JP3600542B2 - Induction heating cooker - Google Patents

Induction heating cooker Download PDF

Info

Publication number
JP3600542B2
JP3600542B2 JP2001095449A JP2001095449A JP3600542B2 JP 3600542 B2 JP3600542 B2 JP 3600542B2 JP 2001095449 A JP2001095449 A JP 2001095449A JP 2001095449 A JP2001095449 A JP 2001095449A JP 3600542 B2 JP3600542 B2 JP 3600542B2
Authority
JP
Japan
Prior art keywords
electromagnetic induction
container
magnetic flux
induction coil
metal material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001095449A
Other languages
Japanese (ja)
Other versions
JP2002291616A (en
Inventor
栄治 小暮
渉 藤本
隆司 須永
弘司 菱山
政雄 霜田
泰夫 梶原
佳敬 川村
長次 長峯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Home Appliance Co Ltd
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Home Appliance Co Ltd
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Home Appliance Co Ltd, Mitsubishi Electric Corp filed Critical Mitsubishi Electric Home Appliance Co Ltd
Priority to JP2001095449A priority Critical patent/JP3600542B2/en
Publication of JP2002291616A publication Critical patent/JP2002291616A/en
Application granted granted Critical
Publication of JP3600542B2 publication Critical patent/JP3600542B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Induction Heating Cooking Devices (AREA)
  • Cookers (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、電磁誘導コイルにより磁界を発生させて容器の誘導損により容器を加熱して食品等を調理する電磁誘導加熱調理器に関するものである。
【0002】
【従来の技術】
電磁誘導加熱装置の使用例としては電磁調理器や炊飯器等が一般に知られており、図17は例えば特開平6−253974号公報に示された従来の誘導加熱炊飯器の断面図、図18は従来の炊飯器の炊飯工程図であり、炊飯の各過程における内釜の温度変化を示す。
【0003】
図において、31は炊飯器本体、32は炊飯器本体31内に設置され、被加熱物を入れる容器である内釜、33は内釜32の底部下方及び側部外周に間隙を有して配線された電磁誘導コイル、34は内釜32の温度を検出する内釜用温度センサ、35は内釜32の側部に電極が接触、又は接着された超音波振動子、36は電磁誘導コイル33に高周波電流を流す第1インバータ、37は超音波振動子35に高周波電力を供給する第2インバータ、38は炊飯器本体31の側部に設けられた操作パネル、39は水、40は米である。
【0004】
次に、動作について図18を参照しながら説明する。
洗米した米40と適量の水39が入った内釜32を炊飯器本体31にセットして、操作パネル38に設けられた炊飯スイッチ(図示せず)をオンすると、まず、予熱過程に入る。この過程では、60℃を越えない程度に電磁誘導コイル33に高周波電流を第1インバータ36と通じて供給し、内釜32内の米40と水39を加温する。この際、電磁誘導コイル33への通電量と内釜用温度センサ34の検出温度とに基づいて大まかに炊飯量を検知し、さらに、超音波振動子5に超音波振動に必要な高周波電力を第2インバータ37を介して供給し、超音波振動により内釜32内の米40の吸水を促進させる。
【0005】
炊飯開始から約15分が経過すると自動的に炊飯工程に入り、内釜32の温度が100℃になるように、即ち、内釜32内の水が沸騰するように制御する。この制御により内釜32の温度が100℃になると、この沸騰状態を約10分間継続する。その後は、電磁誘導コイル33への通電を停止して蒸らし過程に入る。この蒸らし過程ではその状態をほぼ15分間継続し、蒸らし過程終了時に操作パネル38の表示ランプと終了報知音(図示せず)とを通じて炊飯終了をユーザに知らせる。
【0006】
【発明が解決しようとする課題】
上記のような従来の電磁誘導加熱調理器では、予熱工程時に超音波振動により内釜32内の米40の吸水を促進させて、炊飯性能を向上させると共に、炊飯時間を短縮させているが、内釜32に超音波振動子35が接触しているため、内釜32を炊飯器本体31から取り出して洗浄したり、内釜32で米40を洗うことにより、超音波振動子35の先端部の電極が腐食してしまうという問題点があった。また、内釜32に超音波振動子35が接着されている炊飯器では、その超音波振動子35が突出しているため、洗浄がし難く不便であるという問題点があった。
【0007】
この発明は、かかる課題を解決するためになされたもので、超音波振動子を使用せずに、内釜等の容器自身を騒音がでないように超音波振動させ、容器内での米等の食品の吸水を促進できるとともに、容器の洗浄や容器での洗米等が容易に行え、しかも、美味しい飯の炊飯等の美味く調理を行える電磁誘導加熱装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
この発明に係る電磁誘導加熱調理器においては、被加熱物を収納する容器と、この容器の外面に対向して設けられ、発生磁界により前記容器を加熱する電磁誘導コイルと、前記容器の外面に対向し、前記電磁誘導コイルの内周側または/および外周側に近接して設けられ、前記電磁誘導コイルから発生した高周波を反射する非磁性金属材とを備え、前記電磁誘導コイルに流す電流の周波数を前記容器の固有振動数と共振するようにしたものである。
【0009】
また、電磁誘導コイルを間隙を空けて複数配置し、この間隙またはこの間隙近傍に上記非磁性金属材を配置したものである。
【0010】
さらに、非磁性金属材を環状に形成したものである。
【0011】
また、非磁性金属材を分割し、間隙を空けて配設したものである。
【0012】
また、本体と、この本体に内蔵され、有底筒状の枠体と、所定の空間を形成し前記枠体に収容される容器と、この容器の外面と対向し、前記枠体の外面に間隙を設けて複数配設され、発生磁界により前記容器を加熱する電磁誘導コイルと、前記容器の外面に対向し、前記複数の電磁誘導コイルの間隙またはこの間隙近傍に配設され、前記電磁誘導コイルから発生した高周波を反射する非磁性金属材とを備え、前記電磁誘導コイルに流す電流の周波数を前記容器の固有振動数と共振するようにしたものである。
【0013】
また、非磁性金属材を環状に形成したものである。
【0014】
また、非磁性金属材を分割し、間隙を空けて配設したものである。
【0015】
また、非磁性金属材を上記枠体内に設けたものである。
【0016】
また、非磁性金属材を上記枠体外面に設けたものである。
【0017】
【発明の実施の形態】
実施の形態1.
図1はこの発明の実施の形態1である電磁誘導加熱器の縦断面図、図2はこの電磁誘導加熱器の蓋体及び容器を外した状態の平面図、図3はこの電磁誘導加熱器の炊飯工程に於ける容器内の温度変化と電磁誘導コイル・胴ヒータ・蓋ヒータの動作タイミングチャートを示す図、図4はこの電磁誘導加熱器の電磁誘導加熱した時の作用模式図である。
【0018】
図において、1は電磁誘導加熱器である炊飯器の本体、2は該本体1内に設けた上部に開口部を有する有底筒状の枠体であり、この枠体2は前記本体1の上部より垂下した筒状の上枠2aと、この上枠2aの下端に連結された有底筒状の磁性透過材(例えば耐熱樹脂)からなる下枠2bにより構成されている。また、枠体2内に形成された空間部は後述する容器3の収納部2cとなる。
【0019】
3は上部の開口部外周縁に形成した鍔部3aを有する有底筒状の容器であり、この容器3は鍔部3aを前記上枠2aの上端部に懸下され、前記枠体2内に形成された収納部2cに収容される。この時、容器3の外面と枠体2の内面との間には空隙4が形成される。前記容器3は外側を磁性金属材(オーステナイト系ステンレス材)で内側を非磁性金属材(アルミニウム)で構成し、さらに内面にはフッ素樹脂が塗布されている。
【0020】
5は前記下枠2bの底部外面に設けた複数ターンの底面コイル5aと、該底面コイル5aから所定の間隙を設けて下枠2bの側部外面に配設された複数ターンの側面コイル5bからなる電磁誘導コイルである。6は非磁性金属材(例えば銅、アルミニウム、銀、金等)からなる環状の磁束変調板であり、前記容器3の外面と下枠2bの内面により形成された空隙4の下枠2b内面に固着されている。
【0021】
7は前記容器3の外底面に当接し、容器2内の温度を検知し、その検知信号を後述する制御装置に入力するサーミスタからなる底センサ、8は前記上枠2aの外周に設けた胴ヒータ、9は炊飯する米であり、水10と共に前記容器3に収納されている。11は前記本体1の上部を開閉する蓋体であり、この蓋体11は外蓋11aと下蓋11bにより内部に空間部を形成し、蒸気口11cを備えている。また、下蓋11bには蓋ヒータ11dを設けると共に、蒸気口11c近傍には温度を検知する蓋センサ11eが設けられている。
【0022】
12は前記蓋体11の下蓋11bに着脱自在に取付けられ、通気口12a及びパッキン12bを有する内蓋である。13は操作部であり、白米、玄米、おかゆ等の炊飯メニューを設定するメニューキー、予約炊飯を設定する予約キー、炊飯をスタートする炊飯キー等の各種操作キーや炊飯メニュー等を表示する表示器を備えている。14は制御装置であり、前記操作部13のキー入力信号や、前記底センサ7、蓋センサ11eとの検知信号に基づき、後述するインバータ15を制御する。15は前記電磁誘導コイル5に高周波電流を供給するインバータである。
【0023】
次に、動作について図3に基づいて説明する。
なお、動作説明の便宜上、最初に電磁誘導加熱とヒータ加熱による炊飯動作を説明し、その後、磁束変調板6の作用について説明する。
まず、洗米した米9と適量の水10を容器3に収納し、この容器3を枠体2により形成された空間2c内に収容して操作部13の白米メニューを設定し、炊飯キーを操作して炊飯を開始すると、制御装置14はインバータ15を制御して電磁誘導コイル5に高周波電流を流すと共に胴ヒータ8に通電して予熱工程に入る。
【0024】
電磁誘導コイル5の交番磁界により外側が磁性金属材からなる容器3が発熱し、米9と水10を加熱すると共に、胴ヒータ8の発熱により容器3の側壁部を加熱する。これにより、容器3内の温度が上昇し、あらかじめ設定された温度T1(約60℃)になると、底センサ7がこの温度T1を検知し、制御装置14へこの温度信号を入力する。制御装置14は、この入力信号に基づき、胴ヒータ8の通電を停止すると共に、電磁誘導コイル5に供給する通電量をインバータ15を介して制御し、容器3内の温度をT1(約60℃)に維持する。
【0025】
炊飯開始から約15分経過すると、制御装置14はインバータ15を制御して再び電磁誘導コイル5に高周波電力を流すと共に胴ヒータ8及び蓋ヒータ11dに通電して炊飯工程に入る。容器3内の温度が上昇し、加熱蒸気が内蓋12の通気口12aから蒸気口11cを通って外部へ排出される。この時、蓋センサ11eが沸騰温度T2を検知し、この検知信号を制御装置14に入力する。制御装置14は、この入力信号に基づき、沸騰温度T2に維持するように電磁誘導コイル5に供給する通電量をインバータ15を介して制御すると共に、胴ヒータ8及び蓋ヒータ11dの通電を制御する。
【0026】
容器3内の水10は米9に吸収されると共に蒸気となって蒸気口11cから外部に排出され、やがて、容器3内の水10が少なくなると容器3内の温度は急激に上昇(ドライアップ)し、容器3内の温度はT3に到達する。底センサ7がこの温度T3を検知し、制御装置14に入力する。制御装置14は、この入力信号に基づき、電磁誘導コイル5に供給する高周波電流をインバータ15を介して停止すると共に、胴ヒータ8及び蓋ヒータ11dの通電も停止して蒸らし工程に入る。
【0027】
蒸らし工程に入り、容器3内の温度があらかじめ設定された温度T4に降下すると、底センサ7がこの温度を検知し、制御装置14に入力する。制御装置14は再びインバータ15を制御して電磁誘導コイル5に高周波電流を供給すると共に、胴ヒータ8、蓋ヒータ11dを通電制御して2度炊きを実行する。容器3内の温度は再びT2に到達する。底センサ7がこの温度T2を検知し、制御装置に14入力する。制御装置14は、この入力信号に基づき、電磁誘導コイル5への高周波電力供給を停止すると共に、胴ヒータ8及び蓋ヒータ11dの通電を停止して蒸らし工程を終了して炊飯を完了する。
以上が電磁誘導加熱とヒータ加熱による炊飯動作である。
【0028】
次に、磁束変調板6の作用について図4に基づいて説明する。
なお、磁束変調板6は電磁誘導コイル5に高周波電流が流れた時に作用する。
磁束変調板6は、容器3に水10が十分にある予熱工程及び炊飯工程において、電磁誘導コイル5に高周波電流が流れると、電磁誘導コイル5に流れる電流の方向に基づいて交番磁界が発生し、この交番磁界の高周波により電磁誘導コイル5に対向する容器3は容器3の内側方向へ高周波と同一の周波数で押し出される(図4のA)。
【0029】
一方、電磁誘導コイル5から発生した交番磁界の高周波は非磁性金属材である磁束変調板6により反射される。この結果、磁束変調板6と対向する容器3の面は容器3の外側方向へ高周波と同一の周波数で押し出される(図4のB)。そこで、この高周波の周波数が容器3の固有振動数と共振する、すなわち、容器3の共振周波数または共振周波数の整数倍と一致または近傍になると、図4のAとBの動作の繰り返しにより容器3内の水10に超音波が発生する。
【0030】
ここで、容器3の振動について、磁束変調板6を設けなかった場合と磁束変調板6を設けた場合の実験結果を述べる。
まず、磁束変調板6を設けず、電磁誘導コイル5の周波数を容器3の固有振動数に合わせ、電磁誘導コイル5による磁界を発生させた場合は、容器3が振動して騒音が発生し、この時の容器3内の振動を振動センサと超音波音圧計を用いて測定すると0.1mVの電圧であった。
【0031】
一方、リング状の磁束変調板6を容器3外面と下枠2bの内面との間に形成された空隙内の下枠2bの内角でかつ、底面コイル5aと側面コイル5bの間に配設し、電磁誘導コイル5の周波数を容器3の固有振動数に合わせ、電磁誘導コイル5による磁界を発生させた場合には、騒音を発生することなく容器3内に大きな振幅が発生し、この時の振動を前記と同様に測定すると、2.0mVの電圧となり、前記に比べ振動の振幅が大きくなることが判った。
【0032】
さらに、磁束変調板5を設けて炊飯したご飯と、磁束変調板5を設けずに炊飯したご飯の硬さ及び粘りについて、20例の実験比較を行った結果、その平均値は下記の表1の通りとなった。この表1に示す数値はご飯をレオロメータにより測定した結果で、容器3内に超音波を発生させて炊飯したご飯の硬さは、超音波を与えていないご飯と比べ数値が小さく、即ち、柔らかくなっており、粘りについては逆に超音波を与えたご飯の方がその数値が大きくなり、粘りのあるご飯ができたという結果が得られた。
【0033】
【表1】

Figure 0003600542
Figure 0003600542
【0034】
以上のように、この実施の形態1においては、容器3と電磁誘導コイル5との間でかつ底面コイル5aと側面コイル5bとの間に配置したりリング状の磁束変調板6で電磁誘導コイル5に発生する交番磁界を反射することにより、容器3に高周波振動を発生させ、容器3内に超音波を発生することで、米9への吸水を促進させることができ、従来技術の様な超音波振動子が不要となり、この為、容器3の着脱が簡単で容器3の洗浄や容器3での洗米が容易にでき、しかも美しいご飯を得ることができると共に米9への吸水が促進されることで炊飯時間も短縮できる。
【0035】
実施の形態2.
図5はこの発明の実施の形態2である電磁誘導加熱器の縦断面図である。図において、上記実施形態と同一または相当部分には同一符号を付け、説明を省略する。磁束変調板6は底面コイル5aと側面コイル5bの間に配設すると共に、底面コイル5a上へ延設する。
【0036】
電磁誘導加熱とヒータ加熱による炊飯動作は、上記実施の形態1と同様であるため説明を省略し、次に、磁束変調板6の作用について説明する。
なお、磁束変調板6は電磁誘導コイル5に高周波電流が流れた時に作用する。
磁束変調板6は、容器3に水10が十分にある予熱工程及び炊飯工程において、電磁誘導コイル5に高周波電流が流れると、電磁誘導コイル5に流れる電流の方向に基づいて交番磁界が発生し、この交番磁界の高周波により電磁誘導コイル5に対向する容器3は容器3の内側方向へ高周波と同一の周波数で押し出される。
【0037】
一方、電磁誘導コイル5から発生した交番磁界の高周波は非磁性金属材である磁束変調板6により反射される。この結果、磁束変調板6と対向する容器3の面は容器3の外側方向へ高周波と同一の周波数で押し出される。そこで、この高周波の周波数が容器3の固有振動数と共振すると、容器3の内側方向への押し出しと容器3の外側方向への押し出しの繰り返しにより容器3内の水10に超音波が発生する。
【0038】
ここで、磁束変調板6は上記実施の形態1に比べて底面コイル5a上へ延設されているため、底面コイル5aの交番磁界も反射させるため、上記実施の形態1よりも容器3の振動を促進し、より米9の吸水が促進される。
【0039】
実施の形態3.
図6はこの発明の実施の形態3である電磁誘導加熱器の縦断面図である。図において、上記実施形態と同一または相当部分には同一符号を付け、説明を省略する。磁束変調板6は底面コイル5aと側面コイル5bの間に配設すると共に、側面コイル5b上へ延設する。
【0040】
電磁誘導加熱とヒータ加熱による炊飯動作は、上記実施の形態1と同様であるため説明を省略し、次に、磁束変調板6の作用について説明する。
なお、磁束変調板6は電磁誘導コイル5に高周波電流が流れた時に作用する。
磁束変調板6は、容器3に水10が十分にある予熱工程及び炊飯工程において、電磁誘導コイル5に高周波電流が流れると、電磁誘導コイル5に流れる電流の方向に基づいて交番磁界が発生し、この交番磁界の高周波により電磁誘導コイル5に対向する容器3は容器3の内側方向へ高周波と同一の周波数で押し出される。
【0041】
一方、電磁誘導コイル5から発生した交番磁界の高周波は非磁性金属材である磁束変調板6により反射される。この結果、磁束変調板6と対向する容器3の面は容器3の外側方向へ高周波と同一の周波数で押し出される。そこで、この高周波の周波数が容器3の固有振動数と共振すると、容器3の内側方向への押し出しと容器3の外側方向への押し出しの繰り返しにより容器3内の水10に超音波が発生する。
【0042】
ここで、磁束変調板6は上記実施の形態1に比べて側面コイル5b上へ延設されているため、側面コイル5bの交番磁界も反射させるため、上記実施の形態1よりも容器3の振動を促進し、より米9の吸水が促進される。
【0043】
実施の形態4.
図7はこの発明の実施の形態4である電磁誘導加熱器の縦断面図である。図において、上記実施形態と同一または相当部分には同一符号を付け、説明を省略する。磁束変調板6は側面コイル5bの上方に配設する。
【0044】
電磁誘導加熱とヒータ加熱による炊飯動作は、上記実施の形態1と同様であるため説明を省略し、次に、磁束変調板6の作用について説明する。
なお、磁束変調板6は電磁誘導コイル5に高周波電流が流れた時に作用する。
磁束変調板6は、容器3に水10が十分にある予熱工程及び炊飯工程において、電磁誘導コイル5に高周波電流が流れると、電磁誘導コイル5に流れる電流の方向に基づいて交番磁界が発生し、この交番磁界の高周波により電磁誘導コイル5に対向する容器3は容器3の内側方向へ高周波と同一の周波数で押し出される。
【0045】
一方、電磁誘導コイル5から発生した交番磁界の高周波は非磁性金属材である磁束変調板6により反射される。この結果、磁束変調板6と対向する容器3の側面は容器3の外側方向へ高周波と同一の周波数で押し出される。そこで、この高周波の周波数が容器3の固有振動数と共振すると、容器3の内側方向への押し出しと容器3の外側方向への押し出しの繰り返しにより容器3内の水10に超音波が発生する。
【0046】
ここで、底面コイル5aと側面コイル5bにより加熱された水10が対流すると共に、側面コイル5b上部の容器3の側面を中心に超音波を発生させることにより、米9の吸水はさらに促進される。
【0047】
実施の形態5.
図8はこの発明の実施の形態5である電磁誘導加熱器の要部拡大断面図である。図において、上記実施形態と同一または相当部分には同一符号を付け、説明を省略する。磁束変調板6は下枠2bの内面と同一面になるように埋設し、それ以外の構造は図示していないが、実施の形態1と同様である。
【0048】
電磁誘導加熱とヒータ加熱による炊飯動作は、上記実施の形態1と同様であるため説明を省略し、次に、磁束変調板6の作用について説明する。
なお、磁束変調板6は電磁誘導コイル5に高周波電流が流れた時に作用する。
磁束変調板6は、容器3に水10が十分にある予熱工程及び炊飯工程において、電磁誘導コイル5に高周波電流が流れると、電磁誘導コイル5に流れる電流の方向に基づいて交番磁界が発生し、この交番磁界の高周波により電磁誘導コイル5に対向する容器3は容器3の内側方向へ高周波と同一の周波数で押し出される。
【0049】
一方、電磁誘導コイル5から発生した交番磁界の高周波は非磁性金属材である磁束変調板6により反射される。この結果、磁束変調板6と対向する容器3の面は容器3の外側方向へ高周波と同一の周波数で押し出される。そこで、この高周波の周波数が容器3の固有振動数と共振すると、容器3の内側方向への押し出しと容器3の外側方向への押し出しの繰り返しにより容器3内の水10に超音波が発生する。
ここで、磁束変調板6は下枠2bの内面と同一面であるため、下枠2内面を清掃する場合に磁束変調板6による出っ張り部分が無く、清掃性がよくなる。
【0050】
実施の形態6.
図9はこの発明の実施の形態6である電磁誘導加熱器の要部拡大断面図である。図において、上記実施形態と同一または相当部分には同一符号を付け、説明を省略する。磁束変調板6は下枠2b内に埋設し、それ以外の構造は図示していないが、実施の形態1と同様である。
磁束変調板6の作用については、上記実施の形態5と同様であり、説明を省略する。磁束変調板6が下枠2b内に埋設しているため、下枠2内面を清掃する場合に磁束変調板6による出っ張り部分が無く、清掃性がよくなる。
【0051】
実施の形態7.
図10はこの発明の実施の形態7である電磁誘導加熱器の要部拡大断面図である。図において、上記実施形態と同一または相当部分には同一符号を付け、説明を省略する。磁束変調板6は下枠2bの外面に設け、それ以外の構造は図示していないが、実施の形態1と同様である。
磁束変調板6の作用については、上記実施の形態5と同様であり、説明を省略する。磁束変調板6が下枠2bの外面に設けているため、下枠2内面を清掃する場合に磁束変調板6による出っ張り部分が無く、清掃性がよくなる。
【0052】
実施の形態8.
図11はこの発明の実施の形態8である電磁誘導加熱器の蓋体及び容器を外した状態の平面図である。図において、上記実施の形態と同一または相当部分には同一符号を付け、説明を省略する。磁束変調板6はリング状の磁束変調板6を2分割して所定の間隙を設けて配設し、それ以外の構成は図示していないが、実施の形態1と同様である。
【0053】
電磁誘導加熱とヒータ加熱による炊飯動作は、上記実施の形態1と同様であるため説明を省略し、次に、磁束変調板6の作用について説明する。
なお、磁束変調板6は電磁誘導コイル5に高周波電流が流れた時に作用する。
磁束変調板6は、容器3に水10が十分にある予熱工程及び炊飯工程において、電磁誘導コイル5に高周波電流が流れると、電磁誘導コイル5に流れる電流の方向に基づいて交番磁界が発生し、この交番磁界の高周波により電磁誘導コイル5に対向する容器3は容器3の内側方向へ高周波と同一の周波数で押し出される。
【0054】
一方、電磁誘導コイル5から発生した交番磁界の高周波は非磁性金属材である磁束変調板6により反射される。この結果、磁束変調板6と対向する容器3の面は容器3の外側方向へ高周波と同一の周波数で押し出される。そこで、この高周波の周波数が容器3の固有振動数と共振すると、容器3の内側方向への押し出しと容器3の外側方向への押し出しの繰り返しにより容器3内の水10に超音波が発生する。
よって、上記実施の形態1と同様の作用効果を奏する。
なお、この2分割した磁束変調板6を上記実施の形態2、3、4、5、6、7に用いてもよく、同様の作用効果を奏する。
【0055】
実施の形態9.
図12はこの発明の実施の形態9である電磁誘導加熱器の磁束変調板の平面図である。図において、上記実施の形態と同一または相当部分には同一符号を付け、説明を省略する。磁束変調板6はリング状の磁束変調板6を4分割して所定の間隙を設けて配設し、それ以外の構成は図示していないが、実施の形態1と同様である。
【0056】
磁束変調板6の作用および効果については、上記実施の形態8と同様であり、説明を省略する。
なお、この4分割した磁束変調板6を上記実施の形態2、3、4、5、6、7に用いてもよく、同様の作用効果を奏する。
【0057】
実施の形態10.
図13はこの発明の実施の形態10である電磁誘導加熱器の磁束変調板の平面図である。図において、上記実施の形態と同一または相当部分には同一符号を付け、説明を省略する。磁束変調板6はリング状の磁束変調板6を8分割して所定の間隙を設けて配設し、それ以外の構成は図示していないが、実施の形態1と同様である。
【0058】
磁束変調板6の作用および効果については、上記実施の形態8と同様であり、説明を省略する。
なお、この8分割した磁束変調板6を上記実施の形態2、3、4、5、6、7に用いてもよく、同様の作用効果を奏する。
【0059】
実施の形態11.
図14はこの発明の実施の形態11である電磁誘導加熱器の磁束変調板の平面図である。図において、上記実施の形態と同一または相当部分には同一符号を付け、説明を省略する。磁束変調板6はリング状の磁束変調板6を16分割して1つおきに間引きして8つ配設したものであり、、それ以外の構成は図示していないが、実施の形態1と同様である。
【0060】
磁束変調板6の作用および効果については、上記実施の形態8と同様であり、説明を省略する。
なお、この8つの磁束変調板6を上記実施の形態2、3、4、5、6、7に用いてもよく、同様の作用効果を奏する。
【0061】
実施の形態12.
図15はこの発明の実施の形態12である電磁誘導加熱器の磁束変調板の平面図である。図において、上記実施の形態と同一または相当部分には同一符号を付け、説明を省略する。磁束変調板6はリング状の磁束変調板6を16分割し、そのうちの4ヶを等分に配設したものであり、それ以外の構成は図示していないが、実施の形態1と同様である。また、磁束変調板6の個々の形状は扇状でなく、正方形、三角形、円形等でもよい。
【0062】
磁束変調板6の作用および効果については、上記実施の形態8と同様であり、説明を省略する。
なお、この磁束変調板6を上記実施の形態2、3、4、5、6、7に用いてもよく、同様の作用効果を奏する。
【0063】
実施の形態13.
図16はこの発明の実施の形態13である電磁誘導加熱調理の縦断面図である。図において、上記実施の形態と同一または相当部分には同一符号を付ける。16は電磁誘導加熱調理器の本体、16aはこの本体16の上枠、17は透磁性を有する耐熱ガラス等からなるトッププレート、3は有底筒状の容器であり、容器3の外側を磁性金属材(オステイト系ステンレス材)で、内側を非磁性金属材(アルミニウム材)で構成し、さらに内面にはフッ素樹脂が塗布されている。
【0064】
5は前記上枠16aの底部外面の略中央部に設けた複数ターンの内コイル5a、該内コイル5aと所定の間隙を設けて外周に設けた複数ターンの外コイル5bからなる電磁誘導コイルである。6は非磁性金属材(例えば銅、アルミニウム、銀、金等)からなる環状の磁束変調板であり、前記上枠16aとトッププレート17の間でかつ、前記内コイル5aと外コイル5bの間に設けた間隙部分に配設されている。7は前記容器3の外底面に当接し、この容器3内の温度を検知し、その検知信号を後述する制御装置14に入力するサーミスタからなる底センサである。
【0065】
9は前記容器3内で加熱調理する調理物(例えばジャガ芋等)であり、水10と共に前記容器3に収納されている。13は操作部であり、加熱温度の温度設定キーや、調理時間を設定する時間設定キー、調理のスタートキー、及び調理時間や加熱温度等を表示する表示器を備えている。14は制御装置であり、前記操作部13のキー入力信号や、前記底センサ7の検知信号にもとづき、後述するインバータ15を制御する。15は前記電磁誘導コイル5に高周波電流を供給するインバータである。
【0066】
次に、動作について説明する。
まず、調理物9と水10及び調味料等を容器3に収納し、この容器3をトッププレート17上に載置する。次に、操作部13の温度設定キーにより温度を例えば200℃に設定し、時間設定キーにより調理時間を20分に設定し、調理のスタートキーを操作すると、制御装置14はインバータ15を制御して電磁誘導コイル5に高周波電流を流す。
【0067】
電磁誘導コイル5は高周波電流が流れると交番磁界により磁性金属材からなる容器3が発熱し、調理物9、水10を加熱し、容器3内に対流が発生し容器3内温度は上昇、やがて、設定した温度(200℃)になると底センサ7の検知信号が制御装置14に入力される。制御装置14はインバータ15を制御して高周波電流を低下させたり、上昇させて設定温度(200℃)に維持する。やがて、調理時間が設定時間(20分)を経過すると、制御装置14はインバータ15を制御して調理を終了する。
【0068】
次に、磁束変調板6の作用について説明する。
なお、磁束変調板6は電磁誘導コイル5に高周波電流が流れた時に作用する。
磁束変調板6は、容器3に水10が十分にある調理工程において、電磁誘導コイル5に高周波電流が流れると、電磁誘導コイル5に流れる電流の方向に基づいて交番磁界が発生し、この交番磁界の高周波により電磁誘導コイル5に対向する容器3は容器3の内側方向へ高周波と同一の周波数で押し出される。
【0069】
一方、電磁誘導コイル5から発生した交番磁界の高周波は非磁性金属材である磁束変調板6により反射される。この結果、磁束変調板6と対向する容器3の面は容器3の外側方向へ高周波と同一の周波数で押し出される。そこで、この高周波の周波数が容器3の固有振動数と共振する、すなわち、容器3の共振周波数または共振周波数の整数倍と一致または近傍になると、容器3の内側方向への押し出しと容器3の外側方向への押し出しの繰り返しにより容器3内の水10に超音波が発生する。
【0070】
よって、容器3に高周波振動を発生させ、容器3内に超音波が発生することにより、調理物9の吸水が促進することができ、調理時間の短縮が図られる。また、特別に超音波振動子も必要しないのでトッププレート17の清掃は容易にできる。
【0071】
なお、この実施の形態13では、磁束変調板6を上枠16aの上面に配設したものを示したが、上記実施の形態2、3、4、5、6、7のように磁束変調板6の配設位置を変更してもよく、同様の作用効果を奏する。
また、この実施の形態13では、磁束変調板6に環状形状のものを示したが、実施の形態8、9、10、11、12のような別形状であってもよく、同様の作用効果を奏する。
【0072】
【発明の効果】
この発明は、以上説明したように構成されているので、以下に示すような効果を奏する。
【0073】
被加熱物を収納する容器と、この容器の外面に対向して設けられ、発生磁界により前記容器を加熱する電磁誘導コイルと、容器の外面に対向し、電磁誘導コイルの内周側または/および外周側に近接して設けられた非磁性金属材とを備えたので、非磁性金属材で電磁誘導コイルに発生する交番磁界を反射することにより、容器に高周波振動を発生させ、容器内に超音波を発生することで容器内の調理物の吸水を促進することができ、さらに、特別に超音波振動子を設ける必要がなく、美味しいご飯等の調理物を得ることができると共に、調理時間も短縮できる。
【0074】
また、電磁誘導コイルを間隙を空けて複数配置し、この間隙またはこの間隙近傍に非磁性金属材を配置したので、複数の電磁誘導コイルの交番磁界を反射し、容器の振動箇所が多くなることになり、容器内により多くの超音波を発生させることができ、調理物の吸水をさらに促進させ、調理時間をさらに短縮できる。
【0075】
さらに、非磁性金属材を環状に形成したので、非磁性金属材の容器対向面全体にわたり超音波の発生を促進させることができる。
【0076】
また、非磁性金属材を分割し、間隙を空けて配設したので、容器の振動箇所が多くなり容器内に超音波を発生し易くなる。
【0077】
また、本体と、この本体に内蔵され、有底筒状の枠体と、所定の空間を形成し前記枠体に収容される容器と、この容器の外面と対向し、前記枠体の外面に間隙を設けて複数配設され、発生磁界により前記容器を加熱する電磁誘導コイルと、前記容器の外面に対向し、前記複数の電磁誘導コイルの間隙またはこの間隙近傍に配設された非磁性金属材とを備えたので、容器内に超音波が発生し、調理物への吸水が促進されると共に容器の清掃も容易となり、さらに、超音波により調理時間を短縮できる。
【0078】
また、上記非磁性金属材を環状に形成したので、容器の非磁性金属材対向面側より超音波が発生し、電磁誘導コイルによる加熱で起きる対流とにより容器内を加熱し、調理物は均一に加熱され美味しい調理が得られる。
【0079】
また、非磁性金属材を分割し、間隙を空けて配設したので、容器の振動箇所が多くなり容器内に超音波を発生し易くなり、より調理物の吸水が促進され、加熱も均一となる。
【0080】
また、非磁性金属材を枠体内に設けたので、枠体の清掃性がよくなる。
【0081】
また、非磁性金属材を枠体外面に設けたので、枠体の清掃性がよくなる。
【図面の簡単な説明】
【図1】この発明の実施の形態1である電磁誘導加熱器の縦断図面である。
【図2】この発明の実施の形態1である電磁誘導加熱器の平面図である。
【図3】この発明の実施の形態1である電磁誘導加熱器のタイミングチャートを示す図である。
【図4】この発明の実施の形態1である電磁誘導加熱器の電磁誘導加熱時の作業模式図である。
【図5】この発明の実施の形態2である電磁誘導加熱器の縦断面図である。
【図6】この発明の実施の形態3である電磁誘導加熱器の縦断面図である。
【図7】この発明の実施の形態4である電磁誘導加熱器の縦断面図である。
【図8】この発明の実施の形態5である電磁誘導加熱器の要部拡大断面図である。
【図9】この発明の実施の形態6である電磁誘導加熱器の要部拡大断面図である。
【図10】この発明の実施の形態7である電磁誘導加熱器の要部拡大断面図である。
【図11】この発明の実施の形態8である電磁誘導加熱器の平面図である。
【図12】この発明の実施の形態9である電磁誘導加熱器の磁束変調板の平面図である。
【図13】この発明の実施の形態10である電磁誘導加熱器の磁束変調板の平面図である。
【図14】この発明の実施の形態11である電磁誘導加熱器の磁束変調板の平面図である。
【図15】この発明の実施の形態12である電磁誘導加熱器の磁束変調板の平面図である。
【図16】この発明の実施の形態13である電磁誘導加熱調理の縦断面図である。
【図17】従来の電磁誘導加熱装置の断面図である。
【図18】従来の炊飯器の炊飯工程図である。
【符号の説明】
1 本体、 2 枠体、 2a 上枠、 2b 下枠、 3 容器、 5 電磁誘導コイル、 5a 底面コイル、 5b 側面コイル、 6 磁束変調板、9 米、 10 水、 14 制御装置、 15 インバータ、 16 本体。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electromagnetic induction heating cooker that generates a magnetic field by an electromagnetic induction coil and heats the container by induction loss of the container to cook food and the like.
[0002]
[Prior art]
Electromagnetic cookers and rice cookers are generally known as examples of the use of the electromagnetic induction heating device. FIG. 17 is a sectional view of a conventional induction heating rice cooker disclosed in, for example, JP-A-6-253974, and FIG. FIG. 2 is a diagram showing a rice cooking process of a conventional rice cooker, showing a temperature change of an inner pot in each step of rice cooking.
[0003]
In the figure, 31 is a rice cooker main body, 32 is an inner pot that is a container installed in the rice cooker main body 31 and stores an object to be heated, and 33 is a wiring having a gap below the bottom of the inner pot 32 and the outer periphery of the side part. A temperature sensor for the inner pot 32 for detecting the temperature of the inner pot 32; an ultrasonic vibrator 35 whose electrodes are in contact with or adhered to the side of the inner pot 32; Is a first inverter that supplies high-frequency power to the ultrasonic vibrator 35, 38 is an operation panel provided on the side of the rice cooker main body 31, 39 is water, and 40 is rice. is there.
[0004]
Next, the operation will be described with reference to FIG.
When an inner pot 32 containing the washed rice 40 and an appropriate amount of water 39 is set in the rice cooker main body 31 and a rice cooker switch (not shown) provided on the operation panel 38 is turned on, first, a preheating process is started. In this process, a high-frequency current is supplied to the electromagnetic induction coil 33 through the first inverter 36 so as not to exceed 60 ° C., and the rice 40 and the water 39 in the inner pot 32 are heated. At this time, the amount of cooked rice is roughly detected based on the amount of current supplied to the electromagnetic induction coil 33 and the temperature detected by the temperature sensor 34 for the inner pot, and the ultrasonic vibrator 5 is supplied with high-frequency power necessary for ultrasonic vibration. The water is supplied through the second inverter 37 and promotes water absorption of the rice 40 in the inner pot 32 by ultrasonic vibration.
[0005]
When about 15 minutes have elapsed from the start of rice cooking, the rice cooking process is automatically started and the temperature of the inner pot 32 is controlled to 100 ° C., that is, the water in the inner pot 32 is controlled to boil. When the temperature of the inner pot 32 reaches 100 ° C. by this control, this boiling state is continued for about 10 minutes. After that, the power supply to the electromagnetic induction coil 33 is stopped and the steaming process is started. In this steaming process, the state is continued for approximately 15 minutes, and at the end of the steaming process, the end of rice cooking is notified to the user through the display lamp of the operation panel 38 and the end notification sound (not shown).
[0006]
[Problems to be solved by the invention]
In the conventional electromagnetic induction heating cooker as described above, while absorbing water of the rice 40 in the inner pot 32 by ultrasonic vibration during the preheating step, the rice cooking performance is improved, and the rice cooking time is shortened. Since the ultrasonic vibrator 35 is in contact with the inner pot 32, the inner pot 32 is taken out from the rice cooker main body 31 and washed, or the rice 40 is washed with the inner pot 32. There is a problem that the electrode is corroded. Further, in the rice cooker in which the ultrasonic vibrator 35 is adhered to the inner pot 32, the ultrasonic vibrator 35 protrudes, so that there is a problem that cleaning is difficult and inconvenient.
[0007]
The present invention has been made in order to solve such a problem, and without using an ultrasonic vibrator, a container such as an inner pot is ultrasonically vibrated so that there is no noise, and rice or the like in the container is used. An object of the present invention is to provide an electromagnetic induction heating device that can promote water absorption of foods, can easily clean a container, wash rice in the container, and can perform delicious cooking such as cooking of delicious rice.
[0008]
[Means for Solving the Problems]
In the electromagnetic induction heating cooker according to the present invention, a container for storing the object to be heated, an electromagnetic induction coil provided to face the outer surface of the container and heating the container by a generated magnetic field, and an outer surface of the container. A non-magnetic metal material that is opposed to and is provided close to the inner circumference and / or outer circumference of the electromagnetic induction coil and reflects a high frequency generated from the electromagnetic induction coil; The frequency resonates with the natural frequency of the container.
[0009]
Further, a plurality of electromagnetic induction coils are arranged with a gap therebetween, and the non-magnetic metal material is arranged at or near this gap.
[0010]
Further, the nonmagnetic metal material is formed in a ring shape.
[0011]
Further, the non-magnetic metal material is divided and arranged with a gap.
[0012]
Further, a main body, a bottomed cylindrical frame body built in the main body, a container forming a predetermined space and housed in the frame body, and an outer surface of the container facing the outer surface of the container, A plurality of electromagnetic induction coils provided with a gap for heating the container by a generated magnetic field, and a plurality of electromagnetic induction coils disposed at or near a gap between the plurality of electromagnetic induction coils facing an outer surface of the container; A non-magnetic metal material that reflects a high frequency generated from the coil, wherein a frequency of a current flowing through the electromagnetic induction coil resonates with a natural frequency of the container.
[0013]
Further, a non-magnetic metal material is formed in a ring shape.
[0014]
Further, the non-magnetic metal material is divided and arranged with a gap.
[0015]
Further, a non-magnetic metal material is provided in the frame.
[0016]
Further, a non-magnetic metal material is provided on the outer surface of the frame.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a longitudinal sectional view of an electromagnetic induction heater according to Embodiment 1 of the present invention, FIG. 2 is a plan view of the electromagnetic induction heater with a lid and a container removed, and FIG. 3 is this electromagnetic induction heater. FIG. 4 is a diagram showing a temperature change in a container and an operation timing chart of an electromagnetic induction coil, a body heater, and a lid heater in the rice cooking process, and FIG. 4 is a schematic diagram showing an operation of the electromagnetic induction heater when electromagnetic induction heating is performed.
[0018]
In the figure, reference numeral 1 denotes a body of a rice cooker which is an electromagnetic induction heater, and 2 denotes a bottomed cylindrical frame provided in the body 1 and having an opening at an upper part. It comprises a cylindrical upper frame 2a hanging down from the upper part and a lower frame 2b made of a bottomed cylindrical magnetically permeable material (for example, heat-resistant resin) connected to the lower end of the upper frame 2a. The space formed in the frame 2 is a storage section 2c for the container 3 described later.
[0019]
Reference numeral 3 denotes a bottomed cylindrical container having a flange 3a formed on the outer peripheral edge of the upper opening. The container 3 has the flange 3a suspended from the upper end of the upper frame 2a. Is accommodated in the accommodating portion 2c formed at the bottom. At this time, a gap 4 is formed between the outer surface of the container 3 and the inner surface of the frame 2. The outside of the container 3 is made of a magnetic metal material (austenitic stainless steel) and the inside is made of a non-magnetic metal material (aluminum), and the inner surface is coated with a fluororesin.
[0020]
Reference numeral 5 denotes a plurality of turns of the bottom coil 5a provided on the bottom outer surface of the lower frame 2b and a plurality of turns of the side coil 5b provided on the side outer surface of the lower frame 2b with a predetermined gap from the bottom coil 5a. It is an electromagnetic induction coil. Numeral 6 denotes an annular magnetic flux modulation plate made of a non-magnetic metal material (eg, copper, aluminum, silver, gold, etc.), which is provided on the inner surface of the lower frame 2b of the gap 4 formed by the outer surface of the container 3 and the inner surface of the lower frame 2b. It is fixed.
[0021]
Reference numeral 7 denotes a bottom sensor made of a thermistor which abuts on the outer bottom surface of the container 3 to detect the temperature inside the container 2 and inputs a detection signal to a control device described later. Reference numeral 8 denotes a body provided on the outer periphery of the upper frame 2a. The heater 9 is rice for cooking rice, and is stored in the container 3 together with water 10. Reference numeral 11 denotes a lid for opening and closing the upper part of the main body 1. The lid 11 forms a space inside by an outer lid 11a and a lower lid 11b, and has a steam port 11c. A lid heater 11d is provided on the lower lid 11b, and a lid sensor 11e for detecting a temperature is provided near the steam port 11c.
[0022]
An inner lid 12 is detachably attached to the lower lid 11b of the lid 11 and has a vent 12a and a packing 12b. An operation unit 13 displays various operation keys such as a menu key for setting a rice cooking menu such as white rice, brown rice, and rice porridge, a reservation key for setting reserved rice cooking, a rice cooking key for starting rice cooking, and a display for displaying a rice cooking menu and the like. It has. A control device 14 controls an inverter 15 described below based on a key input signal of the operation unit 13 and detection signals from the bottom sensor 7 and the lid sensor 11e. An inverter 15 supplies a high-frequency current to the electromagnetic induction coil 5.
[0023]
Next, the operation will be described with reference to FIG.
For convenience of explanation of the operation, the rice cooking operation by electromagnetic induction heating and heater heating will be described first, and then the operation of the magnetic flux modulation plate 6 will be described.
First, the washed rice 9 and an appropriate amount of water 10 are stored in the container 3, the container 3 is stored in the space 2c formed by the frame 2, the white rice menu of the operation unit 13 is set, and the rice cooker key is operated. When rice cooking is started, the control device 14 controls the inverter 15 to supply a high-frequency current to the electromagnetic induction coil 5 and energize the body heater 8 to enter a preheating step.
[0024]
The container 3 made of a magnetic metal material on the outside generates heat by the alternating magnetic field of the electromagnetic induction coil 5, heats the rice 9 and the water 10, and heats the side wall of the container 3 by the heat generated by the body heater 8. Thereby, when the temperature in the container 3 rises and reaches a preset temperature T1 (about 60 ° C.), the bottom sensor 7 detects this temperature T1 and inputs this temperature signal to the control device 14. Based on the input signal, the controller 14 stops the energization of the body heater 8, controls the amount of energization supplied to the electromagnetic induction coil 5 via the inverter 15, and reduces the temperature in the container 3 to T1 (about 60 ° C.). ) To maintain.
[0025]
When about 15 minutes have passed since the start of rice cooking, the control device 14 controls the inverter 15 to supply high-frequency power to the electromagnetic induction coil 5 again, and to supply electricity to the body heater 8 and the lid heater 11d to start the rice cooking process. The temperature in the container 3 rises, and the heated steam is discharged from the vent 12a of the inner lid 12 to the outside through the steam port 11c. At this time, the lid sensor 11e detects the boiling temperature T2, and inputs this detection signal to the control device 14. Based on the input signal, the controller 14 controls the amount of current supplied to the electromagnetic induction coil 5 via the inverter 15 so as to maintain the boiling temperature T2, and also controls the current supplied to the body heater 8 and the lid heater 11d. .
[0026]
The water 10 in the container 3 is absorbed by the rice 9 and becomes steam, and is discharged to the outside through the steam port 11c. When the water 10 in the container 3 decreases, the temperature in the container 3 rises rapidly (dry-up). Then, the temperature in the container 3 reaches T3. The bottom sensor 7 detects this temperature T3 and inputs it to the control device 14. The control device 14 stops the high-frequency current supplied to the electromagnetic induction coil 5 via the inverter 15 based on the input signal, stops the energization of the body heater 8 and the lid heater 11d, and enters a steaming step.
[0027]
When the temperature in the container 3 drops to a preset temperature T4 in the steaming step, the bottom sensor 7 detects this temperature and inputs it to the control device 14. The control device 14 controls the inverter 15 again to supply a high-frequency current to the electromagnetic induction coil 5, and controls energization of the body heater 8 and the lid heater 11 d to perform cooking twice. The temperature in the container 3 reaches T2 again. The bottom sensor 7 detects this temperature T2 and inputs 14 to the control device. Based on the input signal, control device 14 stops supplying high-frequency power to electromagnetic induction coil 5 and stops energization of body heater 8 and lid heater 11d to complete the steaming process and complete rice cooking.
The above is the rice cooking operation by electromagnetic induction heating and heater heating.
[0028]
Next, the operation of the magnetic flux modulation plate 6 will be described with reference to FIG.
The magnetic flux modulation plate 6 operates when a high-frequency current flows through the electromagnetic induction coil 5.
The magnetic flux modulation plate 6 generates an alternating magnetic field based on the direction of the current flowing through the electromagnetic induction coil 5 when a high-frequency current flows through the electromagnetic induction coil 5 in the preheating step and the rice cooking step in which the water 3 is sufficient in the container 3. Due to the high frequency of the alternating magnetic field, the container 3 facing the electromagnetic induction coil 5 is pushed inward of the container 3 at the same frequency as the high frequency (A in FIG. 4).
[0029]
On the other hand, the high frequency of the alternating magnetic field generated from the electromagnetic induction coil 5 is reflected by the magnetic flux modulation plate 6 which is a non-magnetic metal material. As a result, the surface of the container 3 facing the magnetic flux modulation plate 6 is pushed out of the container 3 at the same frequency as the high frequency (B in FIG. 4). Therefore, when the high frequency resonates with the natural frequency of the container 3, that is, when the frequency coincides with or becomes close to the resonance frequency of the container 3 or an integral multiple of the resonance frequency, the operation of the container 3 is repeated by repeating the operations of FIGS. Ultrasonic waves are generated in the water 10 inside.
[0030]
Here, with respect to the vibration of the container 3, experimental results in the case where the magnetic flux modulation plate 6 is not provided and in the case where the magnetic flux modulation plate 6 is provided will be described.
First, when the magnetic flux modulation plate 6 is not provided, the frequency of the electromagnetic induction coil 5 is adjusted to the natural frequency of the container 3, and a magnetic field is generated by the electromagnetic induction coil 5, the container 3 vibrates to generate noise, When the vibration inside the container 3 at this time was measured using a vibration sensor and an ultrasonic sound pressure gauge, the voltage was 0.1 mV.
[0031]
On the other hand, the ring-shaped magnetic flux modulation plate 6 is disposed at the inner angle of the lower frame 2b in the gap formed between the outer surface of the container 3 and the inner surface of the lower frame 2b, and between the bottom coil 5a and the side coil 5b. When the frequency of the electromagnetic induction coil 5 is adjusted to the natural frequency of the container 3 and a magnetic field is generated by the electromagnetic induction coil 5, a large amplitude is generated in the container 3 without generating noise. When the vibration was measured in the same manner as described above, the voltage was 2.0 mV, and it was found that the amplitude of the vibration was larger than the above.
[0032]
Furthermore, as a result of an experimental comparison of the hardness and stickiness of the rice cooked with the magnetic flux modulation plate 5 and the rice cooked without the magnetic flux modulation plate 5, the average value is shown in Table 1 below. It was as follows. The numerical values shown in Table 1 are the results obtained by measuring rice with a rheometer, and the hardness of rice cooked by generating ultrasonic waves in the container 3 is smaller than that of rice not subjected to ultrasonic waves, that is, it is softer. Conversely, the value of stickiness was higher for rice to which ultrasound was applied, and the result was that sticky rice was produced.
[0033]
[Table 1]
Figure 0003600542
Figure 0003600542
[0034]
As described above, in the first embodiment, the electromagnetic induction coil is disposed between the container 3 and the electromagnetic induction coil 5 and between the bottom surface coil 5a and the side surface coil 5b, or by the ring-shaped magnetic flux modulation plate 6. 5 reflects the alternating magnetic field, thereby generating high-frequency vibrations in the container 3 and generating ultrasonic waves in the container 3 to promote water absorption into the rice 9, as in the prior art. An ultrasonic vibrator is not required, so that the container 3 can be easily attached and detached, the container 3 can be easily washed and the rice washed in the container 3, and beautiful rice can be obtained, and water absorption into the rice 9 is promoted. By doing so, cooking time can also be reduced.
[0035]
Embodiment 2 FIG.
FIG. 5 is a longitudinal sectional view of an electromagnetic induction heater according to Embodiment 2 of the present invention. In the drawings, the same or corresponding parts as those in the above embodiment are denoted by the same reference numerals, and description thereof will be omitted. The magnetic flux modulation plate 6 is disposed between the bottom coil 5a and the side coil 5b, and extends over the bottom coil 5a.
[0036]
The rice cooking operation by the electromagnetic induction heating and the heater heating is the same as that in the first embodiment, and thus the description is omitted, and the operation of the magnetic flux modulation plate 6 will be described next.
The magnetic flux modulation plate 6 operates when a high-frequency current flows through the electromagnetic induction coil 5.
The magnetic flux modulation plate 6 generates an alternating magnetic field based on the direction of the current flowing through the electromagnetic induction coil 5 when a high-frequency current flows through the electromagnetic induction coil 5 in the preheating step and the rice cooking step in which the water 3 is sufficient in the container 3. Due to the high frequency of the alternating magnetic field, the container 3 facing the electromagnetic induction coil 5 is pushed inward of the container 3 at the same frequency as the high frequency.
[0037]
On the other hand, the high frequency of the alternating magnetic field generated from the electromagnetic induction coil 5 is reflected by the magnetic flux modulation plate 6 which is a non-magnetic metal material. As a result, the surface of the container 3 facing the magnetic flux modulation plate 6 is pushed out of the container 3 at the same frequency as the high frequency. Then, when this high frequency resonates with the natural frequency of the container 3, ultrasonic waves are generated in the water 10 in the container 3 by repeatedly pushing the container 3 inward and pushing the container 3 outward.
[0038]
Here, since the magnetic flux modulation plate 6 is extended above the bottom coil 5a as compared with the first embodiment, it reflects the alternating magnetic field of the bottom coil 5a. And the water absorption of rice 9 is further promoted.
[0039]
Embodiment 3 FIG.
FIG. 6 is a longitudinal sectional view of an electromagnetic induction heater according to Embodiment 3 of the present invention. In the drawings, the same or corresponding parts as those in the above embodiment are denoted by the same reference numerals, and description thereof will be omitted. The magnetic flux modulation plate 6 is provided between the bottom coil 5a and the side coil 5b, and extends on the side coil 5b.
[0040]
The rice cooking operation by the electromagnetic induction heating and the heater heating is the same as that in the first embodiment, and thus the description is omitted, and the operation of the magnetic flux modulation plate 6 will be described next.
The magnetic flux modulation plate 6 operates when a high-frequency current flows through the electromagnetic induction coil 5.
The magnetic flux modulation plate 6 generates an alternating magnetic field based on the direction of the current flowing through the electromagnetic induction coil 5 when a high-frequency current flows through the electromagnetic induction coil 5 in the preheating step and the rice cooking step in which the water 3 is sufficient in the container 3. Due to the high frequency of the alternating magnetic field, the container 3 facing the electromagnetic induction coil 5 is pushed inward of the container 3 at the same frequency as the high frequency.
[0041]
On the other hand, the high frequency of the alternating magnetic field generated from the electromagnetic induction coil 5 is reflected by the magnetic flux modulation plate 6 which is a non-magnetic metal material. As a result, the surface of the container 3 facing the magnetic flux modulation plate 6 is pushed out of the container 3 at the same frequency as the high frequency. Then, when this high frequency resonates with the natural frequency of the container 3, ultrasonic waves are generated in the water 10 in the container 3 by repeatedly pushing the container 3 inward and pushing the container 3 outward.
[0042]
Here, since the magnetic flux modulation plate 6 is extended above the side coil 5b as compared with the first embodiment, the alternating magnetic field of the side coil 5b is also reflected. And the water absorption of rice 9 is further promoted.
[0043]
Embodiment 4 FIG.
FIG. 7 is a longitudinal sectional view of an electromagnetic induction heater according to Embodiment 4 of the present invention. In the drawings, the same or corresponding parts as those in the above embodiment are denoted by the same reference numerals, and description thereof will be omitted. The magnetic flux modulation plate 6 is disposed above the side coil 5b.
[0044]
The rice cooking operation by the electromagnetic induction heating and the heater heating is the same as that in the first embodiment, and thus the description is omitted, and the operation of the magnetic flux modulation plate 6 will be described next.
The magnetic flux modulation plate 6 operates when a high-frequency current flows through the electromagnetic induction coil 5.
The magnetic flux modulation plate 6 generates an alternating magnetic field based on the direction of the current flowing through the electromagnetic induction coil 5 when a high-frequency current flows through the electromagnetic induction coil 5 in the preheating step and the rice cooking step in which the water 3 is sufficient in the container 3. Due to the high frequency of the alternating magnetic field, the container 3 facing the electromagnetic induction coil 5 is pushed inward of the container 3 at the same frequency as the high frequency.
[0045]
On the other hand, the high frequency of the alternating magnetic field generated from the electromagnetic induction coil 5 is reflected by the magnetic flux modulation plate 6 which is a non-magnetic metal material. As a result, the side surface of the container 3 facing the magnetic flux modulation plate 6 is pushed out to the outside of the container 3 at the same frequency as the high frequency. Then, when this high frequency resonates with the natural frequency of the container 3, ultrasonic waves are generated in the water 10 in the container 3 by repeatedly pushing the container 3 inward and pushing the container 3 outward.
[0046]
Here, the water 10 heated by the bottom coil 5a and the side coil 5b convects, and the ultrasonic wave is generated around the side of the container 3 above the side coil 5b, so that the water absorption of the rice 9 is further promoted. .
[0047]
Embodiment 5 FIG.
FIG. 8 is an enlarged sectional view of a main part of an electromagnetic induction heater according to Embodiment 5 of the present invention. In the drawings, the same or corresponding parts as those in the above embodiment are denoted by the same reference numerals, and description thereof will be omitted. The magnetic flux modulation plate 6 is embedded so as to be flush with the inner surface of the lower frame 2b, and other structures are not shown, but are the same as in the first embodiment.
[0048]
The rice cooking operation by the electromagnetic induction heating and the heater heating is the same as that in the first embodiment, and thus the description is omitted, and the operation of the magnetic flux modulation plate 6 will be described next.
The magnetic flux modulation plate 6 operates when a high-frequency current flows through the electromagnetic induction coil 5.
The magnetic flux modulation plate 6 generates an alternating magnetic field based on the direction of the current flowing through the electromagnetic induction coil 5 when a high-frequency current flows through the electromagnetic induction coil 5 in the preheating step and the rice cooking step in which the water 3 is sufficient in the container 3. Due to the high frequency of the alternating magnetic field, the container 3 facing the electromagnetic induction coil 5 is pushed inward of the container 3 at the same frequency as the high frequency.
[0049]
On the other hand, the high frequency of the alternating magnetic field generated from the electromagnetic induction coil 5 is reflected by the magnetic flux modulation plate 6 which is a non-magnetic metal material. As a result, the surface of the container 3 facing the magnetic flux modulation plate 6 is pushed out of the container 3 at the same frequency as the high frequency. Then, when this high frequency resonates with the natural frequency of the container 3, ultrasonic waves are generated in the water 10 in the container 3 by repeatedly pushing the container 3 inward and pushing the container 3 outward.
Here, since the magnetic flux modulating plate 6 is flush with the inner surface of the lower frame 2b, there is no protruding portion of the magnetic flux modulating plate 6 when cleaning the inner surface of the lower frame 2 and cleaning performance is improved.
[0050]
Embodiment 6 FIG.
FIG. 9 is an enlarged sectional view of a main part of an electromagnetic induction heater according to Embodiment 6 of the present invention. In the drawings, the same or corresponding parts as those in the above embodiment are denoted by the same reference numerals, and description thereof will be omitted. The magnetic flux modulation plate 6 is embedded in the lower frame 2b, and other structures are not shown, but are the same as in the first embodiment.
The operation of the magnetic flux modulation plate 6 is the same as that of the fifth embodiment, and the description is omitted. Since the magnetic flux modulation plate 6 is buried in the lower frame 2b, there is no protruding portion due to the magnetic flux modulation plate 6 when cleaning the inner surface of the lower frame 2, and the cleaning property is improved.
[0051]
Embodiment 7 FIG.
FIG. 10 is an enlarged sectional view of a main part of an electromagnetic induction heater according to Embodiment 7 of the present invention. In the drawings, the same or corresponding parts as those in the above embodiment are denoted by the same reference numerals, and description thereof will be omitted. The magnetic flux modulation plate 6 is provided on the outer surface of the lower frame 2b, and other structures are not shown, but are the same as in the first embodiment.
The operation of the magnetic flux modulation plate 6 is the same as that of the fifth embodiment, and the description is omitted. Since the magnetic flux modulation plate 6 is provided on the outer surface of the lower frame 2b, when the inner surface of the lower frame 2 is cleaned, there is no protruding portion due to the magnetic flux modulation plate 6, and the cleaning property is improved.
[0052]
Embodiment 8 FIG.
FIG. 11 is a plan view of an electromagnetic induction heater according to an eighth embodiment of the present invention in a state where a lid and a container are removed. In the figure, the same or corresponding parts as those in the above embodiment are denoted by the same reference numerals, and description thereof will be omitted. The magnetic flux modulation plate 6 is provided by dividing the ring-shaped magnetic flux modulation plate 6 into two parts and providing a predetermined gap therebetween. The other configuration is not shown, but is the same as that of the first embodiment.
[0053]
The rice cooking operation by the electromagnetic induction heating and the heater heating is the same as that in the first embodiment, and thus the description is omitted, and the operation of the magnetic flux modulation plate 6 will be described next.
The magnetic flux modulation plate 6 operates when a high-frequency current flows through the electromagnetic induction coil 5.
The magnetic flux modulation plate 6 generates an alternating magnetic field based on the direction of the current flowing through the electromagnetic induction coil 5 when a high-frequency current flows through the electromagnetic induction coil 5 in the preheating step and the rice cooking step in which the water 3 is sufficient in the container 3. Due to the high frequency of the alternating magnetic field, the container 3 facing the electromagnetic induction coil 5 is pushed inward of the container 3 at the same frequency as the high frequency.
[0054]
On the other hand, the high frequency of the alternating magnetic field generated from the electromagnetic induction coil 5 is reflected by the magnetic flux modulation plate 6 which is a non-magnetic metal material. As a result, the surface of the container 3 facing the magnetic flux modulation plate 6 is pushed out of the container 3 at the same frequency as the high frequency. Then, when this high frequency resonates with the natural frequency of the container 3, ultrasonic waves are generated in the water 10 in the container 3 by repeatedly pushing the container 3 inward and pushing the container 3 outward.
Therefore, the same operation and effect as those of the first embodiment can be obtained.
Note that the magnetic flux modulation plate 6 divided into two may be used in the second, third, fourth, fifth, sixth and seventh embodiments, and the same operation and effect can be obtained.
[0055]
Embodiment 9 FIG.
FIG. 12 is a plan view of a magnetic flux modulation plate of an electromagnetic induction heater according to Embodiment 9 of the present invention. In the figure, the same or corresponding parts as those in the above embodiment are denoted by the same reference numerals, and description thereof will be omitted. The magnetic flux modulating plate 6 is provided by dividing the ring-shaped magnetic flux modulating plate 6 into four parts and providing a predetermined gap. The other configuration is not shown, but is the same as that of the first embodiment.
[0056]
The function and effect of the magnetic flux modulation plate 6 are the same as in the eighth embodiment, and the description is omitted.
Note that the magnetic flux modulation plate 6 divided into four parts may be used in the second, third, fourth, fifth, sixth, and seventh embodiments, and the same operation and effect can be obtained.
[0057]
Embodiment 10 FIG.
FIG. 13 is a plan view of a magnetic flux modulation plate of an electromagnetic induction heater according to Embodiment 10 of the present invention. In the figure, the same or corresponding parts as those in the above embodiment are denoted by the same reference numerals, and description thereof will be omitted. The magnetic flux modulating plate 6 is formed by dividing the ring-shaped magnetic flux modulating plate 6 into eight parts and providing a predetermined gap therebetween. The other structure is not shown, but is the same as that of the first embodiment.
[0058]
The function and effect of the magnetic flux modulation plate 6 are the same as in the eighth embodiment, and the description is omitted.
The eight divided magnetic flux modulation plates 6 may be used in the second, third, fourth, fifth, sixth and seventh embodiments, and the same operation and effect can be obtained.
[0059]
Embodiment 11 FIG.
FIG. 14 is a plan view of a magnetic flux modulation plate of an electromagnetic induction heater according to Embodiment 11 of the present invention. In the figure, the same or corresponding parts as those in the above embodiment are denoted by the same reference numerals, and description thereof will be omitted. The magnetic flux modulating plate 6 is obtained by dividing the ring-shaped magnetic flux modulating plate 6 into 16 parts, thinning out every other one, and arranging eight. The other configuration is not shown. The same is true.
[0060]
The function and effect of the magnetic flux modulation plate 6 are the same as in the eighth embodiment, and the description is omitted.
Note that these eight magnetic flux modulation plates 6 may be used in the second, third, fourth, fifth, sixth, and seventh embodiments, and have the same effect.
[0061]
Embodiment 12 FIG.
FIG. 15 is a plan view of a magnetic flux modulation plate of an electromagnetic induction heater according to Embodiment 12 of the present invention. In the figure, the same or corresponding parts as those in the above embodiment are denoted by the same reference numerals, and description thereof will be omitted. The magnetic flux modulating plate 6 is obtained by dividing the ring-shaped magnetic flux modulating plate 6 into sixteen parts, four of which are equally arranged. The other structure is not shown, but is the same as that of the first embodiment. is there. The individual shape of the magnetic flux modulation plate 6 is not limited to a fan shape, but may be a square, a triangle, a circle, or the like.
[0062]
The function and effect of the magnetic flux modulation plate 6 are the same as in the eighth embodiment, and the description is omitted.
Note that the magnetic flux modulation plate 6 may be used in the second, third, fourth, fifth, sixth, and seventh embodiments, and the same operation and effect can be obtained.
[0063]
Embodiment 13 FIG.
FIG. 16 is a longitudinal sectional view of electromagnetic induction heating cooking according to Embodiment 13 of the present invention. In the drawings, the same or corresponding parts as those in the above embodiment are denoted by the same reference numerals. 16 is a main body of the electromagnetic induction heating cooker, 16a is an upper frame of the main body 16, 17 is a top plate made of heat-resistant glass having magnetic permeability, 3 is a bottomed cylindrical container, and the outside of the container 3 is magnetic. The inside is made of a non-magnetic metal material (aluminum material) with a metal material (austenitic stainless steel material), and the inner surface is further coated with a fluororesin.
[0064]
Reference numeral 5 denotes an electromagnetic induction coil composed of a plurality of turns of an inner coil 5a provided substantially at the center of the bottom outer surface of the upper frame 16a, and a plurality of turns of an outer coil 5b provided on the outer periphery of the inner frame 5a with a predetermined gap. is there. Reference numeral 6 denotes an annular magnetic flux modulation plate made of a non-magnetic metal material (eg, copper, aluminum, silver, gold, etc.) between the upper frame 16a and the top plate 17 and between the inner coil 5a and the outer coil 5b. Are arranged in the gap provided. Reference numeral 7 denotes a bottom sensor formed of a thermistor which comes into contact with the outer bottom surface of the container 3, detects the temperature in the container 3, and inputs a detection signal to a control device 14 described later.
[0065]
Reference numeral 9 denotes a cook (eg, potato or the like) to be heated and cooked in the container 3, and is stored in the container 3 together with water 10. An operation unit 13 includes a temperature setting key for a heating temperature, a time setting key for setting a cooking time, a start key for cooking, and a display for displaying a cooking time, a heating temperature, and the like. A control device 14 controls an inverter 15 described below based on a key input signal of the operation unit 13 and a detection signal of the bottom sensor 7. An inverter 15 supplies a high-frequency current to the electromagnetic induction coil 5.
[0066]
Next, the operation will be described.
First, the food 9, the water 10, the seasonings, and the like are stored in the container 3, and the container 3 is placed on the top plate 17. Next, when the temperature is set to, for example, 200 ° C. by the temperature setting key of the operation unit 13, the cooking time is set to 20 minutes by the time setting key, and the cooking start key is operated, the control device 14 controls the inverter 15. A high-frequency current flows through the electromagnetic induction coil 5.
[0067]
When a high-frequency current flows through the electromagnetic induction coil 5, the container 3 made of a magnetic metal material generates heat by an alternating magnetic field, and heats the food 9 and the water 10, convection occurs in the container 3, and the temperature inside the container 3 increases. When the temperature reaches the set temperature (200 ° C.), the detection signal of the bottom sensor 7 is input to the control device 14. The control device 14 controls the inverter 15 to reduce or increase the high-frequency current to maintain the set temperature (200 ° C.). Eventually, when the cooking time elapses the set time (20 minutes), the control device 14 controls the inverter 15 and ends the cooking.
[0068]
Next, the operation of the magnetic flux modulation plate 6 will be described.
The magnetic flux modulation plate 6 operates when a high-frequency current flows through the electromagnetic induction coil 5.
When a high-frequency current flows through the electromagnetic induction coil 5 during a cooking process in which the container 3 has sufficient water 10, the magnetic flux modulation plate 6 generates an alternating magnetic field based on the direction of the current flowing through the electromagnetic induction coil 5. Due to the high frequency of the magnetic field, the container 3 facing the electromagnetic induction coil 5 is pushed inward of the container 3 at the same frequency as the high frequency.
[0069]
On the other hand, the high frequency of the alternating magnetic field generated from the electromagnetic induction coil 5 is reflected by the magnetic flux modulation plate 6 which is a non-magnetic metal material. As a result, the surface of the container 3 facing the magnetic flux modulation plate 6 is pushed out of the container 3 at the same frequency as the high frequency. Then, when this high frequency resonates with the natural frequency of the container 3, that is, coincides with or becomes close to the resonance frequency of the container 3 or an integral multiple of the resonance frequency, the pushing inward of the container 3 and the outside of the container 3 Ultrasonic waves are generated in the water 10 in the container 3 by repeating the extrusion in the direction.
[0070]
Therefore, by generating high-frequency vibrations in the container 3 and generating ultrasonic waves in the container 3, water absorption of the food 9 can be promoted, and the cooking time can be reduced. In addition, the cleaning of the top plate 17 can be facilitated because no special ultrasonic transducer is required.
[0071]
In the thirteenth embodiment, the magnetic flux modulation plate 6 is disposed on the upper surface of the upper frame 16a. However, as in the second, third, fourth, fifth, sixth and seventh embodiments, the magnetic flux modulation plate 6 is provided. 6 may be changed, and the same operation and effect can be obtained.
Further, in the thirteenth embodiment, the magnetic flux modulation plate 6 has an annular shape, but may have another shape as in the eighth, ninth, tenth, eleventh, and twelfth embodiments. To play.
[0072]
【The invention's effect】
Since the present invention is configured as described above, it has the following effects.
[0073]
A container for storing the object to be heated, an electromagnetic induction coil provided to face the outer surface of the container, and heating the container with a generated magnetic field; and an inner circumferential side of the electromagnetic induction coil facing the outer surface of the container, and / or Since it is provided with a non-magnetic metal material provided close to the outer peripheral side, high frequency vibration is generated in the container by reflecting the alternating magnetic field generated in the electromagnetic induction coil by the non-magnetic metal material, and the By generating sound waves, it is possible to promote water absorption of the food in the container, and further, it is not necessary to provide an ultrasonic vibrator, and it is possible to obtain food such as delicious rice and the cooking time. Can be shortened.
[0074]
In addition, since a plurality of electromagnetic induction coils are arranged with a gap therebetween, and a non-magnetic metal material is arranged at or near the gap, the alternating magnetic field of the plurality of electromagnetic induction coils is reflected, and the number of vibration locations of the container increases. Thus, more ultrasonic waves can be generated in the container, the water absorption of the food can be further promoted, and the cooking time can be further reduced.
[0075]
Further, since the non-magnetic metal material is formed in a ring shape, generation of ultrasonic waves can be promoted over the entire surface of the non-magnetic metal material facing the container.
[0076]
In addition, since the non-magnetic metal material is divided and disposed with a gap, the number of vibrating portions of the container increases, and ultrasonic waves are easily generated in the container.
[0077]
Further, a main body, a bottomed cylindrical frame body built in the main body, a container forming a predetermined space and housed in the frame body, and an outer surface of the container facing the outer surface of the container, A plurality of electromagnetic induction coils provided with a gap and heating the container by a generated magnetic field, and a nonmagnetic metal opposed to an outer surface of the container and disposed in a gap between the plurality of electromagnetic induction coils or in the vicinity of the gap Since the material is provided, ultrasonic waves are generated in the container, water absorption into the cooked food is promoted, the container is easily cleaned, and cooking time can be shortened by the ultrasonic wave.
[0078]
In addition, since the above-mentioned non-magnetic metal material is formed in a ring shape, ultrasonic waves are generated from the non-magnetic metal material facing surface side of the container, and the inside of the container is heated by convection caused by heating by the electromagnetic induction coil, so that the cooked food is uniform. And cooked deliciously.
[0079]
In addition, since the non-magnetic metal material is divided and arranged with a gap, the number of vibrating points of the container increases, ultrasonic waves are easily generated in the container, water absorption of cooked food is promoted, and heating is uniform. Become.
[0080]
In addition, since the non-magnetic metal material is provided in the frame, the cleanability of the frame is improved.
[0081]
Further, since the non-magnetic metal material is provided on the outer surface of the frame, the cleaning performance of the frame is improved.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an electromagnetic induction heater according to Embodiment 1 of the present invention.
FIG. 2 is a plan view of the electromagnetic induction heater according to the first embodiment of the present invention.
FIG. 3 is a diagram showing a timing chart of the electromagnetic induction heater according to the first embodiment of the present invention.
FIG. 4 is a schematic work diagram of the electromagnetic induction heater according to the first embodiment of the present invention at the time of electromagnetic induction heating.
FIG. 5 is a longitudinal sectional view of an electromagnetic induction heater according to Embodiment 2 of the present invention.
FIG. 6 is a longitudinal sectional view of an electromagnetic induction heater according to Embodiment 3 of the present invention.
FIG. 7 is a longitudinal sectional view of an electromagnetic induction heater according to Embodiment 4 of the present invention.
FIG. 8 is an enlarged sectional view of a main part of an electromagnetic induction heater according to a fifth embodiment of the present invention.
FIG. 9 is an enlarged sectional view of a main part of an electromagnetic induction heater according to a sixth embodiment of the present invention.
FIG. 10 is an enlarged sectional view of a main part of an electromagnetic induction heater according to a seventh embodiment of the present invention.
FIG. 11 is a plan view of an electromagnetic induction heater according to an eighth embodiment of the present invention.
FIG. 12 is a plan view of a magnetic flux modulation plate of an electromagnetic induction heater according to Embodiment 9 of the present invention.
FIG. 13 is a plan view of a magnetic flux modulation plate of the electromagnetic induction heater according to the tenth embodiment of the present invention.
FIG. 14 is a plan view of a magnetic flux modulation plate of an electromagnetic induction heater according to Embodiment 11 of the present invention.
FIG. 15 is a plan view of a magnetic flux modulation plate of an electromagnetic induction heater according to a twelfth embodiment of the present invention.
FIG. 16 is a longitudinal sectional view of electromagnetic induction heating cooking according to Embodiment 13 of the present invention.
FIG. 17 is a sectional view of a conventional electromagnetic induction heating device.
FIG. 18 is a view showing a rice cooking process of a conventional rice cooker.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Main body, 2 frame, 2a upper frame, 2b lower frame, 3 container, 5 electromagnetic induction coil, 5a bottom coil, 5b side coil, 6 magnetic flux modulation plate, 9 rice, 10 water, 14 control device, 15 inverter, 16 Body.

Claims (9)

被加熱物を収納する容器と、
この容器の外面に対向して設けられ、発生磁界により前記容器を加熱する電磁誘導コイルと、
前記容器の外面に対向し、前記電磁誘導コイルの内周側または/および外周側に近接して設けられ、前記電磁誘導コイルから発生した高周波を反射する非磁性金属材とを備え
前記電磁誘導コイルに流す電流の周波数を前記容器の固有振動数と共振するようにしたことを特徴とする電磁誘導加熱調理器。
A container for storing the object to be heated;
An electromagnetic induction coil that is provided facing the outer surface of the container and heats the container with a generated magnetic field;
A non-magnetic metal material that is provided in proximity to the outer surface of the container and is provided near the inner or outer circumference of the electromagnetic induction coil and reflects a high frequency generated from the electromagnetic induction coil ;
An electromagnetic induction heating cooker, wherein a frequency of a current flowing through the electromagnetic induction coil resonates with a natural frequency of the container .
上記電磁誘導コイルを間隙を空けて複数配置し、この間隙またはこの間隙近傍に上記非磁性金属材を配置したことを特徴とする請求項1記載の電磁誘導加熱調理器。2. The electromagnetic induction heating cooker according to claim 1, wherein a plurality of said electromagnetic induction coils are arranged with a gap therebetween, and said non-magnetic metal material is arranged at or near said gap. 上記非磁性金属材を環状に形成したことを特徴とする請求項1または2記載の電磁誘導加熱調理器。3. The electromagnetic induction heating cooker according to claim 1, wherein the non-magnetic metal material is formed in a ring shape. 上記非磁性金属材を分割し、間隙を空けて配設したことを特徴とする請求項3記載の電磁誘導加熱調理器。The electromagnetic induction heating cooker according to claim 3, wherein the non-magnetic metal material is divided and disposed with a gap. 本体と、この本体に内蔵され、有底筒状の枠体と、所定の空間を形成し前記枠体に収容される容器と、この容器の外面と対向し、前記枠体の外面に間隙を設けて複数配設され、発生磁界により前記容器を加熱する電磁誘導コイルと、前記容器の外面に対向し、前記複数の電磁誘導コイルの間隙またはこの間隙近傍に配設され、前記電磁誘導コイルから発生した高周波を反射する非磁性金属材とを備え、前記電磁誘導コイルに流す電流の周波数を前記容器の固有振動数と共振するようにしたことを特徴とする電磁誘導加熱調理器。A main body, a bottomed cylindrical frame body built in the main body, a container forming a predetermined space and housed in the frame body, and a space facing the outer surface of the container and a gap on the outer surface of the frame body. a plurality of arranged provided, an electromagnetic induction coil for heating the container by the magnetic field generated, opposed to the outer surface of said container is disposed in the gap or near the gap of the plurality of electromagnetic induction coils, from the electromagnetic induction coil An electromagnetic induction heating cooker , comprising: a non-magnetic metal material that reflects the generated high frequency; and wherein a frequency of a current flowing through the electromagnetic induction coil resonates with a natural frequency of the container . 上記非磁性金属材を環状に形成したことを特徴とする請求項5記載の電磁誘導加熱調理器。The electromagnetic induction heating cooker according to claim 5, wherein the non-magnetic metal material is formed in a ring shape. 上記非磁性金属材を分割し、間隙を空けて配設したことを特徴とする請求項記載の電磁誘導加熱調理器。7. The electromagnetic induction heating cooker according to claim 6 , wherein the nonmagnetic metal material is divided and disposed with a gap. 前記非磁性金属材を上記枠体内に設けたことを特徴とする請求項5または6記載の電磁誘導加熱調理器。7. The electromagnetic induction heating cooker according to claim 5, wherein the non-magnetic metal material is provided in the frame. 前記非磁性金属材を上記枠体外面に設けたことを特徴とする請求項5または6記載の電磁誘導加熱調理器。The electromagnetic induction heating cooker according to claim 5, wherein the nonmagnetic metal material is provided on an outer surface of the frame.
JP2001095449A 2001-03-29 2001-03-29 Induction heating cooker Expired - Lifetime JP3600542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001095449A JP3600542B2 (en) 2001-03-29 2001-03-29 Induction heating cooker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001095449A JP3600542B2 (en) 2001-03-29 2001-03-29 Induction heating cooker

Publications (2)

Publication Number Publication Date
JP2002291616A JP2002291616A (en) 2002-10-08
JP3600542B2 true JP3600542B2 (en) 2004-12-15

Family

ID=18949501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001095449A Expired - Lifetime JP3600542B2 (en) 2001-03-29 2001-03-29 Induction heating cooker

Country Status (1)

Country Link
JP (1) JP3600542B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1681422B (en) 2002-09-11 2010-12-08 株式会社日丰制作所 Fully automatic rice cooker
JP5321017B2 (en) * 2008-11-27 2013-10-23 パナソニック株式会社 rice cooker
CN104622256B (en) * 2014-11-14 2017-11-07 九阳股份有限公司 A kind of food cooking utensil
CN109984614B (en) * 2017-12-29 2024-04-12 福州品行科技发展有限公司 Detachable ultrasonic descaling brewing heating device
KR102154970B1 (en) * 2018-08-10 2020-09-10 김은정 Multipurpose heating device of induction heating type using heat-plasma

Also Published As

Publication number Publication date
JP2002291616A (en) 2002-10-08

Similar Documents

Publication Publication Date Title
JP3600542B2 (en) Induction heating cooker
JP3716365B2 (en) rice cooker
JP2000041838A (en) Electric cooking pot
JP4302592B2 (en) Induction heating cooker
JP6141214B2 (en) rice cooker
JP3726235B2 (en) Induction heating cooker
JP3586811B2 (en) Electromagnetic induction heating device
JP3939944B2 (en) Electromagnetic induction heating device
JP2012248499A (en) Induction heating cooker
JP4016337B2 (en) Induction heating rice cooker
JP2003259973A (en) Rice cooker
JP7378206B2 (en) rice cooker
JP4022886B2 (en) Electromagnetic induction heating cooker
JP4051705B2 (en) rice cooker
JP2022105350A (en) Heating cooker
CN111988877B (en) Cooking utensil
JP4073825B2 (en) Electric rice cooker
JP2004220848A (en) Induction heating cooking device
JP2000184963A (en) Heating cooker
JP3687035B2 (en) rice cooker
JP5369459B2 (en) Clad pan for induction heating cooker
JP5915320B2 (en) Electromagnetic induction cooker
KR200268818Y1 (en) rice cooker
JPH04322617A (en) Electric rice cooker
JP3977755B2 (en) Electric rice cooker

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040730

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040916

R150 Certificate of patent or registration of utility model

Ref document number: 3600542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term