JP3601066B2 - Gear honing method with internal gear type honing wheel on gear honing machine - Google Patents

Gear honing method with internal gear type honing wheel on gear honing machine Download PDF

Info

Publication number
JP3601066B2
JP3601066B2 JP29985793A JP29985793A JP3601066B2 JP 3601066 B2 JP3601066 B2 JP 3601066B2 JP 29985793 A JP29985793 A JP 29985793A JP 29985793 A JP29985793 A JP 29985793A JP 3601066 B2 JP3601066 B2 JP 3601066B2
Authority
JP
Japan
Prior art keywords
gear
honing
grindstone
work
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29985793A
Other languages
Japanese (ja)
Other versions
JPH07156016A (en
Inventor
野 貞 男 水
野 彰 教 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP29985793A priority Critical patent/JP3601066B2/en
Publication of JPH07156016A publication Critical patent/JPH07156016A/en
Application granted granted Critical
Publication of JP3601066B2 publication Critical patent/JP3601066B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F19/00Finishing gear teeth by other tools than those used for manufacturing gear teeth
    • B23F19/05Honing gear teeth
    • B23F19/057Honing gear teeth by making use of a tool in the shape of an internal gear

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、歯車ホーニング盤、特に、軸中心をヘッドストックとテールストックの両センタ間に回転可能に支持されたワークを、その中心軸と平行なワークテーブル軸と所定の交差角をなすホーニング砥石回転軸の周りに回転駆動される内歯車形砥石と噛み合わせて回転させると共に、ワークテーブルによってワークテーブル軸方向にも往復運動を行わせ、噛み合わせ部に研削液を注ぎ掛けて歯車ホーニング加工を行う歯車ホーニング盤における内歯車形砥石による歯車ホーニング加工方法に関するものである。
【0002】
【従来の技術】
近年、自動車用歯車の量産には、低騒音化、高効率化の要求から熱処理された歯車の変形を矯正することができる歯車研削加工が採用されるようになり、中でも生産性に優れた内歯車形砥石を使用する歯車ホーニング盤が多く用いられるようになった。
【0003】
従来のこの種の歯車ホーニング盤としては、スイス国のフェスラー(Fssler)社が製造・販売しているD−250−C型歯車ホーニング盤が知られている。
【0004】
これは、図1にその加工要領を示すように、軸中心をヘッドストック31とテールストック32の両センタ41、42間に回転可能に支持させたワーク4を、その中心軸Oと平行なワークテーブル軸Zと所定の交差角θをなすホーニング砥石回転軸Yの周りに回転駆動される内歯車形砥石1と噛み合わせて回転させると共に、ワークテーブル3によってワークテーブル軸方向にも往復運動を行わせ、噛み合わせ部に研削液を注ぎ掛けて歯車ホーニング加工を行う機械である。砥石1は歯車ホーニング盤の砥石頭(図示せす)に取付けられており、砥石頭はワークテーブル3に対して直角方向に前後進可能であり、砥石1とワーク中心軸Oとの間隔が調節可能である。
【0005】
加工精度を維持するため、常時正確な砥石歯形を保つ必要があり、砥石1を新品に交換した時、ワークの加工を開始する前、及びワークを一定数加工する毎に、砥石1を機械に取り付けたまま成形を行うようになっている。この機上成形の手順は、図2の(a)、(b)に示すように、まず両センタ41、42間にワーク4の代わりにダイヤモンドから成る成形リング5を備えた成形軸15を取付け、ワークテーブル3の移動により成形リング5を砥石1の内側に入れ、次いで図2(c)、(d)のように成形リング5に砥石1の内径面(歯先面)を接触させて回転させると共にワークテーブル3によりワークテーブル軸方向にも往復運動させることによって、砥石1の内径面の成形を行う。
【0006】
次に、図2(e)、(f)のように、成形軸15に代えて両センタ41、42間にダイヤモンドから成る成形ギヤ6を備えた成形軸16を取付け、ワークテーブル3の移動により成形ギヤ6を砥石1の内側に入れ、成形ギヤ6に砥石1の内歯を噛み合わせて回転させると共にワークテーブル3によりワークテーブル軸方向にも往復運動させることによって、砥石1の歯面の成形を行う。ここで、図3に示すように、この砥石1の歯面のねじれ角(歯面と砥石1の回転軸Yとのなす角度)は通常のインボリュート歯車の理論通り大径部に向かうに連れて大きくなっている。
【0007】
このような機上成形により、内歯車形砥石1の歯丈及び歯形の所要の精度を確保した後、図2(g)、(h)のように新しく取り付けた鉄製のワーク4のホーニング加工が開始される。このホーニング加工は、砥石1の回転軸Yとワークテーブル軸Zとのなす交差角θを成形ギヤ6による砥石1の歯面成形時における前記交差角のままで行われている。
【0008】
【発明が解決しようとする課題】
ところで、上記したホーニング加工においては、成形ギヤ6がダイヤモンドから成り且つワーク4が鉄製(金属製)であるので、機上成形された砥石1によるワーク4への歯車ホーニング加工時における切削力の方が成形ギヤ6による砥石1の歯面成形時における切削力よりも小さく、砥石1によるワーク4への歯車ホーニング加工をする為には、歯車ホーニング加工時における砥石1からワーク4への押付力を砥石1の歯面成形時における砥石1から成形ギヤ6への押付力よりも大きくする必要がある。その結果、ワーク4が成形ギヤ6よりも砥石1大径側にくい込んだ状態でホーニング加工が行われ、歯車ホーニング加工時におけるワーク4のピッチ円が砥石1の歯面成形時における成形ギヤ6のピッチ円よりも砥石1大径部側にずれることになる。
【0009】
ここで、上記した歯車ホーニング加工においては砥石1回転軸Yとワークテーブル軸Zとのなす交差角θが砥石1の歯面成形時と同じであるので、砥石1の歯面のねじれ角が大径部に向かうに連れて大きいことから、歯車ホーニング加工時におけるワーク4のピッチ円上のねじれ角は砥石1の歯面成形時における砥石1のピッチ円上のねじれ角よりも大きいままとなる。以上より、ワーク4の目的形状と同一の成形ギヤ6を使用しても、成形ギヤ6から砥石1を介してワーク4へ正確に形状転写が行われず、転写精度が悪くなる。
【0010】
故に、本発明は、歯車ホーニング加工時におけるワーク4のピッチ円上のねじれ角を砥石1の歯面成形時における成形ギヤのピッチ円上のねじれ角と一致させて成形ギヤ6から砥石1を介してワーク4への転写精度を向上させることを、その技術的課題とする。
【0011】
【課題を解決するための手段】
上記技術的課題を解決するため請求項1の発明において講じた技術的手段(以下第1の技術的手段と称する)は、歯車ホーニング加工工程においてホーニング砥石回転軸とワークテーブル軸とのなす交差角を砥石歯面成形工程における交差角よりも小さくしてワークのピッチ円上のねじれ角を砥石歯面成形工程における成形ギヤのピッチ円上のねじれ角と一致させたことである。
【0012】
上記技術的課題を解決するため請求項2の発明において講じた技術的手段(以下第2の技術的手段と称する)は、歯車ホーニング加工工程においてワークの内歯車形ホーニング砥石への前進端位置を常時検出し、その検出位置を砥石歯面成形工程における成形ギヤの内歯車形ホーニング砥石への最大前進端位置と比較してその結果に基づいて上記交差角を調整し、検出位置が成形ギヤの最大前進端位置以下の場合には交差角を砥石歯面成形工程における交差角に一致させた状態でホーニング加工を行い、検出位置が成形ギヤの最大前進端位置を超えた場合にはその差分に応じた分だけ交差角を小さくしながら歯車ホーニング加工を行ったことである。
【0013】
【作用】
上記第1の技術的手段によれば、歯車ホーニング加工工程においてホーニング砥石回転軸とワークテーブル軸とのなす交差角(以下砥石の交差角と称する)を砥石歯面成形工程における砥石の交差角よりも小さくしてワークのピッチ円上のねじれ角を砥石歯面成形工程における成形ギヤのピッチ円上のねじれ角と一致させたので、ワークが砥石歯面成形工程における成形ギヤよりも砥石大径側にくい込んだ状態で歯車ホーニング加工が行われても、成形ギヤから砥石を介してワークへ正確に形状転写が行われ、転写精度が向上する。
【0014】
上記第2の技術的手段によれば、ワークの前進端位置が成形ギヤの最大前進端位置以下の場合には砥石の交差角を砥石歯面成形工程における砥石の交差角に一致させた状態で歯車ホーニング加工を行い、ワークの前進端位置が成形ギヤの最大前進端位置を超えた場合に、その差分に応じた分だけ砥石の交差角を小さくしながら歯車ホーニング加工を行ったので、成形ギヤとは大きさの異なるワークにも精度良く転写できる。
【0015】
【実施例】
添付図面に基づいて本実施例について説明する。
【0016】
図1は、本実施例及び従来技術に係る歯車ホーニング盤の構成図である。
【0017】
図1に示されるように、本実施例に係る歯車ホーニング盤2は、従来技術と同様に構成されている。即ち、軸中心をヘッドストック31とテールストック32の両センタ41、42間に回転可能に支持させたワーク4を、その中心軸Oと平行なワークテーブル軸Zと所定の交差角(以下砥石の軸交差角と称する)θをなすホーニング砥石回転軸Yの周りに回転駆動される内歯車形砥石1と噛み合わせて回転させると共に、ワークテーブル3によってワークテーブル軸方向Zにも往復運動を行わせ、噛み合わせ部に研削液を注ぎ掛けて歯車ホーニング加工を行う機械である。砥石1は歯車ホーニング盤2の砥石頭(図示せず)に取付けられており、砥石頭はワークテーブル3に対して直角方向に前後進可能であり、砥石1とワーク中心軸Oとの間隔が調節可能である。
【0018】
図2〜図7を参照して上記の如く構成された歯車ホーニング盤2を用いた歯車ホーニング加工方法について説明する。
【0019】
まず、加工精度を維持するため、常時正確な砥石歯形を保つ必要があり、砥石1を新品に交換した時、ワーク4の加工を開始する前、及びワーク4を一定数加工する毎に、砥石1を機械に取り付けたまま成形を行うようになっている。この砥石1の機上成形の手順について説明する。
【0020】
図2の(a)、(b)に示すように、まずワーク4に代えて、両センタ41、42間に等の超砥粒から成る成形リング5を備えた成形軸15を取付け、ワークテーブル3の移動により成形リング5を砥石1の内側に入れる。ここで、成形リング5は、ダイヤモンド,CBN等の超砥粒が電着等によって外周面に固着されたものである。次いで図2(c)、(d)に示すように、成形リング5に砥石1の内径面(歯先面)を接触させて回転させると共にワークテーブル3によりワークテーブル軸方向にも小幅に往復運動させることによって、砥石1の内径面の成形を行う。
【0021】
次に、図2(e)、(f)に示すように、成形軸15に代えて両センタ41、42間に成形ギヤ6を備えた成形軸16を取付け、ワークテーブル3の移動により成形ギヤ6を砥石1の内側に入れ、成形ギヤ6に砥石1の内歯を噛み合わせて回転させると共にワークテーブル3によりワークテーブル軸方向にも小幅で往復運動させることによって、砥石1の歯面の成形を行う。尚、成形ギア6は、ダイヤモンド,CBN等の超砥粒が電着等によって歯面に固着されたものである。このような砥石歯面成形時では、図4に示すように、成形ギヤ6の中心軸Oと砥石1の回転軸Yとのなす角度即ち砥石1の軸交差角が所定値θに設定されている。以上の如く成形された砥石1の歯面のねじれ角(即ち歯面と砥石1の回転軸Yとのなす角度)は通常のインボリュート歯車の理論通り砥石1大径部側に向かうに連れて大きくなっている。
【0022】
このような機上成形により、内歯車形砥石1の歯丈及び歯形の所要の精度を確保した後、図2(g)、(h)のように新しく取り付けた鉄等の金属から成るワーク4の歯車ホーニング加工が開始される。
【0023】
ここで、成形ギヤ6が超砥粒から成り且つワーク4が金属製であるので、材料の関係から機上成形された砥石1によるワーク4への歯車ホーニング加工時における切削力の方が成形ギヤ6による砥石1の歯面成形時における切削力よりも小さくなる。従って、砥石1によるワーク4への歯車ホーニング加工をする為には、歯車ホーニング加工時における砥石1からワーク4への押付力を砥石1の歯面成形時における砥石1から成形ギヤ6への押付力よりも大きくする必要がある。
【0024】
その結果、図6に示されるように、ワーク4が成形ギヤ6よりも砥石1大径側にくい込んだ状態で歯車ホーニング加工が行われ、歯車ホーニング加工時におけるワーク4のピッチ円が砥石1の歯面成形時における成形ギヤ6のピッチ円よりも砥石1大径部側にずれることになる。そこで、砥石1の歯面のねじれ角が砥石1大径部側に向かうに連れて大きくなることから、歯車ホーニング加工時におけるワーク4のピッチ円上のねじれ角は砥石1の歯面成形時における成形ギヤ6のピッチ円上のねじれ角よりも大きくなる。よって、従来のようにホーニング加工時における砥石1の軸交差角θを砥石1歯面成形時における砥石の軸交差角θと同じにすると、ワーク4の目的形状と同一の成形ギヤ6を使用しても、成形ギヤ6から砥石1を介してワーク4へ正確に形状転写が行われず、転写精度が悪くなる。
【0025】
そこで、本実施例では、成形ギヤ6からワーク4への転写精度を向上させるために、図5に示す如く歯車ホーニング加工時における砥石1の軸交差角θを砥石1歯面成形時における砥石1の軸交差角θよりも小さくして歯車ホーニング加工時におけるワーク4のピッチ円上のねじれ角を砥石1の歯面成形時における成形ギヤ6のピッチ円上のねじれ角に一致させるようにしている。砥石1の軸交差角を小さくすると、なぜワーク4のピッチ円上のねじれ角を砥石1の歯面成形時における成形ギヤ6のピッチ円上のねじれ角に一致させることができるかについて図7を用いて説明する。
【0026】
図7に示すように、ワーク4のねじれ角(ワーク4歯面とワーク4中心軸Oとのなす角度)は、砥石1のねじれ角(砥石1歯面と砥石1回転軸Yとのなす角度)βと砥石1の軸交差角θとの和αによって決定される。従って、歯車ホーニング加工時において砥石1の軸交差角θをθ−θだけ小さくすることにより、砥石1のねじれ角βと砥石1の軸交差角θとの和αもθ−θだけ小さくなる。ここで、軸交差角の変化量θ−θは、ワーク4のピッチ円と砥石1の歯面成形時における成形ギヤ6のピッチ円との間のずれ量に応じて決めている。以上より、ワーク4のピッチ円上のねじれ角を砥石1の歯面成形時における成形ギヤ6のピッチ円上のねじれ角に一致させることができる。
【0027】
ここで、図8,図9を用いて砥石1の軸交差角θの調整方法について具体的に説明する。
【0028】
砥石1歯面成形時の成形ギヤ6の前進端位置xをNC制御装置50に記憶させ、その後、NC制御装置50内で常時検出されている歯車ホーニング加工時のワーク4の前進端位置xを成形ギヤ6の前進端位置xと比較させる。その結果、ワーク4の前進端位置xが成形ギヤ6の前進端位置x以下であれば、砥石1の軸交差角θを砥石1歯面成形時における砥石1の軸交差角θに一致させたまま歯車ホーニング加工を行う。一方、ワーク4の前進端位置xが成形ギヤ6の前進端位置xを超えると、x−x=Δxに相当する分Δaだけ砥石1の軸交差角θを砥石1歯面成形時における砥石1の軸交差角θよりも小さくさせながら歯車ホーニング加工を行う。つまり、ワーク4の前進端位置xが成形ギヤ6の前進端位置xよりも大きくなった場合、砥石1の軸交差角θをΔxに応じて調整する。
【0029】
前記Δaは下記の式で表される。尚、βはワーク4のピッチ円上のねじれ角、PCDはワーク4及び成形ギヤ6のピッチ円径、Lはワークリードを示す。
【0030】
【数1】

Figure 0003601066
【0031】
図10は上記した歯車ホーニング加工時における砥石1の軸交差角θの調整法を具体化した図である。ここで、βは成形ギヤ6のピッチ円上のねじれ角、βはワーク4のピッチ円上のねじれ角、Δβはβ−βである。
【0032】
尚、本実施例では、常時Δxを検出してフィードバック制御により歯車ホーニング加工時における砥石1の軸交差角θを調整したが、本発明はこれに限定される必要は全くなく、例えば、図11に示すように、予め実験的にΔxを求め、これに基づいてΔaを計算してΔaだけ砥石1の軸交差角θを砥石1歯面成形時における砥石1の軸交差角θよりも小さくさせた状態でホーニング加工を行っても良い。
【0033】
本実施例によれば、歯車ホーニング加工工程において軸交差角θを砥石歯面成形時における軸交差角θよりも小さくしてワーク4のピッチ円上のねじれ角を砥石歯面成形時における成形ギヤ6のピッチ円上のねじれ角と一致させたので、ワーク4が砥石歯面成形時における成形ギヤ6よりも砥石1大径部側にくい込んだ状態で歯車ホーニング加工が行われても、成形ギヤ6から砥石1を介してワーク4へ正確に形状転写が行われ、転写精度が向上する。
【0034】
又、ワーク4の前進端位置xが成形ギヤ6の最大前進端位置x以下の場合には砥石1の軸交差角θを砥石歯面成形時における砥石1の軸交差角θに一致させた状態で歯車ホーニング加工を行い、ワーク4の前進端位置xが成形ギヤ6の最大前進端位置xを超えれば、その差分Δxに応じた分Δaだけ軸交差角θを小さくしながら歯車ホーニング加工を行ったので、成形ギヤ6とは大きさの異なるワークにも精度良く転写できる。
【0035】
【発明の効果】
請求項1の発明は、以下の如く効果を有する。
【0036】
歯車ホーニング加工工程において砥石の軸交差角を砥石歯面成形工程における軸交差角よりも小さくしてワークのピッチ円上のねじれ角を砥石歯面成形工程における成形ギヤのピッチ円上のねじれ角と一致させたので、ワークが砥石歯面成形工程における成形ギヤよりも砥石大径側にくい込んだ状態で歯車ホーニング加工が行われても、成形ギヤから砥石を介してワークへ正確に形状転写が行われ、転写精度が向上する。
【0037】
請求項2の発明は、以下の如く効果を有する。
【0038】
ワークの砥石への前進端位置が成形ギヤの最大前進端位置以下の場合には軸交差角を砥石歯面成形工程における軸交差角に一致させた状態で歯車ホーニング加工を行い、ワークの前進端位置が成形ギヤの最大前進端位置を超えた場合にはその差分に応じた分だけ軸交差角を小さくしながら歯車ホーニング加工を行ったので、成形ギヤとは大きさの異なるワークにも精度良く転写できる。
【図面の簡単な説明】
【図1】本実施例及び従来技術に係る歯車ホーニング盤の構成図である。
【図2】本実施例及び従来技術に係る内歯車形ホーニング砥石の機上成形手順を示す説明図であって、(a)は基準状態の一部断面正面図、(b)は(a)のb−b線断面図、(c)は砥石内径面の成形時の一部断面正面図、(d)は(c)のd−d線断面図、(e)は砥石歯面の成形時の一部断面正面図、(f)は(e)のf−f線断面図、(g)はワークの歯車ホーニング加工時の一部断面正面図、(h)は(g)のh−h線断面図である。
【図3】本実施例に係る砥石歯面の拡大斜視図である。
【図4】本実施例に係る砥石歯面成形時の砥石の軸交差角を示す説明図である。
【図5】本実施例に係る歯車ホーニング加工時の砥石の軸交差角を示す説明図である。
【図6】ワーク及び成形ギヤの砥石へのくい込み量を示す説明図である。
【図7】砥石1の軸交差角とワーク4のねじれ角との関係を示す説明図である。
【図8】歯車ホーニング加工時における砥石1の軸交差角を調整するためのNC制御装置の説明図である。
【図9】成形ギヤの最大前進端位置及びワークの前進端位置を説明した説明図である。
【図10】フィードバック制御により歯車ホーニング加工時における砥石の軸交差角を調整する方法を示すブロック図である。
【図11】フィードフォワード制御により歯車ホーニング加工時における砥石の軸交差角を調整する方法を示すブロック図である。
【符号の説明】
1・・・内歯車形ホーニング砥石
2・・・歯車ホーニング盤
3・・・ワークテーブル
4・・・ワーク
5・・・成形リング
6・・・成形ギヤ
31・・・ヘッドストック
32・・・テールストック
41・・・ヘッドストックのセンタ
42・・・テールストックのセンタ[0001]
[Industrial applications]
The present invention relates to a gear honing machine, in particular, a honing grindstone having a work center rotatably supported between a center of a headstock and a center of a tailstock at a predetermined intersection angle with a worktable axis parallel to the center axis. In addition to rotating the internal gear type grindstone that is driven to rotate around the rotation axis, the worktable also reciprocates in the worktable axis direction. The present invention relates to a gear honing method using an internal gear type grindstone in a gear honing machine.
[0002]
[Prior art]
In recent years, for mass production of automotive gears, gear grinding that can correct the deformation of heat-treated gears has been adopted due to the demand for lower noise and higher efficiency. A gear honing machine using a gear wheel has been widely used.
[0003]
As this type of conventional gear honing machine, Switzerland Fesura (F 3 ssler) Inc. D-250-C type gear honing machine that manufacture and market are known.
[0004]
As shown in FIG. 1, the work 4 having a shaft center rotatably supported between the centers 41 and 42 of the headstock 31 and the tailstock 32 is a work parallel to the center axis O. The internal gear type grindstone 1 is driven to rotate around a honing grindstone rotation axis Y which forms a predetermined intersection angle θ with the table axis Z, and is rotated by reciprocating motion in the worktable axis direction by the worktable 3. This is a machine that performs gear honing by pouring the grinding fluid into the meshing part. The grindstone 1 is mounted on a grindstone head (not shown) of a gear honing machine, and the grindstone head can move forward and backward in a direction perpendicular to the work table 3, and the distance between the grindstone 1 and the work center axis O is adjusted. It is possible.
[0005]
In order to maintain the machining accuracy, it is necessary to always maintain an accurate tooth profile of the grindstone. When the grindstone 1 is replaced with a new one, before starting work of the work, and every time a certain number of works are machined, the grindstone 1 is transferred to the machine. Molding is performed with the device attached. As shown in FIGS. 2 (a) and 2 (b), the on-press forming procedure first mounts a forming shaft 15 provided with a forming ring 5 made of diamond instead of the work 4 between the centers 41 and 42. Then, the forming ring 5 is put inside the grindstone 1 by moving the work table 3, and then the inner surface (tooth surface) of the grindstone 1 is brought into contact with the forming ring 5 as shown in FIGS. By causing the work table 3 to reciprocate also in the work table axis direction, the inner diameter surface of the grindstone 1 is formed.
[0006]
Next, as shown in FIGS. 2 (e) and 2 (f), a forming shaft 16 having a forming gear 6 made of diamond is attached between the centers 41 and 42 instead of the forming shaft 15, and the work table 3 is moved. The tooth surface of the grinding wheel 1 is formed by inserting the forming gear 6 inside the grinding wheel 1, rotating the forming gear 6 with the internal teeth of the grinding stone 1 and reciprocating the work table 3 in the work table axial direction. I do. Here, as shown in FIG. 3, the torsion angle of the tooth surface of the grindstone 1 (the angle between the tooth surface and the rotation axis Y of the grindstone 1) increases toward the large-diameter portion according to the theory of a normal involute gear. It is getting bigger.
[0007]
After the required accuracy of the tooth length and the tooth profile of the internal gear type grindstone 1 is secured by such on-machine forming, the honing of the iron work 4 newly attached as shown in FIGS. 2 (g) and 2 (h) is performed. Be started. The honing is performed with the intersection angle θ between the rotation axis Y of the grinding wheel 1 and the work table axis Z kept at the intersection angle when the forming gear 6 forms the tooth surface of the grinding wheel 1.
[0008]
[Problems to be solved by the invention]
By the way, in the above-mentioned honing, since the forming gear 6 is made of diamond and the work 4 is made of iron (made of metal), the cutting force during the gear honing of the work 4 by the on-machine formed grindstone 1 is smaller than the cutting force. Is smaller than the cutting force at the time of forming the tooth surface of the grindstone 1 by the forming gear 6, and in order to perform the gear honing to the work 4 by the grindstone 1, the pressing force from the grindstone 1 to the work 4 at the time of the gear honing is required. It is necessary to make the pressing force from the grindstone 1 to the forming gear 6 larger at the time of forming the tooth surface of the grindstone 1. As a result, the honing is performed in a state where the workpiece 4 is inserted into the grindstone 1 on the larger diameter side with respect to the forming gear 6, and the pitch circle of the workpiece 4 during the gear honing processing is determined by the shape of the forming gear 6 when forming the tooth surface of the grindstone 1. It will be shifted to the larger diameter side of the grindstone 1 than the pitch circle.
[0009]
Here, in the above-mentioned gear honing, since the intersection angle θ between the grinding wheel 1 rotation axis Y and the work table axis Z is the same as that at the time of forming the tooth surface of the grinding wheel 1, the torsion angle of the tooth surface of the grinding wheel 1 is large. Since the diameter increases toward the radial portion, the torsion angle on the pitch circle of the work 4 during the gear honing process remains larger than the torsion angle on the pitch circle of the grindstone 1 when the tooth surface of the grindstone 1 is formed. As described above, even when the forming gear 6 having the same shape as the target shape of the work 4 is used, the shape transfer from the forming gear 6 to the work 4 via the grindstone 1 is not accurately performed, and the transfer accuracy deteriorates.
[0010]
Therefore, according to the present invention, the torsion angle on the pitch circle of the workpiece 4 at the time of the gear honing processing is made to coincide with the torsion angle on the pitch circle of the forming gear at the time of forming the tooth surface of the grindstone 1 so that the torsion angle from the forming gear 6 to the grinding wheel 1 It is an object of the present invention to improve the transfer accuracy to the work 4 by using the method.
[0011]
[Means for Solving the Problems]
The technical means (hereinafter referred to as first technical means) taken in the invention of claim 1 to solve the above technical problem is an intersection angle between a honing grindstone rotating shaft and a worktable shaft in a gear honing process. Is smaller than the intersection angle in the grinding wheel tooth surface forming step, and the torsion angle on the pitch circle of the work is made to match the torsion angle on the pitch gear of the forming gear in the grinding wheel tooth surface forming step.
[0012]
In order to solve the above technical problem, the technical means (hereinafter referred to as second technical means) taken in the invention of claim 2 is to set a forward end position of a work to an internal gear type honing grindstone in a gear honing process. It constantly detects and compares the detected position with the maximum advance end position of the forming gear to the internal gear type honing grindstone in the grindstone tooth surface forming step, and adjusts the above-mentioned crossing angle based on the result. Honing is performed with the intersection angle equal to the intersection angle in the grinding wheel tooth surface forming process if the maximum advance end position is less than the maximum advance end position, and if the detected position exceeds the maximum advance end position of the forming gear, the difference is calculated. That is, the gear honing was performed while reducing the intersection angle by the corresponding amount.
[0013]
[Action]
According to the first technical means, the crossing angle between the honing wheel rotation axis and the work table axis (hereinafter referred to as the wheel crossing angle) in the gear honing process is calculated from the wheel crossing angle in the wheel grinding process. And the torsion angle on the pitch circle of the workpiece was matched with the torsion angle on the pitch circle of the forming gear in the grinding wheel tooth surface forming process. Even if the gear honing is performed in a state where the gear is hoisted, the shape is accurately transferred from the forming gear to the work via the grindstone, and the transfer accuracy is improved.
[0014]
According to the second technical means, when the advancing end position of the workpiece is equal to or less than the maximum advancing end position of the forming gear, the intersection angle of the grindstone is made to coincide with the intersection angle of the grindstone in the grinding wheel tooth surface forming step. Gear honing was performed, and when the advancing end position of the workpiece exceeded the maximum advancing end position of the forming gear, the gear honing was performed while reducing the crossing angle of the grindstone by the amount corresponding to the difference. Can be accurately transferred to a work having a different size.
[0015]
【Example】
This embodiment will be described with reference to the accompanying drawings.
[0016]
FIG. 1 is a configuration diagram of a gear honing machine according to the present embodiment and the related art.
[0017]
As shown in FIG. 1, a gear honing machine 2 according to the present embodiment has the same configuration as that of the related art. That is, the work 4 whose axis is rotatably supported between the centers 41 and 42 of the head stock 31 and the tail stock 32 is fixed to a work table axis Z parallel to the center axis O and a predetermined intersection angle (hereinafter referred to as a whetstone). (The angle is referred to as an axis crossing angle.) The internal gear type grindstone 1 is driven to rotate around a honing grindstone rotation axis Y forming θ, and is rotated by the worktable 3. This is a machine that pours a grinding fluid into the meshing part and performs gear honing. The grindstone 1 is mounted on a grindstone head (not shown) of the gear honing machine 2, and the grindstone head can move back and forth in a direction perpendicular to the work table 3. It is adjustable.
[0018]
A gear honing method using the gear honing machine 2 configured as described above will be described with reference to FIGS.
[0019]
First, in order to maintain the processing accuracy, it is necessary to always maintain an accurate grinding wheel tooth profile. When the grinding wheel 1 is replaced with a new one, before the processing of the work 4 is started, and every time a certain number of the work 4 are processed, the grinding wheel is formed. The molding is carried out with 1 attached to the machine. The procedure of on-machine molding of the whetstone 1 will be described.
[0020]
As shown in FIGS. 2A and 2B, first, instead of the work 4, a forming shaft 15 having a forming ring 5 made of super-abrasive grains is mounted between the centers 41 and 42, and a work table is mounted. The forming ring 5 is put inside the grindstone 1 by the movement of 3. Here, the forming ring 5 is one in which superabrasive grains such as diamond and CBN are fixed to the outer peripheral surface by electrodeposition or the like. Next, as shown in FIGS. 2C and 2D, the inner diameter surface (tooth surface) of the grindstone 1 is brought into contact with the forming ring 5 and rotated, and the work table 3 reciprocates a small width in the work table axial direction. By doing so, the inner diameter surface of the grindstone 1 is formed.
[0021]
Next, as shown in FIGS. 2E and 2F, a forming shaft 16 having a forming gear 6 is mounted between the centers 41 and 42 in place of the forming shaft 15, and the forming table 16 is moved by moving the work table 3. The tooth surface of the grindstone 1 is formed by inserting the inner surface of the grindstone 1 into the grindstone 1 and rotating the meshing gear 1 with the internal teeth of the grindstone 1 while causing the worktable 3 to reciprocate with a small width in the axial direction of the worktable. I do. The forming gear 6 is formed by super-abrasive grains such as diamond and CBN fixed to the tooth surface by electrodeposition or the like. At the time of such grinding tooth surface molding, as shown in FIG. 4, the crossed axes angle of the angle i.e. grinding wheel 1 and the rotation axis Y of the central axis O and the grindstone 1 of the molded gear 6 is set to a predetermined value theta 6 ing. The torsion angle of the tooth surface of the grinding wheel 1 formed as described above (that is, the angle formed between the tooth surface and the rotation axis Y of the grinding wheel 1) increases as it goes toward the large-diameter portion side of the grinding wheel 1 according to the theory of a normal involute gear. Has become.
[0022]
After the required accuracy of the tooth height and the tooth profile of the internal gear type grindstone 1 is secured by such on-machine molding, the work 4 made of a metal such as iron is newly attached as shown in FIGS. 2 (g) and 2 (h). Gear honing is started.
[0023]
Here, since the forming gear 6 is made of super-abrasive grains and the work 4 is made of metal, the cutting force during the gear honing process on the work 4 by the grindstone 1 formed on the machine is smaller than the forming gear due to the material. 6 is smaller than the cutting force when the tooth surface of the grindstone 1 is formed. Therefore, in order to perform the gear honing process on the work 4 by the grindstone 1, the pressing force from the grindstone 1 to the work 4 during the gear honing process is pressed from the grindstone 1 to the forming gear 6 during the tooth surface forming of the grindstone 1. Need to be greater than force.
[0024]
As a result, as shown in FIG. 6, the gear honing is performed in a state where the work 4 is embedded on the larger diameter side of the grindstone 1 than the forming gear 6. The pitch is shifted to the larger diameter portion of the grindstone 1 than the pitch circle of the forming gear 6 during the tooth surface forming. Therefore, since the torsion angle of the tooth surface of the grindstone 1 increases toward the large-diameter portion of the grindstone 1, the torsion angle on the pitch circle of the work 4 during the gear honing processing is determined when the tooth surface of the grindstone 1 is formed. It is larger than the twist angle on the pitch circle of the formed gear 6. Therefore, if the axis crossing angle θ of the grindstone 1 at the time of honing processing is made the same as the axis crossing angle θ of the grindstone at the time of forming the tooth surface of the grinding wheel 1 as in the related art, the same forming gear 6 as the target shape of the work 4 is used. However, the shape transfer from the molding gear 6 to the work 4 via the grindstone 1 is not accurately performed, and the transfer accuracy is deteriorated.
[0025]
Accordingly, in this embodiment, the grinding wheel from the forming gear 6 in order to improve the transfer accuracy of the workpiece 4, at the time of grinding wheel 1 tooth surface forming an axis crossing angle theta 4 of the grinding wheel 1 at the time of gear honing as shown in FIG. 5 a twist angle at the pitch circle of the work 4 so as to match the helix angle on the pitch circle of the shaped gear 6 during the tooth surface molding of the grinding wheel 1 at the time of gear honing made smaller than the shaft crossing angle theta 6 1 ing. FIG. 7 shows why it is possible to make the torsion angle on the pitch circle of the work 4 coincide with the torsion angle on the pitch circle of the forming gear 6 at the time of forming the tooth surface of the grindstone 1 by reducing the axis crossing angle of the grindstone 1. It will be described using FIG.
[0026]
As shown in FIG. 7, the torsion angle of the work 4 (the angle between the tooth surface of the work 4 and the central axis O of the work 4) is the torsion angle of the grindstone 1 (the angle between the tooth surface of the grindstone 1 and the rotation axis Y of the grindstone 1). ) Is determined by the sum α of β 1 and the axis intersection angle θ 4 of the grinding wheel 1. Therefore, the sum α of the torsion angle β 1 of the grinding wheel 1 and the axis crossing angle θ 4 of the grinding wheel 1 is also θ 6 by reducing the axis intersection angle θ 4 of the grinding wheel 1 by θ 6 −θ 4 during the gear honing. -θ 4 only smaller. Here, the change amount θ 6 −θ 4 of the axis crossing angle is determined according to the deviation amount between the pitch circle of the work 4 and the pitch circle of the forming gear 6 when the tooth surface of the grinding wheel 1 is formed. As described above, the torsion angle on the pitch circle of the work 4 can be made to coincide with the torsion angle on the pitch circle of the forming gear 6 when the tooth surface of the grindstone 1 is formed.
[0027]
Here, FIG. 8, will be described in detail a method of adjusting the axis crossing angle theta 4 of the grinding wheel 1 with reference to FIG.
[0028]
Grindstone 1 forward end position x 0 of the forming gear 6 during tooth surface molding is stored in the NC control device 50, then, the NC control unit 50 within an always detected and are advanced end position x of the workpiece 4 at the time of gear honing 1 is compared with the advanced end position x 0 of the forming gear 6. As a result, if the forward end position x 1 of the workpiece 4 is less advanced end position x 0 of the forming gear 6, the crossed axes angle of the grinding wheel 1 in the axial crossing angle theta 4 of the grinding wheel 1 at the time of grinding wheel 1 tooth surface molding theta 6 Gear honing is performed while keeping the same. On the other hand, the forward end position x 1 of the workpiece 4 is greater than the forward end position x 0 of the forming gear 6, x 1 -x 0 = grindstone 1 tooth surface the axis crossing angle theta 4 of the corresponding amount Δa only grindstone 1 to Δx performing gear honing while smaller than the shaft crossing angle theta 6 of the grinding wheel 1 at the time of molding. That is, when the forward end position x 1 of the workpiece 4 is greater than the forward end position x 0 of the forming gear 6, it is adjusted in accordance with the axis crossing angle theta 4 of the grinding wheel 1 to [Delta] x.
[0029]
The Δa is represented by the following equation. Here, β is the torsion angle on the pitch circle of the work 4, PCD is the pitch circle diameter of the work 4 and the forming gear 6, and L is the work lead.
[0030]
(Equation 1)
Figure 0003601066
[0031]
Figure 10 is a diagram embodying the adjustment of the shaft crossing angle theta 4 of the grinding wheel 1 at the time of gear honing described above. Here, β 0 is the torsion angle of the formed gear 6 on the pitch circle, β is the torsion angle of the work 4 on the pitch circle, and Δβ is β−β 0 .
[0032]
In has been adjusted the shaft crossing angle theta 4 of the grinding wheel 1 by detecting and feedback control always Δx during gear honing, the present invention is absolutely no need to be limited to this embodiment, for example, FIG. As shown in FIG. 11, Δx is experimentally obtained in advance, Δa is calculated based on the Δx, and the axis crossing angle θ 4 of the grinding wheel 1 is calculated by Δa from the axis crossing angle θ 6 of the grinding wheel 1 at the time of forming the tooth surface of the grinding wheel 1. The honing process may be performed in a state where the height is reduced.
[0033]
According to the present embodiment, in the gear honing process, the axis crossing angle θ 4 is made smaller than the axis crossing angle θ 6 at the time of forming the grinding wheel tooth surface, and the torsion angle on the pitch circle of the work 4 is set at the time of forming the grinding wheel tooth surface. Since the torsion angle on the pitch circle of the forming gear 6 was matched, even if the gear honing was performed in a state where the work 4 was inserted into the larger diameter portion of the grindstone 1 than the forming gear 6 in forming the grindstone tooth surface, The shape is accurately transferred from the forming gear 6 to the work 4 via the grindstone 1, and the transfer accuracy is improved.
[0034]
Moreover, the crossed axes angle theta 4 of the grinding wheel 1 when the forward end position x 1 of the work 4 is equal to or smaller than the maximum forward end position x 0 of the forming gear 6 in the axial crossing angle theta 4 of the grinding wheel 1 at the time of grinding the tooth surface molding performs gear honing while being consistent, if it exceeds the forward end position x 1 of the work 4 is the maximum forward end position x 0 of the forming gear 6, the crossed axes angle theta 4 by an amount Δa corresponding to the difference Δx small Since the gear honing was performed while the gear honing was being performed, the work can be transferred with high precision to a work having a size different from that of the molded gear 6.
[0035]
【The invention's effect】
The invention of claim 1 has the following effects.
[0036]
In the gear honing process, the crossing angle of the grinding wheel is made smaller than the crossing angle in the grinding wheel tooth surface forming process, and the torsion angle on the pitch circle of the work is set to the torsion angle on the forming gear pitch circle in the grinding wheel tooth surface forming process. Because the gears are matched, even when gear honing is performed in a state in which the work is embedded on the larger diameter side of the grindstone than the forming gear in the grindstone tooth surface forming process, the shape is accurately transferred from the forming gear to the work via the grindstone. As a result, transfer accuracy is improved.
[0037]
The invention of claim 2 has the following effects.
[0038]
If the forward end position of the workpiece to the grindstone is equal to or less than the maximum forward end position of the forming gear, gear honing is performed in a state in which the axis crossing angle matches the axis crossing angle in the grinding wheel tooth surface forming process, and the workpiece is moved forward. If the position exceeds the maximum forward end position of the formed gear, the gear honing was performed while reducing the axis crossing angle by the amount corresponding to the difference, so that even workpieces with a size different from the formed gear can be accurately detected. Can be transcribed.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a gear honing machine according to the present embodiment and a conventional technique.
FIGS. 2A and 2B are explanatory views showing an on-machine forming procedure of an internal gear type honing stone according to the present embodiment and a conventional technique, wherein FIG. 2A is a partial sectional front view in a reference state, and FIG. (C) is a partial cross-sectional front view at the time of forming the inner surface of the grinding wheel, (d) is a cross-sectional view at the line dd of (c), and (e) is at the time of forming the tooth surface of the grinding wheel. , (F) is a sectional view taken along line ff of (e), (g) is a partial sectional front view at the time of gear honing of the work, and (h) is hh of (g). It is a line sectional view.
FIG. 3 is an enlarged perspective view of a tooth surface of a grindstone according to the present embodiment.
FIG. 4 is an explanatory diagram showing an axis crossing angle of a grindstone when forming a grindstone tooth surface according to the present embodiment.
FIG. 5 is an explanatory diagram showing an axis crossing angle of a grindstone during gear honing according to the present embodiment.
FIG. 6 is an explanatory view showing the amount of biting of a work and a forming gear into a grindstone.
FIG. 7 is an explanatory diagram showing the relationship between the axis crossing angle of the grinding wheel 1 and the torsion angle of the work 4;
FIG. 8 is an explanatory diagram of an NC control device for adjusting an axis crossing angle of the grinding wheel 1 during gear honing.
FIG. 9 is an explanatory diagram illustrating a maximum forward end position of a forming gear and a forward end position of a work.
FIG. 10 is a block diagram illustrating a method of adjusting the axis crossing angle of the grindstone during gear honing by feedback control.
FIG. 11 is a block diagram illustrating a method of adjusting the axis crossing angle of the grindstone during gear honing processing by feedforward control.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Internal gear type honing grindstone 2 ... Gear honing machine 3 ... Work table 4 ... Work 5 ... Forming ring 6 ... Forming gear 31 ... Head stock 32 ... Tail Stock 41: Center of headstock 42: Center of tailstock

Claims (2)

ヘッドストックとテールストックの両センタ間に回転可能に取付けたワークを、その回転中心軸と平行なワークテーブル軸と所定の交差角をなすホーニング砥石回転軸の周りに回転駆動される内歯車形ホーニング砥石と噛み合わせて回転させると共に、ワークテーブルによりワークテーブル軸方向にも往復運動を行わせ、噛み合わせ部に研削液を注ぎ掛けて歯車ホーニング加工を行う歯車ホーニング盤において、
ヘッドストックとテールストックの両センタ間に回転可能に取付けた超砥粒から成る成形リングを内歯車形ホーニング砥石の内径面と接触させて回転させると共にワークテーブル軸方向にも往復運動させることによって内歯車形ホーニング砥石の内径面を成形する砥石内径面成形工程と、
ヘッドストックとテールストックの両センタ間に回転可能に取付けた超砥粒から成る成形ギヤを内歯車形ホーニング砥石と噛み合わせて回転させると共にワークテーブル軸方向にも往復運動させることによって内歯車形ホーニング砥石の歯面を成形することで内歯車形ホーニング砥石の歯丈及び歯形の所要の精度を確保する砥石歯面成形工程と、
ヘッドストックとテールストックの両センタ間に回転可能に取付けた金属製のワークを所要の精度に確保された内歯車形ホーニング砥石と噛み合わせて回転させると共にワークテーブル軸方向にも往復運動させることによってワークの歯面をホーニング加工する歯車ホーニング加工工程とから成る内歯車形ホーニング砥石による歯車ホーニング加工方法であって、
上記歯車ホーニング加工工程においてホーニング砥石回転軸とワークテーブル軸とのなす交差角を砥石歯面成形工程における交差角よりも小さくしてワークのピッチ円上のねじれ角を上記砥石歯面成形工程における成形ギヤのピッチ円上のねじれ角と一致させたことを特徴とする歯車ホーニング盤における内歯車形ホーニング砥石による歯車ホーニング加工方法。
An internal gear honing that rotates a work rotatably mounted between the center of the headstock and the tailstock around a honing grindstone rotation axis that makes a predetermined intersection angle with the worktable axis parallel to the rotation center axis. In a gear honing machine that engages with a grindstone and rotates, and also causes a reciprocating motion in the work table axis direction by a work table, and pours grinding fluid into the meshing part to perform gear honing.
A forming ring made of superabrasive grains rotatably mounted between the centers of the headstock and the tailstock is brought into contact with the inner surface of the internal gear type honing grindstone, rotated and reciprocated in the axial direction of the worktable. A grinding wheel inner diameter surface forming step of forming the inner diameter surface of the gear type honing wheel,
Internal gear honing by rotating a formed gear made of superabrasive grains rotatably mounted between the center of the headstock and tail stock with the internal gear honing wheel and reciprocating in the axial direction of the work table. A grinding wheel tooth surface forming process of forming the tooth surface of the grinding wheel to secure the required accuracy of the tooth length and tooth profile of the internal gear honing wheel;
By rotating a metal work rotatably mounted between the center of the headstock and the tailstock with the internal gear type honing grindstone secured to the required accuracy and reciprocating in the work table axial direction A gear honing method using an internal gear type honing grindstone comprising a gear honing processing step of honing a tooth surface of a work,
In the gear honing process, the intersection angle between the honing wheel rotation axis and the work table axis is smaller than the intersection angle in the grinding wheel tooth surface forming process, and the torsion angle on the pitch circle of the work is formed in the grinding wheel tooth surface forming process. A gear honing method using an internal gear type honing grindstone in a gear honing machine, wherein the torsion angle is matched with a torsion angle on a gear pitch circle.
歯車ホーニング加工工程においてワークの内歯車形ホーニング砥石への前進端位置を常時検出し、その検出位置を砥石歯面成形工程における成形ギヤの内歯車形ホーニング砥石への最大前進端位置と比較してその結果に基づいて上記交差角を調整し、検出位置が成形ギヤの最大前進端位置以下の場合には交差角を砥石歯面成形工程における交差角に一致させた状態で歯車ホーニング加工を行い、検出位置が成形ギヤの最大前進端位置を超えた場合にはその差分に応じた分だけ交差角を小さくしながら歯車ホーニング加工を行ったことを特徴とする請求項1記載の歯車ホーニング盤における内歯車形ホーニング砥石による歯車ホーニング加工方法。In the gear honing process, the forward end position of the work to the internal gear honing wheel is always detected, and the detected position is compared with the maximum advance end position of the forming gear to the internal gear honing wheel in the grinding wheel tooth surface forming process. Based on the result, adjust the intersection angle, if the detected position is less than the maximum forward end position of the forming gear, perform the gear honing with the intersection angle matched with the intersection angle in the grinding wheel tooth surface forming process, 2. The gear honing machine according to claim 1, wherein when the detected position exceeds the maximum forward end position of the formed gear, the gear honing is performed while reducing the intersection angle by an amount corresponding to the difference. Gear honing method using a gear honing wheel.
JP29985793A 1993-11-30 1993-11-30 Gear honing method with internal gear type honing wheel on gear honing machine Expired - Fee Related JP3601066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29985793A JP3601066B2 (en) 1993-11-30 1993-11-30 Gear honing method with internal gear type honing wheel on gear honing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29985793A JP3601066B2 (en) 1993-11-30 1993-11-30 Gear honing method with internal gear type honing wheel on gear honing machine

Publications (2)

Publication Number Publication Date
JPH07156016A JPH07156016A (en) 1995-06-20
JP3601066B2 true JP3601066B2 (en) 2004-12-15

Family

ID=17877793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29985793A Expired - Fee Related JP3601066B2 (en) 1993-11-30 1993-11-30 Gear honing method with internal gear type honing wheel on gear honing machine

Country Status (1)

Country Link
JP (1) JP3601066B2 (en)

Also Published As

Publication number Publication date
JPH07156016A (en) 1995-06-20

Similar Documents

Publication Publication Date Title
US20200230725A1 (en) Method and Device for Precision Machining of Toothed and Hardened Work Wheels
KR100865053B1 (en) Gear grinding machine, method for dressing threaded grinding wheel and method for grinding work
US6757949B2 (en) Combination gear hobber, chamfer/debur and shaver apparatus and method
JPS63306819A (en) Machine tool for precision-machining flank of tooth of previously toothed gear
CS277172B6 (en) Method of cutting a spur gear and apparatus for making the same
WO2011043358A1 (en) Method of making barrel-shaped worm-like tool
JPH06510242A (en) Method and apparatus for machining spur and helical gears
JPH01252316A (en) Method of manufacturing and/or finishing crown gear
JP4664029B2 (en) Creation method and machine for spiral bevel gears
US4947590A (en) Method for the precision working of crowned tooth flanks on particularly hardened gears
US7527548B2 (en) System and method for precision machining of high hardness gear teeth and splines
JPH05200625A (en) Device and method for precisely machining spur gear
JP4724038B2 (en) Dress gear manufacturing equipment
JP2000246636A (en) Grinding worm shaping method, shaping tool and shaping device
JP3601066B2 (en) Gear honing method with internal gear type honing wheel on gear honing machine
JPH1094920A (en) Machining of involute tooth form
JPH1086017A (en) Working method for gear and deburring machine for gear work
CN115194259A (en) Method for producing a torsion on the tooth surface of an internally toothed workpiece
JP3138053U (en) Shaping device for grinding surface of grinding wheel for gear grinding
JP3864718B2 (en) How to dress a honing stone
JPH0839404A (en) Internal grinding method of deep hole for work
JP2003145348A (en) Gear tooth surface regular position machining method and device
JP3612726B2 (en) On-machine forming method of internal gear type honing wheel in gear honing machine
JP5123767B2 (en) Worm wheel grinding finishing method and worm gear device
JPH11138346A (en) Herd gear honing processing method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees