封入する発光物質の比率を変化させた場合にも、色ばらつきを小さくしたまま、発光色を設計することが可能となる。
【0029】
なお、最冷点温度の上限については限定していないが、該上限は発光管1の材料の耐熱温度等に応じて適宜設定することが望ましい。また、本実施形態では、発光管1の材料を石英ガラスとしているが、発光管1の材料として透光性セラミックスを用いても良い。発光管の材質をセラミックとした場合、上記保温手段として発光管1の両端部に金属膜よりなる保温膜を塗布したり、発光管1の両端部にタンタル(Ta)などの薄膜を巻きつけてもよい。
【0030】
ところで、図2に示すように発光管1の管壁外表面の上端部(図2における左端部)に設ける保温膜14は、発光管1の管壁外表面の上端部において上端部と電極封止部11との境界近傍に設けることが望ましい。また、上下方向において発光管1の放電空間の上側で電極2の近傍に始動補助電極を設けるようにしてもよく、この場合には電極2と始動補助電極とが封止された電極封止部11の表面積を当該電極封止部11からの放熱が抑えられるように小さくすることが望ましい。ここに、始動補助電極も電極2と同様に電極封止部11内で電極2用の金属箔導体8とは別に設けた金属箔導体に接続されるが、始動補助電極が接続される金属箔導体を電極2が接続される金属箔導体と厚み方向で重なるように対向配置して、当該電極封止部11の表面積を小さくし、当該電極封止部11での放熱を抑制することが望ましい。
【0031】
(実施例1)
実施形態にて説明したメタルハライドランプにおいて、石英ガラス製の発光管1の中央部の内径を約18mm、上記電極2間の距離を約50mmとし、発光管1内に3.70×10−6mol/cmの沃化ナトリウム(NaI)、8.00×10−6mol/cmの沃化セリウム(CeI)を封入し、上記保温手段として図2に示すように発光管1の上端部(図2における左端部)および下端部(図2における右端部)の両方の管壁外表面に酸化ジルコニウムからなる保温膜14を塗布したメタルハライドランプを作成した。ここにおいて、発光管1の上端部における保温膜14は、図2に示すように発光管1の上端部と電極封止部11との境界近傍にだけ形成されている。また、比較例1として、図3に示すように発光管1に保温膜14を設けていないメタルハライドランプ、比較例2として、図4に示すように発光管1の下端部(図4における右端部)のみに保温膜14を設けたメタルハライドランプ、比較例3として、図5に示すように発光管1の上端部(図5における右端部)と下端部(図5における左端部)とに同じように保温膜14を設けたメタルハライドランプをそれぞれ作成した。ここに比較例3では、発光管1の上端部においても下端部同様、電極2を覆うように保温膜14が形成されている。なお、実施例1と各比較例1〜3とでは、沃化ナトリウム及び沃化セリウム各々の封入量を上記封入量で固定してある。
【0032】
下記表1に実施例1および各比較例1〜3それぞれのメタルハライドランプの点灯実験を行った結果を示す。点灯実験では、安定器出力及び電源電圧の変動による発光効率の変化や、色温度のばらつきを評価するために、ランプ電力を変化(定格ランプ電力よりも減少)させたときの最冷点温度の変化を測定した。なお、ランプ個々のばらつきは発光管1の最冷点温度の変化で代用できると考えた。
【0033】
表1には、ランプ入力電圧を「Vs(V)」の欄、ランプ電圧を「Vla(V)」の欄、ランプ電流を「Ila(A)」の欄、ランプ電力を「Wla(W)」の欄、色温度を「Tc(K)」の欄、定格ランプ電力(400W)時の色温度を基準としたときの各ランプ電力での色温度の変化幅を「△Tc(K)」の欄、発光効率を「η(lm/W)」の欄に、それぞれ記載してある。
【0034】
また、表1において、「上端部温度(℃)」の欄に示した値は図6におけるC点の温度、「下端部温度(℃)」の欄に示した値は図6におけるA点の温度、「温度差(℃)」の欄に示した値はC点の温度とA点の温度との温度差である。
【0035】
なお、実施例1および比較例1〜3それぞれの最冷点温度部は保温膜14の有無や形成位置などによって変化し図6に示すA点、B点、C点、D点、E点の5箇所のいずれかであった。ここに、A点は電極2の付け根の部分、B点は発効管1の長手方向(図6における左右方向)において電極2と同じ位置の部分(つまり、上下方向において同じ高さとなる部分)、C点は発光管1の下端部の管壁外表面に設けた保温膜14の上端、D点はいわゆるチップオフ部、E点はB点と対向する電極2の付け根部分である。
【0036】
また、表1の「堆積位置」の欄には、点灯時に発光物質が堆積している位置を示している。例えば、「A〜B」と記載している例では、図6においてA点からB点までの範囲に発光物質が堆積していることを示している。「A〜CおよびE」と記載している例では、図6においてA点からC点までの範囲およびE点に発光物質が堆積していることを示している。
【0037】
【表1】

Figure 0003601413
【0038】
表1の結果から、実施例1のような部位に保温膜14を設けたメタルハライドランプでは、定格ランプ電力(400W)時の発効効率ηが比較例1〜3に比べて高く、調光点灯時(定格ランプ電力よりも低い電力で点灯させた時)の発光効率ηを比較例1〜3に比べて高くなっていることが分かる。また、色温度の変化幅△Tcも比較例1〜3に比べて小さくなっていることが分かる。
【0039】
比較例1では、A点からB点までの範囲に発光物質が堆積しているが、これは発光管1に保温膜14を設けていないので、他の比較例2,3や実施例1に比べて全体的に温度が低く発光物が蒸発しにくい状態であって、発光管1の下端部の温度が低くなっていることにより、この部分に発光物質が堆積しやすくなるためである。
【0040】
比較例2では、発光管1の下端部に保温膜14を設けているので、保温膜14近傍では発光管1の表面温度が上昇するが、調光点灯時には保温膜14を設けていない上端部の温度が低くなるので、E点に発光物質が堆積する。
【0041】
比較例3では、発光管1の両端部に保温膜14を同じように塗布してあるので、保温膜14を塗布した周辺で発光管1の表面温度が上昇するが、下端部の温度の方が上端部の温度より低くなり、A点からB点の範囲に発光物質が堆積する。
【0042】
これらの比較例1ないし3に対して、実施例1では、図6におけるC点からDまでの範囲の表面温度が最も低くなり(つまり、両端部よりも中央側の部位が最冷点温度部となる)、この部分に発光物質が堆積するが、発光物質の蒸発が盛んに行われ、発光効率が上昇する。このような現象は定格点灯時に限らず調光点灯時にも起こるので、調光点灯時にも調光時にも発光効率が高く、色温度の変化が小さくなる。
【0043】
以上の結果から、発光管1の外表面に塗布する保温膜14の塗布部位により、最冷点部分が変化することが分かり、保温膜14の塗布部位を制御することにより、定格ランプ電力(400W)で点灯する時のみならず調光点灯時にも高い発光効率が得られ、しかもランプ電力を減少させた調光点灯時における色温度の変化を小さくできることがわかった。
【0044】
(実施例2)
実施形態にて説明したメタルハライドランプにおいて、石英ガラス製の発光管1の中央部の内径を約18mm、上記電極2間の距離が約50mmとし、発光管1内に約7.41×10−6mol/cmの沃化ナトリウム(NaI)、約6.52×10−6mol/cmの沃化スカンジウム(ScI)を封入し、上記保温手段として図2に示すように発光管1の上端部(図2における左端部)および下端部(図2における右端部)の両方の管壁外表面に酸化ジルコニウムからなる保温膜14を塗布したメタルハライドランプを作成した。ここにおいて、発光管1の上端部における保温膜14は、図2に示すように発光管1の上端部と電極封止部11との境界近傍にだけ形成されている。また、比較例4として、図3に示すように発光管1に保温膜14を設けていないメタルハライドランプ、比較例5として、図4に示すように発光管1の下端部のみに保温膜14を設けたメタルハライドランプ、比較例3として、図6に示すように発光管1の両端部に同じように保温膜14を設けたメタルハライドランプをそれぞれ作成した。ここに比較例3では、発光管1の上端部においても下端部同様、電極2を覆うように保温膜14が形成されている。なお、実施例2と各比較例1〜3とでは、沃化ナトリウム及び沃化スカンジウム各々の封入量を上記封入量で固定してある。
【0045】
下記表2に実施例2および各比較例4〜6それぞれのメタルハライドランプの点灯実験を行った結果を示す。点灯実験では、安定器出力及び電源電圧の変動による発光効率の変化や、色温度のばらつきを評価するために、ランプ電力を変化(定格ランプ電力よりも減少)させたときの最冷点温度の変化を測定した。なお、ランプ個々のばらつきは発光管1の最冷点温度の変化で代用できると考えた。
【0046】
なお、表2の見方は表1と同様なので説明を省略する。
【0047】
【表2】
Figure 0003601413
【0048】
表2の結果から、実施例2のような部位に保温膜14を設けたメタルハライドランプでは、定格ランプ電力(400W)時の発効効率ηが比較例4〜6に比べて高く、調光点灯時(定格ランプ電力よりも低い電力で点灯させた時)の発光効率ηを比較例4〜6に比べて高くなっていることが分かる。また、色温度の変化幅△Tcも比較例4〜6に比べて小さくなっていることが分かる。
【0049】
比較例4では、A点からB点までの範囲に発光物質が堆積しているが、これは発光管1に保温膜14を設けていないので、他の比較例5,6や実施例2に比べて全体的に温度が低く発光物が蒸発しにくい状態であって、発光管1の下端部の温度が低くなっていることにより、この部分に発光物質が堆積しやすくなるためである。
【0050】
比較例5では、発光管1の下端部に保温膜14を設けているので、保温膜14近傍では発光管1の表面温度が上昇するが、調光点灯時には保温膜14を設けていない上端部の温度が低くなるので、E点に発光物質が堆積する。
【0051】
比較例6では、発光管1の両端部に保温膜14を同じように塗布してあるので、保温膜14を塗布した周辺で発光管1の表面温度が上昇するが、下端部の温度の方が上端部の温度より低くなり、A点からB点の範囲に発光物質が堆積する。
【0052】
これらの比較例4ないし6に対して、実施例2では、図6におけるC点からDまでの範囲の表面温度が最も低くなり(つまり、両端部よりも中央側の部位が最冷点温度部となる)、この部分に発光物質が堆積するが、発光物質の蒸発が盛んに行われ、発光効率が上昇する。このような現象は定格点灯時に限らず調光点灯時にも起こるので、調光点灯時にも調光時にも発光効率が高く、色温度の変化が小さくなる。
【0053】
以上の結果から、発光管1の外表面に塗布する保温膜14の塗布部位により、最冷点部分が変化することが分かり、保温膜14の塗布部位を制御することにより、定格ランプ電力(400W)で点灯する時のみならず調光点灯時にも高い発光効率が得られ、しかもランプ電力を減少させた調光点灯時における色温度の変化を小さくできることがわかった。
【0054】
また、実施例2のように発光物質として沃化ナトリウム及び沃化スカンジウムを使用した実施例2のメタルハライドランプでも、発光物質として主として沃化ナトリウム及び沃化セリウムを使用した実施例1のメタルハライドランプと同様に、図2に示すような部位に保温膜14を塗布すれば、色ばらつきを小さくしたい場合や発光効率を高めたい場合に効果的であることが分かった。
【0055】
また、上述の結果から、発光管1の両端部に保温膜14を塗布する場合も、単に塗布すれば良いのではなく、点灯時における最冷点温度部が放電空間の両側近傍よりも中央側になるようにする必要があることが分かる。
【0056】
なお、上記実施例1、2では、発光管1に封入するハロゲン化物として沃化ナトリウム及び沃化セリウムを用いた場合、沃化ナトリウム及び沃化スカンジウムを用いた場合について説明したが、他の金属ハロゲン化物を用いた場合でも上記保温手段を設けることにより実施例1、2と同様の効果が得られる。また、ランプの設置状態に伴う点灯方向(例えば2つの電極2が上下に位置する方向や2つの電極2が左右に位置する方向)、発光管のサイズ、希ガスの封入圧力、定格ランプ電力などは上記実施例に限定されるものではない。
【0057】
(実施例3〜4)
ところで、上記各実施例1,2で説明したメタルハライドランプでは、発光管1内に始動補助電極を設けていないので、始動にパルス発生器等の始動装置が必要であり、安定器のコストが高くなってしまう。これに対して、実施例3,4で実施形態にて説明したメタルハライドランプにおいて、始動補助電極2aを設け、石英ガラス製の発光管1の中央部の内径を約18mm、上記電極2,2間の距離を約50mmとし、発光管1内に約3.70×10−6mol/cmの沃化ナトリウム(NaI)、約6.52×10−6mol/cmの沃化スカンジウム(ScI)を封入してある。また、実施例4では上記保温手段として図7に示すように発光管1の上端部(図7における左端部)および下端部(図7における右端部)の両方の管壁外表面に酸化ジルコニウムからなる保温膜14を塗布してある。また、実施例3では上記保温手段として図9に示すように発光管1の上端部(図9における左端部)および下端部(図9における右端部)の両方の管壁外表面に酸化ジルコニウムからなる保温膜14を塗布してある。また、比較例7では図8に示すように発光管1の上端部(図7における左端部)および下端部(図7における右端部)の両方の管壁外表面に酸化ジルコニウムからなる保温膜14を塗布してある。ここにおいて、実施例3,4では始動補助電極2aと電極2とを封止した側の電極封止部11の表面積を比較例7に比べて小さくしてある。なお、実施例3,4と比較例7とでは、沃化ナトリウム及び沃化スカンジウム各々の封入量を上記封入量で固定してある。
【0058】
下記表3に実施例3,4および比較例7それぞれのメタルハライドランプの点灯実験を行った結果を示す。点灯実験では、安定器出力及び電源電圧の変動による発光効率の変化や、色温度のばらつきを評価するために、ランプ電力を変化(定格ランプ電力よりも減少)させたときの最冷点温度の変化を測定した。なお、ランプ個々のばらつきは発光管1の最冷点温度の変化で代用できると考えた。
【0059】
なお、表3の見方は表1と同様なので説明を省略する。
【0060】
【表3】
Figure 0003601413
【0061】
表3から明らかなように、比較例7のように始動補助極2aと電極2とが封止された電極封止部11の表面積が比較的大きなメタルハライドランプでは、当該電極封止部11での放熱効果が大きく、発光管1の端部の表面温度が低下し、調光点灯時に保温膜14の両端の温度差が大きくなり、50℃を超えてしまうことがある。
【0062】
これに対して、実施例4のように電極封止部11の表面積を小さくすることにより、当該電極封止部11での放熱効果が低くなって、発光管1の温度分布が改善され、保温膜14の両端の温度差が小さくなり、比較例7に比べて、定格点灯時の発光効率η、調光点灯時の発光効率ηおよび色温度変化幅ΔTcも改善された。
【0063】
また、実施例3のように主電極たる電極2に接続された金属箔導体8と始動補助電極2aに接続された金属箔導体8’とを厚み方向で重なるように対向配置して封止することにより、電極封止部11の表面積を大幅に減少することがででき、電極封止部11からの放熱効果が減少し、発光管1の温度分布が実施例4よりもさらに改善され、定格ランプ電力での点灯時の効率、調光点灯時の効率、色温度変化幅が大幅に改善された。
【0064】
このように発光管1の両端部の電極封止部11の表面積も発光管1の温度分布に影響を与えることが分かった。
【0065】
上記実施例3,4では、発光管1に封入する金属ハロゲン化物として沃化ナトリウムおよび沃化スカンジウムを用いた例について説明したが、他の金属ハロゲン化物を用いた場合でも上記保温手段を設けることにより実施例3、4と同様の効果が得られる。また、ランプの設置状態に伴う点灯方向(例えば2つの電極2が上下に位置する方向や2つの電極2が左右に位置する方向)、発光管のサイズ、希ガスの封入圧力、定格ランプ電力などは上記実施例に限定されるものではない。
【0066】
【発明の効果】
請求項1ないし請求項の発明は、発光管の放電空間の両端近傍に配設された一対の主電極と、点灯時における最冷点温度部が放電空間の両端近傍よりも中央側になるように放電空間の両端近傍を保温する保温手段とを備え、発光管は上記一対の主電極が上下方向に沿って位置するように配設されたものであって、上下方向において発光管の放電空間の上側で主電極が封止された電極封止部を備え、保温手段は、上下方向における発光管の管壁外表面の下端部に主電極よりも高い位置まで設けた第1の保温膜と、上下方向における発光管の管壁外表面の上端部において当該上端部と当該電極封止部との境界近傍に設けた第2の保温膜を備え、点灯時における第1の保温膜の上端の温度と放電空間の下端部の主電極近傍の第1の保温膜の温度との温度差を50℃以内とするものであり、点灯時における最冷点温度部が放電空間の両端近傍よりも中央側になるように放電空間の両端近傍を保温する保温手段を備えていることにより、電源電圧変動あるいは安定器出力のばらつき、ランプ製造段階で生じるばらつき等が発生してもランプ点灯時の発光色の色ばらつきを少なくすることができるという効果があり、また、調光点灯時の発光効率が定格点灯時の発光効率に比べて低下するのを抑制することができるとともに、調光点灯時の色温度の変化を少なくすることができるという効果がある。
【図面の簡単な説明】
【図1】実施形態を示す概略構成図である。
【図2】同上の他の構成例における保温膜の塗布部位の説明図である。
【図3】比較例1の発光管の説明図である。
【図4】比較例2の発光管の説明図である。
【図5】比較例3の発光管の説明図である。
【図6】最冷点温度の測定位置の説明図である。
【図7】実施例4の発光管の説明図である。
【図8】比較例7の発光管の説明図である。
【図9】実施例3の発光管の説明図である。
【符号の説明】
1 発光管
2 電極
3 外管
4 ステム
5 発光管支柱
6 バリウムゲッタ
7 ジルコニウム・アルミニウムゲッタ
8 金属箔導体
9 電極導入線
10 口金
11 電極封止部
12 スリーブ
13 スリーブ支柱
14 保温膜[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a metal halide lamp having a metal halide enclosed therein.
[0002]
[Prior art]
Metal halide lamps are used in a wide range of fields because of their features of high brightness, high efficiency, and high color rendering. In a general metal halide lamp, a rare gas for starting the lamp, mercury serving as a buffer gas, and a metal halide emitting desired light are sealed. For example, a metal halide lamp in which sodium iodide, thallium iodide, and indium iodide are enclosed in an arc tube as a metal halide, and a metal halide lamp in which sodium iodide and scandium iodide are enclosed as a metal halide in an arc tube. Is widely used.
[0003]
However, in places where a large number of lamps are installed, there may be lamps that deviate from the overall color sense, which is said to be so bluish or reddish. May cause a problem as color unevenness. For example, in a metal halide lamp in which an arc tube is filled with sodium iodide mainly emitting red component light, thallium iodide mainly emitting green component light, and indium iodide mainly emitting blue component light, the following is given. Color unevenness occurs depending on the cause.
[0004]
During the operation of the lamp, mercury, thallium iodide and indium iodide are almost evaporated. On the other hand, since sodium iodide is excessively sealed in the arc tube in consideration of consumption during lighting, most of the temperature in the arc tube is liquid even during lamp operation. It exists in a low place (so-called coldest point). By the way, the temperature of the coldest point (hereinafter, referred to as the coldest point temperature) varies due to various factors such as a variation in lamp input due to a variation in power supply voltage and a variation in shape at the time of manufacturing. In this metal halide lamp, If the temperature at the coldest spot varies, the amount of evaporation of sodium changes and the emission intensity of sodium changes, so that the emission balance of the three primary colors is lost and color unevenness occurs. That is, when the coldest point temperature of the arc tube is low, the emission intensity of sodium decreases and becomes bluish, and when the coldest temperature of the arc tube is high, the emission intensity of sodium increases and becomes reddish.
[0005]
On the other hand, in the case of a metal halide lamp in which sodium iodide and scandium iodide are sealed in an arc tube, since the scandium emits light in a continuous spectrum, the light color does not change even if the emission intensity of sodium slightly changes. Less noticeable.
[0006]
However, lighting (so-called dimming lighting) in which the light output is freely changed by changing the input while keeping the light characteristics substantially constant has been difficult to realize for the following reasons.
[0007]
The amount of light emitted from a metal depends on the vapor pressure of the metal halide, but since the enclosed mercury and metal halide all have different vapor pressure characteristics with respect to temperature, the amount of evaporation of each metal is greatly affected by changes in the coldest point temperature. Receive. Therefore, the light emission amount is greatly affected by the coldest spot temperature. Therefore, in a metal halide lamp, a lamp design such as a filling ratio of mercury or a metal halide is performed in accordance with a coldest temperature at a rated lamp power so as to obtain a desired emission color.
[0008]
In a metal halide lamp designed in this way, if the input power is increased or decreased, the coldest point temperature rises and falls with it, and the emission spectrum of each metal fluctuates. Changes drastically. For example, in a metal halide lamp in which argon, mercury, sodium iodide, and scandium iodide are sealed in an arc tube, if the input power is reduced below the rated power, the emission of sodium and scandium is greatly reduced. On the other hand, since mercury has a high vapor pressure, the light emission does not weaken even if the coldest point temperature is slightly lowered. Therefore, when the input power is lower than the rated value, the relative ratio of the emission of mercury to the emission of sodium or scandium increases, so that the influence of the emission of mercury on the light color increases. Here, since mercury emits light mainly in the blue region, the radiated light from the lamp changes from white to bluish color, causing a large change in light color.
[0009]
The same effect also occurs when cerium iodide is sealed in place of scandium iodide as a luminescent substance. If the input power to the lamp is reduced below the rated value, a large change in light color occurs.
[0010]
As a metal halide lamp in which the change in light color is reduced, a lamp in which sodium iodide and scandium iodide are sealed is disclosed in JP-A-6-84496 (hereinafter referred to as Conventional Example 1) and JP-A-6-11172. There is a metal halide lamp disclosed in Japanese Unexamined Patent Application Publication (hereinafter referred to as Conventional Example 2) and Japanese Patent Application Laid-Open No. 8-203471 (hereinafter referred to as Conventional Example 3).
[0011]
The effects of the coldest point temperature and the luminescent substance on the efficiency, life, and arc stability are described in, for example, JP-A-55-32355 (hereinafter referred to as Conventional Example 4) and JP-A-56-10947. It is disclosed in a gazette (hereinafter, referred to as Conventional Example 5).
[0012]
A lamp in which cerium iodide is sealed is disclosed in U.S. Pat. No. 3,786,297 (hereinafter referred to as Conventional Example 6).
[0013]
[Problems to be solved by the invention]
In the above-described conventional examples 1 to 3, the change in the color temperature and the change in the color rendering index when the input power to the lamp is changed are disclosed. There is no clear description about the effect of the amount of light-emitting substance and the ratio of the light-emitting substance on the color characteristics. In addition, in the lamps disclosed in Conventional Examples 1 to 3, lamp variations occurring in the lamp manufacturing stage, such as variations in the shape and dimensions of the sealing portion of the arc tube in each lamp, and variations in lamp power, power supply voltage. At present, variations in light color are caused by fluctuations in the light output and variations in ballast output. Further, when the power (or voltage) supplied to the lamp is reduced, the luminous efficiency is greatly reduced.
[0014]
Further, in the above-described Conventional Examples 4 and 5, the effects of the coldest point temperature and the luminescent material on the efficiency, life, and arc stability are disclosed, but the effects on the color characteristics are disclosed. Absent. Further, all of the lamps described in Conventional Example 4 and Conventional Example 5 at the time of rated lighting are mentioned, and variations in color characteristics due to fluctuations in lamp power and power supply voltage cannot be solved.
[0015]
Further, in the conventional example 6, the condition of the ceramic arc tube in which the ceramic arc tube is filled with cerium iodide and sodium iodide is described, but the method for improving the variation is not disclosed. No change in luminous efficiency is disclosed.
[0016]
The present invention has been made in view of the above circumstances, and has as its object the purpose of the present invention to provide the color of the emission color at the time of lamp lighting even when power supply voltage fluctuation or ballast output fluctuation, lamp fluctuation occurring at the lamp manufacturing stage, etc. An object of the present invention is to provide a metal halide lamp which has little variation, and which has a small decrease in luminous efficiency at the time of dimming lighting and a small change in color temperature.
[0017]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 has a pair of main electrodes arranged near both ends of a discharge space of an arc tube, and a cold spot temperature part at the time of lighting is higher than near both ends of the discharge space. Insulation means for keeping the vicinity of both ends of the discharge space so as to be on the center side The arc tube is arranged so that the pair of main electrodes are positioned along the vertical direction, and the electrode sealing is such that the main electrode is sealed above the discharge space of the arc tube in the vertical direction. A first heat insulating film provided at a lower end portion of the outer surface of the tube wall of the arc tube in the vertical direction up to a position higher than the main electrode, and a heat insulating means of the outer surface of the tube wall of the arc tube in the vertical direction. A second heat insulating film provided at the upper end near the boundary between the upper end and the electrode sealing portion; the temperature at the upper end of the first heat insulating film at the time of lighting and the lower end of the discharge space near the main electrode; The temperature difference between the temperature of the first heat insulation film and the temperature of the first heat insulation film must be within 50 ° C It is characterized in that both ends of the discharge space are arranged so that the coldest temperature part at the time of lighting is closer to the center than near both ends of the discharge space. The neighborhood The provision of the heat retaining means for keeping the temperature low makes it possible to reduce the variation in the color of the emitted light when the lamp is turned on, even if a power supply voltage variation or a variation in the ballast output, a variation occurring at the lamp manufacturing stage, or the like occurs. In addition, it is possible to suppress the luminous efficiency at the time of dimming lighting from being lower than the luminous efficiency at the time of rated lighting, and it is possible to reduce a change in color temperature at the time of dimming lighting.
[0020]
Claim 2 The invention of claim 1 The invention according to the above, further comprising: a starting auxiliary electrode disposed in the vicinity of the main electrode above the discharge space of the arc tube in the vertical direction; and an electrode sealing portion in which the main electrode and the starting auxiliary electrode are sealed. The surface area of the sealing portion is reduced so that heat radiation from the electrode sealing portion is suppressed.
[0021]
Claim 3 The invention of claim 2 In the invention of the present invention, a main electrode, a pair of metal foil conductors inserted between the starting auxiliary electrode and each electrode introduction line in the electrode sealing portion, respectively, such that the pair of metal foil conductors overlap in the thickness direction It is characterized by being arranged opposite to each other.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
In the metal halide lamp of the present embodiment, as shown in FIG. 1, the arc tube 1 is housed in an outer tube 3 provided with a base 10 at one end. In short, the outer tube 3 surrounds the arc tube 1. The arc tube 1 is supported by the outer tube 3 via two arc tube posts 5 connected to a stem 4 welded to the outer tube 3. Here, a part of one of the arc tube supports 5 is arranged so as to pass through the side of the arc tube 1. The inside of the outer tube 3 (the space between the outer tube 3 and the arc tube 1) is filled with nitrogen as an inert gas.
[0023]
The arc tube 1 is formed in a cylindrical shape from quartz glass or the like, and contains at least some kinds of metal halides (mainly sodium halide and cerium halide, or scandium halide) and a rare gas.
[0024]
Electrodes 2 and 2, which are main electrodes sealed to electrode sealing portions 11 at both ends of the arc tube 1, respectively, are provided in both ends of the arc tube 1 in the longitudinal direction. That is, the pair of electrodes 2 and 2 are disposed near both ends of the discharge space of the arc tube 1. The electrode 2 is connected to one end of a metal foil conductor 8 made of, for example, molybdenum in the electrode sealing portion 11. The other end of the metal foil conductor 8 is connected to the arc tube support 5 via an electrode lead wire 9.
[0025]
The arc tube 1 is arranged such that the pair of electrodes 2 and 2 are located along the up-down direction (the left-right direction in FIG. 1), and the upper end portion of the arc tube 1 (the left end portion in FIG. 1). 1) and a heat insulating film 14 made of zirconium oxide or the like is provided on the outer surface of the tube wall at the lower end (the right end in FIG. 1) (the heat insulating film 14 is provided at a cross-hatched portion in FIG. 1). Has been). Here, the heat insulating film 14 on the lower end portion side of the arc tube 1 is provided so as to cover the periphery of the electrode sealing portion 11 and the electrode 2 (provided to a position higher than the electrode 2), and the heat insulating film on the upper end portion side of the arc tube 1 is provided. The film 14 is provided near a boundary with the electrode sealing portion 11. A zirconium / aluminum getter 7 is attached to the other end of the outer tube 3. When the inside of the outer tube 3 is in a vacuum, a barium getter 6 is attached to the one end of the outer tube 3 on the one arc tube support 5. Further, in the present embodiment, a cylindrical sleeve 12 surrounding the arc tube 1 is housed in the outer tube 3. Here, the sleeve 12 is supported by a sleeve support 13 connected to the arc tube support 5. The base 10 is electrically connected to the electrode 2 via the arc tube support 5, the electrode lead wire 9, and the metal foil conductor 8. Further, the sleeve 12 is formed of a translucent material.
[0026]
The discharge lamp lighting device for lighting the metal halide lamp shown in FIG. 1 is a commercial power supply via a ballast or the like having a built-in pulse generator (starting device) for generating a pulse voltage applied between the two electrodes 2 at the time of starting. (Not shown). Here, the ballast has a function of changing the power supplied to the metal halide lamp, and the ballast constitutes lighting means. In short, in this discharge lamp lighting device, the power supplied to the metal halide lamp can be changed by the ballast, and the dimming of the metal halide lamp becomes possible.
[0027]
By the way, in the present embodiment, the heat insulating films 14 provided on the upper end and the lower end of the outer surface of the tube wall of the arc tube 1 have the coldest point at the time of lighting. Temperature part Heat retaining means for keeping the temperature near both ends of the discharge space so as to be closer to the center than the vicinity of both ends of the discharge space. Here, the formation position and the material of the heat insulating film 14 are such that the temperature difference between the upper end temperature of the heat insulating film 14 at the lower end side of the arc tube 1 and the temperature of the heat insulating film 14 near the lower end of the discharge space during lighting is 50. Designed to be within ° C.
[0028]
Thus, the metal halide lamp of the present embodiment includes a heat retaining means for keeping the temperature near both ends of the discharge space such that the coldest temperature portion at the time of lighting is closer to the center than the both ends of the discharge space. High luminous efficiency can be obtained during rated lighting, and a decrease in luminous efficiency during dimming lighting can be suppressed.Also, even if power supply voltage fluctuations or ballast output fluctuations, and variations that occur during the lamp manufacturing stage occur, etc. It is possible to reduce the color variation of the emission color when the lamp is turned on, and it is possible to design the emission color while keeping the color variation small even when the ratio of the luminescent substance sealed in the arc tube 1 is changed. It becomes possible.
[0029]
Although the upper limit of the coldest point temperature is not limited, it is desirable to set the upper limit appropriately according to the heat-resistant temperature of the material of the arc tube 1 and the like. Further, in this embodiment, the material of the arc tube 1 is quartz glass, but translucent ceramics may be used as the material of the arc tube 1. When the material of the arc tube is made of ceramic, a heat insulating film made of a metal film is applied to both ends of the arc tube 1 as a heat insulating means, or a thin film such as tantalum (Ta) is wound around both ends of the arc tube 1. Is also good.
[0030]
Incidentally, as shown in FIG. 2, a heat insulating film 14 provided on the upper end portion (left end portion in FIG. 2) of the outer surface of the tube wall of the arc tube 1 is provided at the upper end portion of the outer surface of the tube wall of the arc tube 1 with the electrode sealing. It is desirable to provide it near the boundary with the stop portion 11. Further, a starting auxiliary electrode may be provided near the electrode 2 above the discharge space of the arc tube 1 in the vertical direction, and in this case, an electrode sealing portion in which the electrode 2 and the starting auxiliary electrode are sealed. It is desirable to reduce the surface area of the electrode 11 so as to suppress heat radiation from the electrode sealing portion 11. Here, the starting auxiliary electrode is also connected to a metal foil conductor provided separately from the metal foil conductor 8 for the electrode 2 in the electrode sealing portion 11 similarly to the electrode 2, but the metal foil to which the starting auxiliary electrode is connected is connected. It is desirable to dispose the conductor so as to be opposed to the metal foil conductor to which the electrode 2 is connected in the thickness direction so as to reduce the surface area of the electrode sealing portion 11 and suppress heat radiation in the electrode sealing portion 11. .
[0031]
(Example 1)
In the metal halide lamp described in the embodiment, the inner diameter of the central portion of the arc tube 1 made of quartz glass is about 18 mm, the distance between the electrodes 2 is about 50 mm, and 3.70 × 10 -6 mol / cm 3 Sodium iodide (NaI), 8.00 × 10 -6 mol / cm 3 Cerium iodide (CeI) 3 2), and as the above-mentioned heat retaining means, zirconium oxide is formed on both the outer surface of the tube wall at the upper end (left end in FIG. 2) and the lower end (right end in FIG. 2) of the arc tube 1 as shown in FIG. A metal halide lamp coated with the heat insulating film 14 was prepared. Here, the heat insulating film 14 at the upper end of the arc tube 1 is formed only near the boundary between the upper end of the arc tube 1 and the electrode sealing portion 11 as shown in FIG. Further, as a comparative example 1, a metal halide lamp in which the heat insulating film 14 is not provided on the arc tube 1 as shown in FIG. 3, and as a comparative example 2, a lower end portion (right end portion in FIG. 4) of the arc tube 1 as shown in FIG. 5), a metal halide lamp provided with a heat insulating film 14 only, as Comparative Example 3, as shown in FIG. 5 at the upper end (right end in FIG. 5) and the lower end (left end in FIG. 5) of the arc tube 1. A metal halide lamp provided with a heat insulating film 14 was prepared. Here, in Comparative Example 3, the heat insulating film 14 is formed so as to cover the electrode 2 at the upper end of the arc tube 1 as well as at the lower end. In Example 1 and Comparative Examples 1 to 3, the amount of sodium iodide and the amount of cerium iodide were fixed at the above-mentioned amounts.
[0032]
Table 1 below shows the results of lighting experiments of the metal halide lamps of Example 1 and Comparative Examples 1 to 3. In the lighting experiment, in order to evaluate changes in luminous efficiency due to fluctuations in ballast output and power supply voltage, and variations in color temperature, the cold spot temperature when the lamp power was changed (decreased from the rated lamp power) was evaluated. The change was measured. It was considered that the variation of each lamp could be substituted by the change of the coldest temperature of the arc tube 1.
[0033]
In Table 1, the lamp input voltage is a column of "Vs (V)", the lamp voltage is a column of "Vla (V)", the lamp current is a column of "Ila (A)", and the lamp power is "Wla (W)". ”, The color temperature is“ Tc (K) ”, and the variation of the color temperature at each lamp power based on the color temperature at the rated lamp power (400 W) is“ ΔTc (K) ”. And the luminous efficiency are described in the column of “η (lm / W)”, respectively.
[0034]
In Table 1, the value shown in the column of “upper end temperature (° C.)” is the temperature at point C in FIG. 6, and the value shown in the column of “lower end temperature (° C.)” is the point A in FIG. The value shown in the column of temperature and “temperature difference (° C.)” is the temperature difference between the temperature at point C and the temperature at point A.
[0035]
In addition, the coldest point temperature part of each of Example 1 and Comparative Examples 1 to 3 changes depending on the presence / absence or formation position of the heat insulating film 14, and points A, B, C, D, and E shown in FIG. It was one of five places. Here, point A is a portion at the base of the electrode 2, point B is a portion at the same position as the electrode 2 in the longitudinal direction (left-right direction in FIG. 6) of the effect tube 1 (that is, a portion having the same height in the vertical direction), Point C is the upper end of the heat insulating film 14 provided on the outer surface of the tube wall at the lower end of the arc tube 1, point D is the so-called tip-off portion, and point E is the base of the electrode 2 facing point B.
[0036]
The column of “deposition position” in Table 1 shows the position where the luminescent material is deposited at the time of lighting. For example, the example described as “A to B” indicates that the luminescent material is deposited in a range from point A to point B in FIG. The example described as "A to C and E" indicates that the luminescent material is deposited in the range from point A to point C and point E in FIG.
[0037]
[Table 1]
Figure 0003601413
[0038]
From the results shown in Table 1, in the metal halide lamp in which the heat insulating film 14 is provided at the site as in Example 1, the activation efficiency η at the rated lamp power (400 W) is higher than that of Comparative Examples 1 to 3, and the dimming operation is performed. It can be seen that the luminous efficiency η (when lit with lower power than the rated lamp power) is higher than in Comparative Examples 1 to 3. Also, it can be seen that the change width ΔTc of the color temperature is smaller than in Comparative Examples 1 to 3.
[0039]
In Comparative Example 1, the luminescent material was deposited in the range from the point A to the point B. However, since the luminous tube 1 was not provided with the heat insulating film 14, it was compared with the other Comparative Examples 2 and 3 and Example 1. This is because the temperature of the luminous substance is less likely to evaporate as a whole, and the lower temperature of the lower end of the luminous tube 1 facilitates deposition of the luminous substance in this part.
[0040]
In Comparative Example 2, since the heat insulating film 14 is provided at the lower end of the arc tube 1, the surface temperature of the arc tube 1 increases near the heat insulating film 14, but the upper end where the heat insulating film 14 is not provided at the time of dimming lighting. , The luminescent material is deposited at point E.
[0041]
In Comparative Example 3, since the heat insulating films 14 are similarly applied to both ends of the arc tube 1, the surface temperature of the arc tube 1 rises around the area where the heat insulating film 14 is applied. Becomes lower than the temperature at the upper end, and the luminescent material is deposited in the range from the point A to the point B.
[0042]
In contrast to Comparative Examples 1 to 3, in Example 1, the surface temperature in the range from the point C to D in FIG. 6 was the lowest (that is, the portion on the center side from both ends was the coldest temperature portion). The light-emitting substance is deposited on this portion, but the light-emitting substance evaporates actively and the luminous efficiency increases. Since such a phenomenon occurs not only at the time of rated lighting but also at the time of dimming lighting, the luminous efficiency is high at the time of dimming lighting and dimming, and the change in color temperature is small.
[0043]
From the above results, it can be seen that the coldest spot changes depending on the application site of the heat insulating film 14 applied to the outer surface of the arc tube 1. By controlling the application site of the heat insulating film 14, the rated lamp power (400 W It was found that high luminous efficiency was obtained not only at the time of lighting in (1) but also at the time of dimming lighting, and that the change in color temperature at the time of dimming lighting with reduced lamp power could be reduced.
[0044]
(Example 2)
In the metal halide lamp described in the embodiment, the inner diameter of the central portion of the arc tube 1 made of quartz glass is about 18 mm, the distance between the electrodes 2 is about 50 mm, and about 7.41 × 10 -6 mol / cm 3 Sodium iodide (NaI), about 6.52 × 10 -6 mol / cm 3 Scandium iodide (ScI 3 2), and as the above-mentioned heat retaining means, zirconium oxide is formed on both the outer surface of the tube wall at the upper end (left end in FIG. 2) and the lower end (right end in FIG. 2) of the arc tube 1 as shown in FIG. A metal halide lamp coated with the heat insulating film 14 was prepared. Here, the heat insulating film 14 at the upper end of the arc tube 1 is formed only near the boundary between the upper end of the arc tube 1 and the electrode sealing portion 11 as shown in FIG. Further, as a comparative example 4, a metal halide lamp in which the heat insulating film 14 is not provided on the arc tube 1 as shown in FIG. 3, and as a comparative example 5, a heat insulating film 14 is formed only on the lower end portion of the arc tube 1 as shown in FIG. As a comparative example 3, a metal halide lamp provided with a heat insulating film 14 at both ends of the arc tube 1 as shown in FIG. Here, in Comparative Example 3, the heat insulating film 14 is formed so as to cover the electrode 2 at the upper end of the arc tube 1 as well as at the lower end. In Example 2 and Comparative Examples 1 to 3, the amount of sodium iodide and the amount of scandium iodide were fixed at the above-mentioned amounts.
[0045]
Table 2 below shows the results of the metal halide lamp lighting experiments of Example 2 and Comparative Examples 4 to 6. In the lighting experiment, in order to evaluate changes in luminous efficiency due to fluctuations in ballast output and power supply voltage, and variations in color temperature, the cold spot temperature when the lamp power was changed (decreased from the rated lamp power) was evaluated. The change was measured. It was considered that the variation of each lamp could be substituted by the change of the coldest temperature of the arc tube 1.
[0046]
Note that the way of reading Table 2 is the same as that of Table 1, and a description thereof will be omitted.
[0047]
[Table 2]
Figure 0003601413
[0048]
From the results in Table 2, in the metal halide lamp in which the heat insulating film 14 is provided at the site as in Example 2, the activation efficiency η at the rated lamp power (400 W) is higher than that of Comparative Examples 4 to 6, and It can be seen that the luminous efficiency η (when lit with lower power than the rated lamp power) is higher than in Comparative Examples 4 to 6. In addition, it can be seen that the change width ΔTc of the color temperature is smaller than those of Comparative Examples 4 to 6.
[0049]
In Comparative Example 4, the luminescent material was deposited in the range from the point A to the point B. However, since the luminous tube 1 was not provided with the heat insulating film 14, it was compared with the other Comparative Examples 5 and 6 and Example 2. This is because the temperature of the luminous substance is less likely to evaporate as a whole, and the lower temperature of the lower end of the luminous tube 1 facilitates deposition of the luminous substance in this part.
[0050]
In Comparative Example 5, since the heat insulating film 14 is provided at the lower end of the arc tube 1, the surface temperature of the arc tube 1 increases near the heat insulating film 14, but the upper end where the heat insulating film 14 is not provided at the time of dimming lighting. , The luminescent material is deposited at point E.
[0051]
In Comparative Example 6, since the heat insulating films 14 are similarly applied to both ends of the arc tube 1, the surface temperature of the arc tube 1 increases around the area where the heat insulating film 14 is applied. Becomes lower than the temperature at the upper end, and the luminescent material is deposited in the range from the point A to the point B.
[0052]
In contrast to Comparative Examples 4 to 6, in Example 2, the surface temperature in the range from the point C to D in FIG. 6 was the lowest (that is, the portion on the center side of both ends was the coldest temperature portion). The light-emitting substance is deposited on this portion, but the light-emitting substance evaporates actively and the luminous efficiency increases. Since such a phenomenon occurs not only at the time of rated lighting but also at the time of dimming lighting, the luminous efficiency is high at the time of dimming lighting and dimming, and the change in color temperature is small.
[0053]
From the above results, it can be seen that the coldest spot changes depending on the application site of the heat insulating film 14 applied to the outer surface of the arc tube 1. By controlling the application site of the heat insulating film 14, the rated lamp power (400 W It was found that high luminous efficiency was obtained not only at the time of lighting in (1) but also at the time of dimming lighting, and that the change in color temperature at the time of dimming lighting with reduced lamp power could be reduced.
[0054]
Further, the metal halide lamp of Example 2 using sodium iodide and scandium iodide as the luminescent material as in Example 2 also differs from the metal halide lamp of Example 1 using mainly sodium iodide and cerium iodide as the luminescent material. Similarly, it has been found that the application of the heat insulating film 14 to the portion as shown in FIG. 2 is effective when it is desired to reduce color variation or to increase luminous efficiency.
[0055]
Also, from the above results, when the heat insulating films 14 are applied to both ends of the arc tube 1, it is not necessary to simply apply the heat insulating films 14, and the coldest point temperature portion at the time of lighting is closer to the center than near both sides of the discharge space. It turns out that it is necessary to make
[0056]
In the first and second embodiments, the case where sodium iodide and cerium iodide are used as the halide to be sealed in the arc tube 1 and the case where sodium iodide and scandium iodide are used have been described. Even when a halide is used, the same effect as in the first and second embodiments can be obtained by providing the above-mentioned heat retaining means. In addition, the lighting direction (for example, the direction in which the two electrodes 2 are positioned vertically or the direction in which the two electrodes 2 are positioned left and right) depending on the installation state of the lamp, the size of the arc tube, the rare gas sealing pressure, the rated lamp power, and the like. Is not limited to the above embodiment.
[0057]
(Examples 3 and 4)
By the way, in the metal halide lamp described in each of the first and second embodiments, since the starting auxiliary electrode is not provided in the arc tube 1, a starting device such as a pulse generator is required for starting, and the cost of the ballast is high. turn into. On the other hand, in the metal halide lamps described in the embodiments in Examples 3 and 4, the starting auxiliary electrode 2a is provided, and the inner diameter of the central portion of the quartz glass arc tube 1 is about 18 mm. Is about 50 mm, and about 3.70 × 10 -6 mol / cm 3 Sodium iodide (NaI), about 6.52 × 10 -6 mol / cm 3 Scandium iodide (ScI 3 ) Is enclosed. In the fourth embodiment, as shown in FIG. 7, the outer surface of both the upper end (left end in FIG. 7) and the lower end (right end in FIG. 7) of the arc tube is made of zirconium oxide. The heat insulating film 14 is applied. In the third embodiment, zirconium oxide is applied to both the outer surface of the tube wall at the upper end (left end in FIG. 9) and the lower end (right end in FIG. 9) of the arc tube 1 as the heat retaining means as shown in FIG. The heat insulating film 14 is applied. In Comparative Example 7, as shown in FIG. 8, both the upper end (left end in FIG. 7) and the lower end (right end in FIG. 7) of the arc tube 1 have a heat insulating film 14 made of zirconium oxide on both outer surfaces thereof. Has been applied. Here, in Examples 3 and 4, the surface area of the electrode sealing portion 11 on the side that seals the starting auxiliary electrode 2a and the electrode 2 is smaller than that of Comparative Example 7. In Examples 3 and 4 and Comparative Example 7, the amounts of sodium iodide and scandium iodide were fixed at the above-mentioned amounts.
[0058]
Table 3 below shows the results of the lighting experiments of the metal halide lamps of Examples 3, 4 and Comparative Example 7. In the lighting experiment, in order to evaluate changes in luminous efficiency due to fluctuations in ballast output and power supply voltage, and variations in color temperature, the cold spot temperature when the lamp power was changed (decreased from the rated lamp power) was evaluated. The change was measured. It was considered that the variation of each lamp could be substituted by the change of the coldest temperature of the arc tube 1.
[0059]
Note that the way of reading Table 3 is the same as that of Table 1, and a description thereof will be omitted.
[0060]
[Table 3]
Figure 0003601413
[0061]
As is clear from Table 3, in the metal halide lamp in which the surface area of the electrode sealing portion 11 in which the starting auxiliary electrode 2a and the electrode 2 are sealed as in Comparative Example 7, the surface area of the electrode sealing portion 11 is relatively large. The heat radiation effect is large, the surface temperature at the end of the arc tube 1 decreases, and the temperature difference between both ends of the heat insulating film 14 at the time of dimming lighting increases, sometimes exceeding 50 ° C.
[0062]
On the other hand, by reducing the surface area of the electrode sealing portion 11 as in the fourth embodiment, the heat radiation effect in the electrode sealing portion 11 is reduced, the temperature distribution of the arc tube 1 is improved, and the temperature is maintained. The temperature difference between both ends of the film 14 was reduced, and the luminous efficiency η during rated lighting, the luminous efficiency η during dimming lighting, and the color temperature change width ΔTc were improved as compared with Comparative Example 7.
[0063]
Further, as in the third embodiment, the metal foil conductor 8 connected to the electrode 2 serving as the main electrode and the metal foil conductor 8 'connected to the starting auxiliary electrode 2a are disposed so as to face each other so as to overlap in the thickness direction and are sealed. Thereby, the surface area of the electrode sealing portion 11 can be greatly reduced, the heat radiation effect from the electrode sealing portion 11 decreases, the temperature distribution of the arc tube 1 is further improved as compared with the fourth embodiment, The efficiency at the time of lighting with lamp power, the efficiency at the time of dimming lighting, and the range of color temperature change have been greatly improved.
[0064]
Thus, it was found that the surface area of the electrode sealing portions 11 at both ends of the arc tube 1 also affects the temperature distribution of the arc tube 1.
[0065]
In Embodiments 3 and 4, the example in which sodium iodide and scandium iodide are used as the metal halide to be sealed in the arc tube 1 has been described. However, even when another metal halide is used, the above-mentioned heat retaining means is provided. Thus, the same effects as in the third and fourth embodiments can be obtained. In addition, the lighting direction (for example, the direction in which the two electrodes 2 are positioned vertically or the direction in which the two electrodes 2 are positioned left and right) depending on the installation state of the lamp, the size of the arc tube, the rare gas sealing pressure, the rated lamp power, and the like. Is not limited to the above embodiment.
[0066]
【The invention's effect】
Claim 1 to Claim 3 The invention is directed to a pair of main electrodes disposed near both ends of the discharge space of the arc tube, and near both ends of the discharge space so that the coldest point temperature portion at the time of lighting is closer to the center than near both ends of the discharge space. Means to keep warm The arc tube is arranged so that the pair of main electrodes are positioned along the vertical direction, and the electrode sealing is such that the main electrode is sealed above the discharge space of the arc tube in the vertical direction. A first heat insulating film provided at a lower end portion of the outer surface of the tube wall of the arc tube in the vertical direction up to a position higher than the main electrode, and a heat insulating means of the outer surface of the tube wall of the arc tube in the vertical direction. A second heat insulating film provided at the upper end near the boundary between the upper end and the electrode sealing portion; the temperature at the upper end of the first heat insulating film at the time of lighting and the lower end of the discharge space near the main electrode; The difference between the temperature of the first heat insulating film and the temperature of the first heat insulating film shall be within 50 ° C. And both ends of the discharge space so that the coldest temperature part at the time of lighting is closer to the center than near both ends of the discharge space. The neighborhood By providing the heat retaining means for keeping the temperature, even if power supply voltage fluctuations, fluctuations in ballast output, fluctuations occurring during the lamp manufacturing stage, etc. occur, it is possible to reduce the color fluctuations in the emission color when the lamp is turned on. In addition, the luminous efficiency at the time of dimming lighting can be suppressed from lowering than the luminous efficiency at the time of rated lighting, and the change in color temperature at the time of dimming lighting can be reduced. There is.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an embodiment.
FIG. 2 is an explanatory diagram of a coating portion of a heat insulating film in another configuration example of the embodiment.
FIG. 3 is an explanatory diagram of an arc tube of Comparative Example 1.
FIG. 4 is an explanatory diagram of an arc tube of Comparative Example 2.
FIG. 5 is an explanatory diagram of an arc tube of Comparative Example 3.
FIG. 6 is an explanatory diagram of a measurement position of a coldest spot temperature.
FIG. 7 is an explanatory diagram of an arc tube according to a fourth embodiment.
FIG. 8 is an explanatory diagram of an arc tube of Comparative Example 7.
FIG. 9 is an explanatory diagram of an arc tube according to a third embodiment.
[Explanation of symbols]
1 arc tube
2 electrodes
3 outer tube
4 stem
5 Arc tube support
6 Barium getter
7 Zirconium aluminum getter
8 Metal foil conductor
9. Electrode introduction wire
10 bases
11 Electrode sealing part
12 sleeve
13 sleeve support
14 Thermal insulation film

Claims (3)

発光管の放電空間の両端近傍に配設された一対の主電極と、点灯時における最冷点温度部が放電空間の両端近傍よりも中央側になるように放電空間の両端近傍を保温する保温手段とを備え、発光管は上記一対の主電極が上下方向に沿って位置するように配設されたものであって、上下方向において発光管の放電空間の上側で主電極が封止された電極封止部を備え、保温手段は、上下方向における発光管の管壁外表面の下端部に主電極よりも高い位置まで設けた第1の保温膜と、上下方向における発光管の管壁外表面の上端部において当該上端部と当該電極封止部との境界近傍に設けた第2の保温膜を備え、点灯時における第1の保温膜の上端の温度と放電空間の下端部の主電極近傍の第1の保温膜の温度との温度差を50℃以内とすることを特徴とするメタルハライドランプ。A pair of main electrodes arranged near both ends of the discharge space of the arc tube, and a heat insulation for keeping the vicinity of both ends of the discharge space so that the coldest temperature part at the time of lighting is closer to the center side than the vicinity of both ends of the discharge space. Means , the arc tube is arranged such that the pair of main electrodes are located along the vertical direction, and the main electrode is sealed above the discharge space of the arc tube in the vertical direction. An electrode sealing portion, wherein the heat insulating means comprises: a first heat insulating film provided at a lower end portion of the outer surface of the tube wall of the arc tube in the vertical direction up to a position higher than the main electrode; A second heat insulating film provided at an upper end of the surface near a boundary between the upper end and the electrode sealing portion, wherein a temperature at an upper end of the first heat insulating film at the time of lighting and a main electrode at a lower end of the discharge space are provided; that the temperature difference between the temperature of the first insulation film in the vicinity within 50 ° C. Metal halide lamp and butterflies. 上下方向において発光管の放電空間の上側で主電極の近傍に配置される始動補助電極と、当該主電極および始動補助電極が封止された電極封止部とを備え、当該電極封止部の表面積を当該電極封止部からの放熱が抑制されるように小さくしてなることを特徴とする請求項1記載のメタルハライドランプ。 A starting auxiliary electrode disposed in the vicinity of the main electrode above the discharge space of the arc tube in the vertical direction, and an electrode sealing portion in which the main electrode and the starting auxiliary electrode are sealed; 2. The metal halide lamp according to claim 1 , wherein a surface area is reduced so that heat radiation from the electrode sealing portion is suppressed . 上記電極封止部内でそれぞれ主電極、始動補助電極と各電極導入線との間に挿入された一対の金属箔導体を備え、上記一対の金属箔導体は厚み方向で重なるように対向配置されてなることを特徴とする請求項2記載のメタルハライドランプ In the electrode sealing portion, a main electrode, a pair of metal foil conductors inserted between the starting auxiliary electrode and each electrode introduction line are provided, and the pair of metal foil conductors are arranged so as to face each other so as to overlap in the thickness direction. claim 2, wherein a metal halide lamp characterized by comprising.
JP2000155558A 2000-05-26 2000-05-26 Metal halide lamp Expired - Fee Related JP3601413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000155558A JP3601413B2 (en) 2000-05-26 2000-05-26 Metal halide lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000155558A JP3601413B2 (en) 2000-05-26 2000-05-26 Metal halide lamp

Publications (2)

Publication Number Publication Date
JP2001338610A JP2001338610A (en) 2001-12-07
JP3601413B2 true JP3601413B2 (en) 2004-12-15

Family

ID=18660486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000155558A Expired - Fee Related JP3601413B2 (en) 2000-05-26 2000-05-26 Metal halide lamp

Country Status (1)

Country Link
JP (1) JP3601413B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4970914B2 (en) * 2006-11-30 2012-07-11 パナソニック株式会社 Lamp unit and projector
JP5228726B2 (en) * 2008-09-11 2013-07-03 ウシオ電機株式会社 High pressure mercury lamp
JP5709089B2 (en) * 2011-03-25 2015-04-30 岩崎電気株式会社 lamp

Also Published As

Publication number Publication date
JP2001338610A (en) 2001-12-07

Similar Documents

Publication Publication Date Title
JP3603723B2 (en) Metal halide lamp and discharge lamp lighting device
US20070228912A1 (en) Gas discharge lamp
US6815889B2 (en) High-pressure gas discharge lamp
JP4279122B2 (en) High pressure discharge lamp and lighting device
US8269406B2 (en) Mercury-free-high-pressure gas discharge lamp
US7348731B2 (en) High-pressure gas discharge lamp with an asymmetrical discharge space
JP4340170B2 (en) High pressure discharge lamp and lighting device
JPH11339727A (en) Metal halide lamp
JP3601413B2 (en) Metal halide lamp
JP3737102B2 (en) Metal halide lamp
JP2010525505A (en) High pressure discharge lamp and vehicle headlamp with high pressure discharge lamp
JP4279120B2 (en) High pressure discharge lamp and lighting device
JP4181949B2 (en) High pressure discharge lamp and lighting device
JP5190582B2 (en) Metal halide lamps and lighting fixtures
JP3581455B2 (en) Metal halide lamp, lighting device, floodlight device, and projector device
JPH11283573A (en) High-pressure discharge lamp and lighting system
JP3778920B2 (en) Metal halide lamp
JP2001345071A (en) High-pressure discharge lamp and illumination device
US20050140296A1 (en) Mercury-free high-pressure gas discharge lamp
JPH07130330A (en) Metal halide lamp
JP2001338608A (en) Metal halide lamp and discharge lamp lighting device
JPH0612607Y2 (en) Metal halide lamp
JPH0528965A (en) Metal halide lamp
WO2003094198A1 (en) High-pressure gas discharge lamp
JPS60227349A (en) Dc high pressure sodium vapor and metal halogenide lamp

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071001

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees