JP3600386B2 - Slush hydrogen production method and magnetic refrigeration apparatus therefor - Google Patents

Slush hydrogen production method and magnetic refrigeration apparatus therefor Download PDF

Info

Publication number
JP3600386B2
JP3600386B2 JP30016596A JP30016596A JP3600386B2 JP 3600386 B2 JP3600386 B2 JP 3600386B2 JP 30016596 A JP30016596 A JP 30016596A JP 30016596 A JP30016596 A JP 30016596A JP 3600386 B2 JP3600386 B2 JP 3600386B2
Authority
JP
Japan
Prior art keywords
hydrogen
cylindrical
liquid hydrogen
slush
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30016596A
Other languages
Japanese (ja)
Other versions
JPH10140168A (en
Inventor
忍 松尾
憲治 中道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP30016596A priority Critical patent/JP3600386B2/en
Publication of JPH10140168A publication Critical patent/JPH10140168A/en
Application granted granted Critical
Publication of JP3600386B2 publication Critical patent/JP3600386B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Solid Fuels And Fuel-Associated Substances (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、固体水素と液体水素が混合しているスラッシュ水素の製造方法及びそれに使用される磁気冷凍装置に関する。
【0002】
【従来の技術】
スラッシュ水素は固体水素と液体水素がシャーベット状に混合したものであり、液体水素に比べて密度が大きく、保有する寒冷量が大きいことからスペースプレーンの燃料やエネルギーの輸送、貯蔵媒体として利用されようとしている。
【0003】
従来スラッシュ水素の製造方法としては、液体ヘリウムを間欠的に減圧する方法(間欠減圧法)や極低温のヘリウムと熱交換して伝熱面に凝縮した固体水素をオーガと呼ばれる回転する錐状の刃物で削り落とす方法(ヘリウム冷凍法)などが提案されている。
【0004】
図3により従来のヘリウム冷凍法によるスラッシュ水素製造装置を説明する。図3は従来のヘリウム冷凍法によるスラッシュ水素製造装置の断面図である。1は液体水素容器であり、2は液体水素、3は固体水素の粒、4は液体水素2と固体水素の粒3が混合したスラッシュ水素である。5は熱交換器であり、極低温のヘリウムガス6と液体水素2が熱交換し、伝熱面7に固体水素8が生成する。
【0005】
9はオーガと呼ばれる錐状の刃物であり、駆動用モータ10により回転し、伝熱面7に生成した固体水素8を削り落とす。11は極低温ヘリウムの供給配管、12は液体水素と熱交換した極低温ヘリウムの逃気管である。13は極低温ヘリウム発生装置である。
【0006】
14は、液体水素容器1および極低温ヘリウム供給配管11などへの侵入熱を低減するための断熱真空容器である。極低温ヘリウム発生装置13で発生した極低温ヘリウム6は極低温ヘリウム供給配管11を通って熱交換器5に供給され、液体水素2と熱交換して伝熱面7に固体水素8が生成する。
【0007】
伝熱面7に生成した固体水素8はオーガ9が回転することによって削り落とされ、固体水素の粒3となって、液体水素容器1の下部へ落下しスラッシュ水素を形成する。以上のように極低温ヘリウムおよび原料となる液体水素をそれぞれ連続的に供給することにより、連続的にスラッシュ水素を製造する。
【0008】
【発明が解決しようとする課題】
以上説明した従来のスラッシュ水素製造装置では、スラッシュ水素を連続的に製造するためには極低温ヘリウムを連続的に供給する必要があり、極低温ヘリウムの発生に大きな動力を必要とすると共に極低温ヘリウム発生装置が必要なため、装置全体の大きさが大きくなるという問題があった。
【0009】
本発明は、液体ヘリウムや極低温ヘリウムを用いることなく連続的にスラッシュ水素を製造可能なスラッシュ水素製造方法及びそのための安価でコンパクトなスラッシュ水素製造装置を提供することを課題としている。
【0010】
【課題を解決するための手段】
本発明は前記課題を解決するため、スラッシュ水素製造用液体水素容器内に磁性体の上下動によって磁気冷凍サイクルを構成する磁気冷凍装置を設置し、寒冷を発生した前記磁性体を前記スラッシュ水素製造用液体水素容器内の液体水素中に下降して浸漬し、その表面で凝縮生成された固体水素を削り落とすことによってスラッシュ水素を製造するスラッシュ水素製造方法を提供する。
【0011】
本発明のスラッシュ水素製造方法で採用する磁気冷凍装置においては、磁性体が超伝導マグネットの磁場空間から下降されるとその磁性体に引加される磁場が減少して磁性体の温度が下がる。こうして低温となった磁性体が液体水素中に入ることによって、磁性体表面に固体水素が生成するので、それをオーガ等により削り落とすことでスラッシュ水素が製造される。
【0012】
また、本発明は前記課題を解決するため、スラッシュ水素製造用液体水素容器と、同スラッシュ水素製造用液体水素容器内のガス領域に設置された補助寒冷用の円筒状液体水素容器と、同補助寒冷用の円筒状液体水素容器の下部に設置された円筒状ガイドと、前記補助寒冷用の円筒状液体水素容器及び円筒状ガイドの外周に沿って上下動可能に設置された円筒状磁性体と、同円筒状磁性体に磁場を与える超伝導マグネットと、前記円筒状ガイドの下部に前記スラッシュ水素製造用液体水素容器内の液体水素中に浸漬して設置され、前記円筒状磁性体内面に生成した固体水素を削る回転刃物とからなるスラッシュ水素製造用磁気冷凍装置を提供する。
【0013】
本発明のスラッシュ水素製造用磁気冷凍装置で用いる円筒状磁性体としては、例えば、GGG(ガドリニウム・ガリウム・ガーネット)やDAG(ディスプロシウム・アルミニウム・ガーネット)等がある。
【0014】
また、本発明のこのスラッシュ水素製造用磁気冷凍装置においては、前記した補助寒冷用の円筒状液体水素容器の下部を伝熱面となし、その伝熱面を介して前記円筒状磁性体から熱を奪い、それを同補助寒冷用の円筒状液体水素容器内の液体水素の蒸発潜熱として排熱するように構成するのが好ましい。
【0015】
このように構成された本発明のスラッシュ水素製造用磁気冷凍装置によれば、円筒状磁性体が上昇して超伝導マグネットにより発生した磁場空間に入り、磁性体に引加される磁場が増加すると磁性体が発熱するが、その発熱は補助寒冷用の円筒状液体水素容器内の液体水素の蒸発潜熱として磁性体から奪われる。
【0016】
この後、円筒状磁性体を下降させると円筒状磁性体に引加される磁場が減少して円筒状磁性体の温度が下がり、低温となった円筒状磁性体がスラッシュ水素製造用液体水素容器内の液体水素中に入ることによって、円筒状磁性体表面に固体水素が生成するとともに、液体水素中に浸漬して設置されている回転刃物により該固体水素が削り落とされ、スラッシュ水素が製造される。
【0017】
このように、本発明の磁気冷凍装置においては、極液体ヘリウムを用いることなく、連続的にスラッシュ水素を製造可能である。
【0018】
【発明の実施の形態】
以下、本発明によるスラッシュ水素製造方法及びその為の磁気冷凍装置について図1,図2に示した実施の形態に基づいて具体的に説明する。なお、以下の実施の形態において、図3に示した従来の技術と同じ構成の部分には説明を簡単にするため同じ符号を付してある。
【0019】
図1及び図2において、100は伝熱面111をもつ補助寒冷用の円筒状液体水素槽であり、補助寒冷として例えば温度20Kの液体水素101が満たされている。102は円筒状磁性体であり、例えばGGG(ガドリニウム・ガリウム・ガーネット)やDAG(ディスプロシウム・アルミニウム・ガーネット)等が使用される。103は円筒状磁性体102を保持するための真空断熱容器であり、空間104は真空となっている。
【0020】
105は補助寒冷用の円筒状液体水素容器100の下部に取り付けられた円筒状ガイドであり、この円筒状ガイド105の下部にオーガ106が設置されている。107は超伝導マグネット、108は超伝導マグネット107を冷却するための液体ヘリウム容器、109は磁性体102を上下動するためのロッドであり、ベローズ110を介して、常温部で図示しない上下動駆動部に接続されている。
【0021】
円筒状磁性体102が超伝導マグネット107の磁場空間に入ると円筒状磁性体102の温度が上昇する。
このとき、円筒状磁性体102は補助寒冷用の円筒状液体水素槽100の伝熱面(銅製など)111を介して約20Kに冷却される。このとき円筒状磁性体102の熱は補助寒冷用の円筒状液体水素槽100の液体水素101の蒸発潜熱として排熱される。
【0022】
この後、円筒状磁性体102を下部へ移動すると円筒状磁性体102は磁場空間より出るため温度が低下する。温度低下した円筒状磁性体102は、例えば温度13.8Kの液体水素2中に浸漬され、液体水素2が磁性体102の表面に凝縮し、固体水素8が生成する。
【0023】
円筒状磁性体102表面に生成した固体水素8は回転しているオーガ9によって削り落とされ、固体水素の粒3となって下方へ落下し、スラッシュ水素が製造される。この後、円筒状磁性体102は再び上方へ移動され磁場空間に入り温度が上昇する。以上の過程を繰り返して、円筒状磁性体102は寒冷を発生し、液体水素を固化させ、スラッシュ水素を製造する。
【0024】
以上、本発明を図示した実施形態に基づいて具体的に説明したが、本発明がこれらの実施形態に限定されず特許請求の範囲に示す本発明の範囲内で、その具体的構造、構成に種々の変更を加えてよいことはいうまでもない。
【0025】
例えば、上記実施形態では円筒状磁性体102に生成した固体水素を削るのにオーガ106を使用しているが、オーガに限らず、適宜の回転刃物等を用いてよい。
【0026】
【発明の効果】
本発明によるスラッシュ水素製造方法では磁性体の上下動により磁気冷凍サイクルを構成する磁気冷凍装置を用いて、液体水素を固化するための寒冷を発生するので、極低温ヘリウムを供給することなく連続的にスラッシュ水素を製造することができる。
【0027】
また、本発明による磁気冷凍装置によれば、前記した本発明のスラッシュ水素製造方法を実施するための安価で、コンパクトなスラッシュ水素製造装置を提供することができるという効果がある。
【図面の簡単な説明】
【図1】本発明の実施の一形態に係るスラッシュ水素製造用磁気冷凍装置の断面図。
【図2】図1におけるA部の詳細を拡大して示す断面図。
【図3】従来のヘリウム冷凍法によるスラッシュ水素製造装置の断面図。
【符号の説明】
1 液体水素容器
2 液体水素
3 固体水素の粒
8 固体水素
14 断熱真空容器
100 補助寒冷用の円筒状液体水素槽
101 液体水素
102 円筒状磁性体
103 真空断熱容器
104 空間
105 円筒状ガイド
106 オーガ(錐状の刃物)
107 超伝導マグネット
108 液体ヘリウム容器
109 ロッド
110 ベローズ
111 伝熱面
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing slush hydrogen in which solid hydrogen and liquid hydrogen are mixed, and a magnetic refrigeration apparatus used for the method.
[0002]
[Prior art]
Slush hydrogen is a mixture of solid hydrogen and liquid hydrogen in a sherbet form.Since it has a higher density than liquid hydrogen and a large amount of chilled water, it will be used as a space plane fuel and energy transport and storage medium. And
[0003]
Conventional methods for producing slush hydrogen include a method of intermittently depressurizing liquid helium (intermittent depressurization method) and a method of rotating solid condensate on a heat transfer surface by exchanging heat with ultra-low temperature helium to form a rotating cone called an auger. A method of shaving off with a knife (helium refrigeration method) and the like have been proposed.
[0004]
A conventional slush hydrogen production apparatus using the helium refrigeration method will be described with reference to FIG. FIG. 3 is a cross-sectional view of a conventional slush hydrogen production apparatus using a helium refrigeration method. 1 is a liquid hydrogen container, 2 is liquid hydrogen, 3 is solid hydrogen particles, and 4 is slush hydrogen in which liquid hydrogen 2 and solid hydrogen particles 3 are mixed. A heat exchanger 5 exchanges heat between the extremely low temperature helium gas 6 and the liquid hydrogen 2 to generate solid hydrogen 8 on the heat transfer surface 7.
[0005]
Reference numeral 9 denotes a conical blade called an auger, which is rotated by a driving motor 10 and scrapes off solid hydrogen 8 generated on the heat transfer surface 7. Reference numeral 11 denotes a supply pipe for cryogenic helium, and reference numeral 12 denotes an exhaust pipe for cryogenic helium that has exchanged heat with liquid hydrogen. 13 is a cryogenic helium generator.
[0006]
Reference numeral 14 denotes an adiabatic vacuum container for reducing heat entering the liquid hydrogen container 1, the cryogenic helium supply pipe 11, and the like. The cryogenic helium 6 generated by the cryogenic helium generator 13 is supplied to the heat exchanger 5 through the cryogenic helium supply pipe 11 and exchanges heat with the liquid hydrogen 2 to generate solid hydrogen 8 on the heat transfer surface 7. .
[0007]
The solid hydrogen 8 generated on the heat transfer surface 7 is scraped off by the rotation of the auger 9, becomes solid hydrogen particles 3, falls to the lower part of the liquid hydrogen container 1, and forms slush hydrogen. As described above, slush hydrogen is continuously produced by continuously supplying cryogenic helium and liquid hydrogen as a raw material.
[0008]
[Problems to be solved by the invention]
In the conventional slush hydrogen production apparatus described above, in order to continuously produce slush hydrogen, it is necessary to continuously supply cryogenic helium. Since a helium generator is required, there is a problem that the size of the entire apparatus is increased.
[0009]
An object of the present invention is to provide a slush hydrogen production method capable of continuously producing slush hydrogen without using liquid helium or cryogenic helium, and an inexpensive and compact slush hydrogen production apparatus therefor.
[0010]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides a magnetic refrigeration apparatus that forms a magnetic refrigeration cycle by vertically moving a magnetic material in a liquid hydrogen container for slush hydrogen production, and converts the magnetic material that has generated cold to the slush hydrogen production. A slush hydrogen production method for producing slush hydrogen by dipping and dipping into liquid hydrogen in a liquid hydrogen container for use, and shaving off solid hydrogen condensed and generated on the surface thereof.
[0011]
In the magnetic refrigeration apparatus employed in the slush hydrogen production method of the present invention, when the magnetic material is lowered from the magnetic field space of the superconducting magnet, the magnetic field applied to the magnetic material decreases, and the temperature of the magnetic material decreases. When the magnetic material that has become low in temperature enters liquid hydrogen, solid hydrogen is generated on the surface of the magnetic material. The solid hydrogen is shaved off with an auger or the like to produce slush hydrogen.
[0012]
In order to solve the above problems, the present invention provides a liquid hydrogen container for producing slush hydrogen, a cylindrical liquid hydrogen container for auxiliary cooling installed in a gas region in the liquid hydrogen container for slush hydrogen production, A cylindrical guide installed at the lower part of the cylindrical liquid hydrogen container for cooling, and a cylindrical magnetic material installed vertically movably along the outer periphery of the cylindrical liquid hydrogen container for auxiliary cooling and the cylindrical guide. A superconducting magnet that applies a magnetic field to the cylindrical magnetic body, and is immersed and installed in liquid hydrogen in the liquid hydrogen container for producing slush hydrogen under the cylindrical guide, and is formed on the surface of the cylindrical magnetic body. The present invention provides a magnetic refrigeration apparatus for producing slush hydrogen, comprising:
[0013]
Examples of the cylindrical magnetic material used in the magnetic refrigerator for producing slush hydrogen of the present invention include GGG (gadolinium gallium garnet) and DAG (dysprosium aluminum garnet).
[0014]
Further, in the magnetic refrigeration apparatus for producing slush hydrogen of the present invention, the lower part of the cylindrical liquid hydrogen container for auxiliary cooling is formed as a heat transfer surface, and heat is transferred from the cylindrical magnetic body through the heat transfer surface. It is preferable that the heat is removed as the latent heat of vaporization of liquid hydrogen in the cylindrical liquid hydrogen container for auxiliary cooling.
[0015]
According to the magnetic refrigeration system for slush hydrogen production of the present invention configured as described above, when the cylindrical magnetic body rises and enters the magnetic field space generated by the superconducting magnet, the magnetic field applied to the magnetic body increases. The magnetic material generates heat, and the heat is removed from the magnetic material as latent heat of vaporization of the liquid hydrogen in the cylindrical liquid hydrogen container for auxiliary cooling.
[0016]
Thereafter, when the cylindrical magnetic body is lowered, the magnetic field applied to the cylindrical magnetic body decreases, the temperature of the cylindrical magnetic body decreases, and the low-temperature cylindrical magnetic body becomes a liquid hydrogen container for slush hydrogen production. By entering into the liquid hydrogen inside, solid hydrogen is generated on the surface of the cylindrical magnetic body, and the solid hydrogen is scraped off by a rotary blade installed immersed in the liquid hydrogen to produce slush hydrogen. You.
[0017]
Thus, in the magnetic refrigerator of the present invention, slush hydrogen can be continuously produced without using ultra-liquid helium.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a slush hydrogen production method and a magnetic refrigeration apparatus therefor according to the present invention will be specifically described based on the embodiments shown in FIGS. In the following embodiments, the same components as those of the conventional technique shown in FIG. 3 are denoted by the same reference numerals for the sake of simplicity.
[0019]
1 and 2, reference numeral 100 denotes a cylindrical liquid hydrogen tank for auxiliary cooling having a heat transfer surface 111, which is filled with, for example, liquid hydrogen 101 having a temperature of 20K as auxiliary cooling. Reference numeral 102 denotes a cylindrical magnetic body, for example, GGG (gadolinium gallium garnet), DAG (dysprosium aluminum garnet), or the like is used. 103 is a vacuum heat insulating container for holding the cylindrical magnetic body 102, and the space 104 is in a vacuum.
[0020]
Reference numeral 105 denotes a cylindrical guide attached to a lower portion of the cylindrical liquid hydrogen container 100 for auxiliary cooling, and an auger 106 is provided below the cylindrical guide 105. 107 is a superconducting magnet, 108 is a liquid helium container for cooling the superconducting magnet 107, 109 is a rod for vertically moving the magnetic body 102, and is vertically driven (not shown) at a normal temperature portion via a bellows 110. Connected to the unit.
[0021]
When the cylindrical magnetic body 102 enters the magnetic field space of the superconducting magnet 107, the temperature of the cylindrical magnetic body 102 increases.
At this time, the cylindrical magnetic body 102 is cooled to about 20K via the heat transfer surface (made of copper or the like) 111 of the cylindrical liquid hydrogen tank 100 for auxiliary cooling. At this time, the heat of the cylindrical magnetic body 102 is exhausted as latent heat of vaporization of the liquid hydrogen 101 in the cylindrical liquid hydrogen tank 100 for auxiliary cooling.
[0022]
Thereafter, when the cylindrical magnetic body 102 is moved downward, the cylindrical magnetic body 102 comes out of the magnetic field space, so that the temperature decreases. The cooled cylindrical magnetic body 102 is immersed in, for example, liquid hydrogen 2 at a temperature of 13.8 K, and the liquid hydrogen 2 condenses on the surface of the magnetic body 102 to generate solid hydrogen 8.
[0023]
The solid hydrogen 8 generated on the surface of the cylindrical magnetic body 102 is shaved off by the rotating auger 9, falls as solid hydrogen particles 3, and falls down to produce slush hydrogen. Thereafter, the cylindrical magnetic body 102 moves upward again, enters the magnetic field space, and its temperature rises. By repeating the above process, the cylindrical magnetic body 102 generates cold, solidifies liquid hydrogen, and produces slush hydrogen.
[0024]
As described above, the present invention has been specifically described based on the illustrated embodiments. However, the present invention is not limited to these embodiments, and has specific structures and configurations within the scope of the present invention described in the claims. It goes without saying that various changes may be made.
[0025]
For example, in the above embodiment, the auger 106 is used to scrape the solid hydrogen generated in the cylindrical magnetic body 102, but the invention is not limited to the auger, and an appropriate rotary blade or the like may be used.
[0026]
【The invention's effect】
In the method for producing slush hydrogen according to the present invention, a magnetic refrigerating apparatus constituting a magnetic refrigerating cycle is generated by moving the magnetic material up and down, and cold for solidifying liquid hydrogen is generated. To produce slush hydrogen.
[0027]
Further, according to the magnetic refrigeration apparatus of the present invention, there is an effect that an inexpensive and compact slush hydrogen production apparatus for implementing the above-described slush hydrogen production method of the present invention can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a magnetic refrigeration apparatus for producing slush hydrogen according to an embodiment of the present invention.
FIG. 2 is an enlarged cross-sectional view showing details of a portion A in FIG. 1;
FIG. 3 is a cross-sectional view of a conventional slush hydrogen production apparatus using a helium refrigeration method.
[Explanation of symbols]
Reference Signs List 1 liquid hydrogen container 2 liquid hydrogen 3 solid hydrogen particles 8 solid hydrogen 14 adiabatic vacuum container 100 cylindrical liquid hydrogen tank 101 for auxiliary cold cooling liquid hydrogen 102 cylindrical magnetic body 103 vacuum heat insulating container 104 space 105 cylindrical guide 106 auger ( Cone-shaped knife)
107 Superconducting magnet 108 Liquid helium container 109 Rod 110 Bellows 111 Heat transfer surface

Claims (3)

スラッシュ水素製造用液体水素容器内に磁性体の上下動によって磁気冷凍サイクルを構成する磁気冷凍装置を設置し、これにより寒冷を発生した前記磁性体を前記スラッシュ水素製造用液体水素容器内の液体水素中に下降して浸漬し、その表面で凝縮生成された固体水素を削り落とすことによってスラッシュ水素を製造することを特徴とするスラッシュ水素製造方法。A magnetic refrigeration apparatus that constitutes a magnetic refrigeration cycle by vertically moving a magnetic material is installed in a liquid hydrogen container for slush hydrogen production, and the magnetic material that has generated cold is cooled by liquid hydrogen in the liquid hydrogen container for slush hydrogen production. A method for producing slush hydrogen, wherein the slush hydrogen is produced by lowering and immersing in the inside, and scraping off solid hydrogen condensed and generated on the surface. スラッシュ水素製造用液体水素容器と、同スラッシュ水素製造用液体水素容器内のガス領域に設置された補助寒冷用の円筒状液体水素容器と、同補助寒冷用の円筒状液体水素容器の下部に設置された円筒状ガイドと、前記補助寒冷用の円筒状液体水素容器及び円筒状ガイドの外周に沿って上下動可能に設置された円筒状磁性体と、同円筒状磁性体に磁場を与える超伝導マグネットと、前記円筒状ガイドの下部に前記スラッシュ水素製造用液体水素容器内の液体水素中に浸漬して設置され、前記円筒状磁性体内面に生成した固体水素を削る回転刃物とからなることを特徴とするスラッシュ水素製造用磁気冷凍装置。A liquid hydrogen container for slush hydrogen production, a cylindrical liquid hydrogen container for auxiliary cooling installed in the gas area of the liquid hydrogen container for slush hydrogen production, and a lower part of the cylindrical liquid hydrogen container for auxiliary cooling Cylindrical guide, a cylindrical liquid hydrogen container for auxiliary refrigeration and a cylindrical magnetic body that is vertically movable along the outer circumference of the cylindrical guide, and superconductivity that applies a magnetic field to the cylindrical magnetic body. A magnet, and a rotating blade that is installed under the cylindrical guide by being immersed in liquid hydrogen in the liquid hydrogen container for producing slush hydrogen and scrapes solid hydrogen generated on the inner surface of the cylindrical magnetic body. A magnetic refrigeration unit for slush hydrogen production. 前記補助寒冷用の円筒状液体水素容器の下部を伝熱面となし、同伝熱面を介して前記円筒状磁性体から熱を奪い、それを同補助寒冷用の円筒状液体水素容器内の液体水素の蒸発潜熱として排熱するように構成した請求項2記載のスラッシュ水素製造用磁気冷凍装置。The lower part of the cylindrical liquid hydrogen container for auxiliary cooling is used as a heat transfer surface, and heat is removed from the cylindrical magnetic body through the heat transfer surface, and the heat is removed from the cylindrical liquid hydrogen container for auxiliary cooling. The magnetic refrigeration system for producing slush hydrogen according to claim 2, wherein the magnetic refrigeration system is configured to discharge heat as latent heat of vaporization of liquid hydrogen.
JP30016596A 1996-11-12 1996-11-12 Slush hydrogen production method and magnetic refrigeration apparatus therefor Expired - Lifetime JP3600386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30016596A JP3600386B2 (en) 1996-11-12 1996-11-12 Slush hydrogen production method and magnetic refrigeration apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30016596A JP3600386B2 (en) 1996-11-12 1996-11-12 Slush hydrogen production method and magnetic refrigeration apparatus therefor

Publications (2)

Publication Number Publication Date
JPH10140168A JPH10140168A (en) 1998-05-26
JP3600386B2 true JP3600386B2 (en) 2004-12-15

Family

ID=17881536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30016596A Expired - Lifetime JP3600386B2 (en) 1996-11-12 1996-11-12 Slush hydrogen production method and magnetic refrigeration apparatus therefor

Country Status (1)

Country Link
JP (1) JP3600386B2 (en)

Also Published As

Publication number Publication date
JPH10140168A (en) 1998-05-26

Similar Documents

Publication Publication Date Title
EP1026755A1 (en) Method and device for cooling superconductor
JP5869423B2 (en) Closed loop precooling method and apparatus for equipment cooled to cryogenic temperature
JP4346037B2 (en) Method and apparatus for producing slush nitrogen, cooling method using slush nitrogen, and apparatus therefor
US4532770A (en) Magnetic refrigerator
KR970052719A (en) Substrate cleaning method and apparatus
JP3600386B2 (en) Slush hydrogen production method and magnetic refrigeration apparatus therefor
US6758046B1 (en) Slush hydrogen production method and apparatus
JP2000205775A (en) Manufacture of clathrate hydrate slurry
JP2004053142A (en) Ice water producer
JP2004353991A (en) Cold device and cold method using carbon dioxide hydrate
Hongfen et al. Vacuum ice-making technology and characteristic analysis
JPH08283001A (en) Production of slush hydrogen and device therefor
JP3440150B2 (en) Ice thermal storage system and device using magnetic fluid
JP3316356B2 (en) Magnetic refrigerator
JP3075395B2 (en) Thermal storage refrigeration system
JP2002162136A (en) Ice making method and ice plant
JPH0794938B2 (en) Ice storage method and equipment for heat storage
JPH04165277A (en) Ice making machinery for accumulating heat
JP2724201B2 (en) Direct contact ice storage method and equipment
JPS572943A (en) Snow melting, heat accumulating and cooling apparatus according to latent heat exchange system
JP2003014353A (en) Cold storage method
AU774967B2 (en) Method and device for cooling superconductor
Sulfredge et al. Void formation in unidirectional freezing from above
SU838271A1 (en) Method of supercooling cryogenic fluid and apparatus for performing it
JPS5855080A (en) Method for obtaining pure water from sea water

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8