JP3600360B2 - Servo valve zero adjustment device - Google Patents

Servo valve zero adjustment device Download PDF

Info

Publication number
JP3600360B2
JP3600360B2 JP09094796A JP9094796A JP3600360B2 JP 3600360 B2 JP3600360 B2 JP 3600360B2 JP 09094796 A JP09094796 A JP 09094796A JP 9094796 A JP9094796 A JP 9094796A JP 3600360 B2 JP3600360 B2 JP 3600360B2
Authority
JP
Japan
Prior art keywords
zero
hydraulic
hydraulic supply
servo
switching valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09094796A
Other languages
Japanese (ja)
Other versions
JPH09280209A (en
Inventor
満哉 内田
修 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP09094796A priority Critical patent/JP3600360B2/en
Publication of JPH09280209A publication Critical patent/JPH09280209A/en
Application granted granted Critical
Publication of JP3600360B2 publication Critical patent/JP3600360B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、大型振動試験装置電気・油圧式加振機や自動車衝突試験機などにおいて使用されるサーボバルブの零調装置に関する。
【0002】
【従来の技術】
図6に従来のサーボバルブの零調装置の概略構成を示す。
【0003】
図6に示すように、マニホールド301には一対のサーボバルブ101,201が並列に設けられている。このサーボバルブ101,201は可動軸102,202に4つのスプール103,203が一体に形成されると共に、軸端部にスプール駆動部104,204及びサーボバルブ零調部105,205が装着されて構成されている。そして、この各サーボバルブ101,201には図示しない油圧源からの油圧供給路106,206(P)が接続されると共に、油圧戻り路107,207(R)が接続されている。また、サーボバルブ101の制御ポートC,Cには油圧給排路108,109が接続される一方、サーボバルブ201の制御ポートC,Cには油圧給排路208,209が接続され、油圧給排路108と油圧給排路208が油圧給排路302として合流し、油圧給排路109と油圧給排路209が油圧給排路303として合流している。
【0004】
この油圧給排路302は加振機304の給排ポートPに接続され、油圧給排路303は給排ポートPに接続されており、各油圧給排路302,303の差圧を検出する差圧検出器305が設けられている。また、加振機304には変位検出器306が装着され、この変位検出器306はサーボ系制御装置307に検出結果を出力するようになっており、このサーボ系制御装置307は入力される指令値とこの変位検出器306からの加振機変位信号に基づいてサーボバルブ101,201のスプール駆動部104,204を駆動制御可能となっている。
【0005】
このように加振機304において、大出力、高応答性の要求に対応するために複数(本実施例では2つ)のサーボバルブ101,201を並列に使用している。ところで、このように並列に使用されたサーボバルブ101,201にあっては、零調整を行う必要がある。この零調整とは、使用油圧に昇圧した状態で、スプールを機械的な零位置まで移動して設定する操作である。
【0006】
一般に、サーボバルブは圧力が取付姿勢などによって単体で零調整が行われても、「零」がずれることがあり、また、使用することにより「零」がずれることもある。そのため、サーボバルブを使用した装置の納入時には、定期点検時などに零調整を行っている。特に、大出力、高応答の加振機を多数同時に駆動する場合、その駆動に必要なエネルギが莫大となるため、アキュムレータなどに蓄圧した油圧源方式をとることが多い。また、この加振機の出力波形歪を小さくするため、サーボバルブのスプールを「零ラップ」にしたものを使用している。そのため、スプールの零調整が正しくできていないと、不要な漏れが発生し、蓄圧していたエネルギだけでは不足してしまう虞がある。
【0007】
例えば、従来のサーボバルブの零調装置において、図6に示すように、サーボ系制御装置307に入力する指令値信号が「零」で、変位検出器306からの加振機変位信号も「零」であって、サーボバルブ101,201のスプール駆動部104,204に駆動制御信号として「零」が入力されたときでも、X軸方向にスプール103が+Δx、スプール203が−Δxだけ機械的にずれていれば、漏れは発生するが、加振機304は静止状態を保っている。
【0008】
このような構造から、従来のサーボバルブの零調装置において、零調整は制御系も含めた状態で加振機304の給排ポートP,Pの差圧を差圧検出器305にょって検出し、この検出結果が零になるようにサーボバルブ零調部105,205によって調整している。
【0009】
【発明が解決しようとする課題】
ところが、上述した従来のサーボバルブの零調装置にあっては、零調整は、制御系を閉じた状態で行っているので、スプール103,203の機械的に「零」位置にあるかどうか確認することはできない。また、各サーボバルブ101,201同士は油圧回路によって接続状態にあるため、お互いに影響をおよぼしあうことによって調整に時間がかかってしまうという問題がある。更に、複数のサーボバルブ101,201を同時に零調整することは困難であり、作業者が熟練者でなければできず、一人の作業者にかかる負担が増加して重労働となってしまうという問題があった。
【0010】
本発明はこのような問題を解決するものであって、零調整作業の確実性及び迅速性、作業性の向上を図ったサーボバルブの零調装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
上述の目的を達成するための第1の発明に係るサーボバルブの零調装置は、油圧機器を作動するために該油圧機器と油圧給排源との間に複数並列に配設されたサーボバルブの零調装置において、前記油圧機器とサーボバルブとの間の油圧給排路に介装されて該油圧給排路を断接する切換弁と、該切換弁とサーボバルブとの間の油圧給排路に装着されて該油圧給排路の差圧を検出する差圧検出器と、該差圧検出器の検出結果に基づいて前記サーボバルブの零調部を制御する零調手段とを具え、前記切換弁により油圧給排路の全てを断状態として、前記零調手段により前記サーボバルブの零調部を制御することを特徴とするものである。
また、上述の目的を達成するための第2の発明に係るサーボバルブの零調装置は、第1の発明に係る零調装置において、前記差圧検出器の検出結果を表示する表示器を具え、前記表示器に表示された差圧により前記サーボバルブの零調部を手動で調整することを特徴とするものである。
更に、上述の目的を達成するための第3の発明に係るサーボバルブの零調装置は、第1または2の発明に係る零調装置において、前記切換弁は、油圧給排路の略垂直方向に延設し、かつ回転自在に支持される切換弁本体を具え、該切換弁本体は油圧給排路の延設方向に開口する油を通す連通孔を有し、前記切換弁は前記切換弁本体の回転により油圧給排路を断接することを特徴とするものである。
【0012】
従って、複数並設されたサーボバルブの零調整を行う場合、切換弁によって油圧給排路を断絶状態とすることで、油圧機器に対してサーボバルブが孤立した状態となり、差圧検出器がサーボバルブからの油圧給排路の差圧を検出しながら、零調制御手段はこの差圧検出器の検出結果に基づいてサーボバルブの零調部を制御する。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。
【0014】
加振機などの油圧機器を作動するために、この油圧機器と油圧給排源との間は複数のサーボバルブが並列に配設されており、本発明のサーボバルブの零調装置は、この複数配設されたサーボバルブに対して零調整を行うものである。即ち、油圧機器と複数のサーボバルブとの間の油圧給排路には、この油圧給排路を断接する切換弁が介装されている。また、油圧機器と複数のサーボバルブとの間のこの油圧給排路には、切換弁に対してサーボバルブの油圧給排路に差圧検出器が装着されており、この差圧検出器によってサーボバルブの油圧供給路と油圧排出路の差圧を検出することができる。そして、零調制御装置は、この差圧検出器の検出結果に基づいてサーボバルブの零調部を制御することができる。
【0015】
従って、複数並設されたサーボバルブの零調整を行う場合、切換弁によって油圧給排路を断絶状態とすることで、油圧機器に対して各サーボバルブが孤立した状態となる。この状態で、差圧検出器がサーボバルブからの油圧供給路と油圧排出路の差圧を検出しながら、零調制御装置はこの差圧検出器の検出結果に基づいてサーボバルブの零調部を制御する。この場合、手動調整操作では、差圧検出器の検出結果を見ながら、検出値が0となるようにサーボバルブの零調部を調整し、自動調整操作では、差圧検出器の検出結果を電気信号として取出し、零調制御装置がこの検出信号に基づいてサーボバルブの零調部を調整する。
【0016】
このように複数並設されたサーボバルブの零調整は、切換弁によって油圧給排路を断絶状態として各サーボバルブを油圧機器から影響を受けない孤立状態として行うことができ、零調整作業を正確に、且つ、迅速に行うことができ、熟練者でなくとも容易に零調整作業性を行うことができる。
【0017】
【実施例】
以下、図面に基づいて本発明の実施例を詳細に説明する。
【0018】
図1に本発明の一実施例に係るサーボバルブの零調装置の概略構成を示し、図2及び図3は本実施例のサーボバルブの零調装置に適用された切換弁の断面であって、図2には切換弁の連通状態、図3には切換弁の遮断状態を示す。
【0019】
本実施例のサーボバルブの零調装置において、図1に示すように、マニホールド31には一対のサーボバルブ11,21が並列に設けられている。このサーボバルブ11,21は可動軸12,22に4つのスプール13,23が一体に形成されると共に、軸端部にスプール駆動部14,24及びサーボバルブ零調部15,25が装着されて構成されている。そして、この各サーボバルブ11,21には図示しない油圧源からの油圧供給路16,26(P)が接続されると共に、油圧戻り路17,27(R)が接続されている。また、サーボバルブ11の制御ポートC,Cには油圧給排路18,19が接続される一方、サーボバルブ21の制御ポートC,Cには油圧給排路28,29が接続され、油圧給排路18と油圧給排路28が油圧給排路32として合流し、油圧給排路19と油圧給排路29が油圧給排路33として合流している。
【0020】
そして、この油圧給排路32は加振機34の給排ポートPに接続され、油圧給排路33は給排ポートPに接続されている。また、サーボバルブ11の制御ポートC,Cに接続された各油圧給排路18,19には、この油圧給排路18,19を断接する切換弁41が介装されている。一方、サーボバルブ21の制御ポートC,Cに接続された各油圧給排路28,29には、この油圧給排路28,29を断接する切換弁51が介装されている。そして、サーボバルブ11と切換弁41との間の油圧給排路18,19には、差圧検出器42が装着され、一方、サーボバルブ21と切換弁51との間の油圧給排路28,29には、差圧検出器52が装着されており、各差圧検出器41,51によってサーボバルブ11,21の油圧供給路と油圧排出路の差圧を検出することができる。
【0021】
この各差圧検出器42,52はそれぞれ零調制御装置43,53に接続されて検出結果が入力されるようになっており、この差圧検出器41,51の検出信号に基づいてサーボバルブ11,21のサーボバルブ零調部15,25を駆動制御し、且つ、スプール駆動部14,24が各スプール13,23を駆動して零調整を行うようになっている。なお、36は加振機34に装着された変位検出器36である。
【0022】
ここで、前述した切換弁41,51について説明するが、両者ともほぼ同様の構造であるため、一方の切換弁41についてのみ説明する。この切換弁41において、図2に示すように、マニホールド31には油圧給排路18,19と交差するように取付孔61が形成され、この取付孔61には円柱状の切換弁本体62が回動自在に嵌合している。そして、この切換弁本体62には油圧給排路18,19を連通する一対の連通孔63,64が形成されると共に、一端部に基板65及び操作つまみ66が一体に固定されており、基板65がボルト67によってマニホールド31に固定することができるようになっている。また、取付孔61と切換弁本体62との間には圧油の漏れを防止するシール部材68が装着されている。更に、取付孔61の先端部には圧抜き用ドレンライン69が形成され、圧油によって取付孔61から切換弁本体62が押し出されるのを防止している。
【0023】
従って、図2に示すように、切換弁41を「開」とすると、油圧給排路18,19は切換弁本体62の連通孔63,64によって連通状態となり、圧油の給排が可能となる。そして、各ボルト67を取り外して操作つまみ66によって切換弁本体62をほぼ90度回動して「閉」とし、この状態で再び各ボルト67によって基板65を固定することで、図3に示すように、油圧給排路18,19は切換弁本体62によって遮断状態となり、圧油の給排が不能となる。
【0024】
本実施例のサーボバルブの零調装置によって零調整を行う場合、図1に示すように、切換弁41,51を遮断状態として油圧給排路18,19,28,29をそれぞれ閉塞状態とすることで、加振機34に対して各サーボバルブ11,21が孤立した状態とする。この状態で、サーボバルブ11,21と切換弁41,51との間の油圧給排路18と19,28と29の各差圧ΔP,ΔPを差圧検出器42,52が検出し、零調制御装置43,53にその検出結果を出力する。零調制御装置43,53はこの差圧検出器42,52の検出結果(差圧ΔP,ΔP)を電気信号として取出し、この電気信号に基づいて各サーボバルブ11,21のサーボバルブ零調部15,25を駆動制御する。即ち、サーボバルブ零調部15,25はスプール駆動部14,24にょって各スプール13,23を駆動し、零調整を行う。
【0025】
なお、零調制御装置43,53は差圧検出器42,52の検出電気信号に基づいてサーボバルブ零調部15,25を自動駆動制御したが、作業者が手動調整操作する場合には、差圧検出器42,52の検出結果としての各差圧ΔP,ΔPを表示する表示器を設け、作業者がこの表示器から差圧検出器42,52の検出値としての差圧ΔP,ΔPを読み取り、この差圧ΔP,ΔPが0となるようにサーボバルブ零調部15,25を手動で調整すればよい。
【0026】
このように複数並設されたサーボバルブ11,21の零調整は、切換弁41,51によって油圧給排路18,19,28,29を断絶状態として各サーボバルブ11,21を加振機34から影響を受けない孤立状態として行うことができ、零調整作業を正確に、且つ、迅速に行うことができ、熟練者でなくとも容易に零調整作業性を行うことができる。
【0027】
なお、本実施例において、各油圧給排路18,19,28,29に対応して各切換弁41,51を設けたが、この構成に限定されるものではない。図4及び図5に別の切換弁の断面を示す。
【0028】
に示すように、切換弁71において、マニホールド31には油圧給排路18,19と交差するようにそれぞれ取付孔72a,72bが形成され、この各取付孔72a,72bには円柱状の切換弁本体73a,73bが回動自在に嵌合している。そして、この切換弁本体73a,73bには油圧給排路18,19を連通する一対の連通孔74a,74bが形成されると共に、一端部に基板75a,75b及び操作つまみ76a,76bが一体に固定されており、基板75a,75bがボルト77a,77bによってマニホールド31に固定されている。また、取付孔72a,72bと切換弁本体73a,73bとの間には圧油の漏れを防止するシール部材78a,78bが装着され、取付孔72a,72bの先端部には圧抜き用ドレンライン79が形成されている。
【0029】
従って、切換弁71において、各操作つまみ76a,76bによって「開」とすると、油圧給排路18,19は各切換弁本体73a,73bの連通孔74a,74bによって連通状態となり、圧油の給排が可能となる。そして、各ボルト77a,77bを取り外し、操作つまみ76a,76bによって切換弁本体73a,73bをほぼ90度回動して「閉」とすることで、油圧給排路18,19は切換弁本体73a,73bによって遮断状態となり、圧油の給排が不能となる。このように切換弁71では、各油圧給排路18,19を独立して開閉することができる。
【0030】
また、図に示すように、切換弁81において、マニホールド31には油圧給排路18,19,28,29と交差するように取付孔82が形成され、この取付孔82には円柱状の切換弁本体83が回動自在に嵌合している。そして、この切換弁本体83には油圧給排路18,19,28,29を連通する連通孔84a,84b,84c,84dが形成されると共に、一端部に基板85及び操作つまみ86が一体に固定されており、基板85がボルト87によってマニホールド31に固定されている。また、取付孔82と切換弁本体83との間には圧油の漏れを防止するシール部材88が装着され、取付孔82の先端部には圧抜き用ドレンライン89が形成されている。
【0031】
従って、切換弁81において、操作つまみ86によって「開」とすると、油圧給排路18,19,28,29は切換弁本体83の連通孔84a,84b,84c,84dによって連通状態となり、圧油の給排が可能となる。そして、各ボルト87を取り外し、操作つまみ86によって切換弁本体83をほぼ90度回動して「閉」とすることで、油圧給排路18,19,28,29は切換弁本体83によって遮断状態となり、圧油の給排が不能となる。このように切換弁81では、各油圧給排路18,19,28,29を同時に開閉することができる。
【0032】
【発明の効果】
以上、実施例を挙げて詳細に説明したように本発明のサーボバルブの零調装置によれば、油圧機器を作動するためにこの油圧機器と油圧給排源との間に複数のサーボバルブを並列に配設し、油圧機器とこのサーボバルブとの間の油圧給排路に油圧給排路を断接する切換弁を介装すると共に、この切換弁とサーボバルブとの間の油圧給排路にこの油圧給排路の差圧を検出する差圧検出器を装着し、零調制御手段がこの差圧検出器の検出結果に基づいてサーボバルブの零調部を制御するようにしたので、切換弁によって油圧給排路を断絶状態として各サーボバルブを油圧機器から影響を受けない孤立状態として零調整作業を行うことができ、この零調整作業を正確に、且つ、迅速に行うことができ、熟練者でなくとも容易に零調整作業性を行うことができる。このように零調整作業の確実性及び迅速性、作業性の向上を図ることができる。
【図面の簡単な説明】
【図1】本発明の一実施例に係るサーボバルブの零調装置の概略構成図である。
【図2】本実施例のサーボバルブの零調装置に適用された切換弁の連通状態を表す断面図である。
【図3】本実施例のサーボバルブの零調装置に適用された切換弁の遮断状態を表す断面図である。
【図4】別の切換弁の断面図である。
【図5】別の切換弁の断面図である。
【図6】従来のサーボバルブの零調装置の概略構成図である。
【符号の説明】
11,21 サーボバルブ
13,23 スプール
14,24 スプール駆動部
15,25 サボバルブ零調部
18,19,28,29 油圧給排路
34 加振機
41,51 切換弁
42,52 差圧検出器
43,53 零調制御部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a zero adjustment device for a servo valve used in a large-scale vibration test device, an electric / hydraulic shaker, an automobile crash test device, and the like.
[0002]
[Prior art]
FIG. 6 shows a schematic configuration of a conventional servo valve zero adjustment device.
[0003]
As shown in FIG. 6, the manifold 301 is provided with a pair of servo valves 101 and 201 in parallel. In the servo valves 101 and 201, four spools 103 and 203 are integrally formed on movable shafts 102 and 202, and spool driving units 104 and 204 and servo valve nulling units 105 and 205 are mounted on shaft ends. It is configured. Then, the hydraulic pressure supply passage 106, 206 (P S) is connected from a hydraulic source (not shown) in the respective servo valves 101 and 201, the hydraulic return channel 107 and 207 (R) is connected. The control ports C 1 and C 2 of the servo valve 101 are connected to hydraulic supply / discharge paths 108 and 109, while the control ports C 1 and C 2 of the servo valve 201 are connected to hydraulic supply / discharge paths 208 and 209. Then, the hydraulic supply / discharge path 108 and the hydraulic supply / discharge path 208 join as a hydraulic supply / discharge path 302, and the hydraulic supply / discharge path 109 and the hydraulic supply / discharge path 209 join as a hydraulic supply / discharge path 303.
[0004]
The hydraulic pressure supply and discharge passage 302 is connected to the supply and discharge port P 1 of the vibrator 304, a hydraulic supply and discharge passage 303 is connected to the supply and discharge port P 2, the pressure difference of the hydraulic supply and discharge passage 302, 303 A differential pressure detector 305 for detecting is provided. Further, a displacement detector 306 is mounted on the vibrator 304, and the displacement detector 306 outputs a detection result to a servo system controller 307. The servo system controller 307 receives an input command. The drive of the spool drive units 104 and 204 of the servo valves 101 and 201 can be controlled based on the value and the shaker displacement signal from the displacement detector 306.
[0005]
As described above, in the vibration exciter 304, a plurality of (two in this embodiment) servo valves 101 and 201 are used in parallel in order to meet demands for high output and high responsiveness. By the way, in the servo valves 101 and 201 used in parallel in this way, it is necessary to perform zero adjustment. The zero adjustment is an operation of setting the spool by moving the spool to a mechanical zero position in a state where the hydraulic pressure is increased.
[0006]
In general, even if the pressure of the servo valve is zero-adjusted by itself depending on the mounting posture or the like, “zero” may be shifted or “zero” may be shifted by use. Therefore, when the equipment using the servo valve is delivered, zero adjustment is performed at the time of periodic inspection. In particular, when a large number of high-output, high-response vibrators are driven simultaneously, the energy required for the driving becomes enormous, and therefore a hydraulic power source system in which pressure is accumulated in an accumulator or the like is often used. Further, in order to reduce the output waveform distortion of the vibrator, a servo valve spool having "zero wrap" is used. Therefore, if the spool is not properly adjusted to zero, unnecessary leakage may occur, and the accumulated energy alone may be insufficient.
[0007]
For example, in the conventional servo valve zero adjustment device, as shown in FIG. 6, the command value signal input to the servo system controller 307 is “zero”, and the shaker displacement signal from the displacement detector 306 is also “zero”. And the spool 103 is + Δx and the spool 203 is −Δx mechanically in the X-axis direction even when “zero” is input as a drive control signal to the spool drive units 104 and 204 of the servo valves 101 and 201. If it is shifted, a leak occurs, but the shaker 304 remains stationary.
[0008]
With such a structure, in the conventional servo valve zero-adjustment device, the zero-adjustment includes the control system and the differential pressure between the supply / discharge ports P 1 and P 2 of the vibrator 304 is applied to the differential pressure detector 305. The servo valve zero adjustment units 105 and 205 adjust the detection result to zero.
[0009]
[Problems to be solved by the invention]
However, in the above-described conventional servo valve zero adjustment device, since the zero adjustment is performed with the control system closed, it is checked whether the spools 103 and 203 are mechanically at the "zero" position. I can't. Further, since the servo valves 101 and 201 are connected to each other by the hydraulic circuit, there is a problem that it takes a long time to perform the adjustment because they affect each other. Furthermore, it is difficult to zero-adjust the plurality of servo valves 101 and 201 at the same time, and only a skilled worker can do so, which increases the burden on one worker and causes heavy labor. there were.
[0010]
An object of the present invention is to solve such a problem, and an object of the present invention is to provide a zero adjustment device for a servo valve which improves reliability, speed, and workability of a zero adjustment operation.
[0011]
[Means for Solving the Problems]
A servo valve zero-adjustment device according to a first aspect of the present invention for achieving the above object includes a plurality of servo valves disposed in parallel between a hydraulic device and a hydraulic supply / discharge source for operating the hydraulic device. A switching valve interposed in a hydraulic supply / discharge path between the hydraulic device and the servo valve for connecting / disconnecting the hydraulic supply / discharge path; and a hydraulic supply / discharge between the switching valve and the servo valve. A differential pressure detector mounted on a road to detect a differential pressure of the hydraulic supply / discharge path, and zero adjustment means for controlling a zero adjustment section of the servo valve based on a detection result of the differential pressure detector, All of the hydraulic supply / discharge paths are cut off by the switching valve, and the zero adjustment section controls the zero adjustment section of the servo valve.
According to a second aspect of the present invention, there is provided a zero-adjustment device for a servo valve according to the first invention, further comprising an indicator for displaying a detection result of the differential pressure detector. The zero adjustment part of the servo valve is manually adjusted by the differential pressure displayed on the display.
Furthermore, a zero-adjustment device for a servo valve according to a third invention for achieving the above object is the zero-adjustment device according to the first or second invention, wherein the switching valve is provided in a substantially vertical direction of a hydraulic supply / discharge passage. A switching valve main body which is extended and is rotatably supported, the switching valve main body has a communication hole through which oil opens in a direction in which the hydraulic supply / discharge passage extends, and the switching valve is provided with the switching valve. The hydraulic supply / discharge path is connected / disconnected by rotation of the main body.
[0012]
Therefore, when performing zero adjustment of a plurality of servo valves arranged in parallel, the switching valve disconnects the hydraulic supply / discharge path, so that the servo valve is isolated from the hydraulic equipment, and the differential pressure detector detects the servo pressure. The zero adjustment control means controls the zero adjustment part of the servo valve based on the detection result of the differential pressure detector while detecting the differential pressure of the hydraulic supply / discharge path from the valve.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0014]
In order to operate hydraulic equipment such as a vibrator, a plurality of servo valves are arranged in parallel between the hydraulic equipment and a hydraulic supply / discharge source. The zero adjustment is performed on a plurality of servo valves. That is, a switching valve for connecting / disconnecting the hydraulic supply / discharge path is interposed in the hydraulic supply / discharge path between the hydraulic device and the plurality of servo valves. Also, in this hydraulic supply / discharge path between the hydraulic device and the plurality of servo valves, a differential pressure detector is mounted on the hydraulic supply / discharge path of the servo valve with respect to the switching valve. The differential pressure between the hydraulic supply path and the hydraulic discharge path of the servo valve can be detected. The zero-tone control device can control the zero-tone part of the servo valve based on the detection result of the differential pressure detector.
[0015]
Therefore, when zero adjustment of a plurality of servo valves arranged in parallel is performed, the switching valve disconnects the hydraulic supply / discharge path, so that each servo valve is isolated from the hydraulic equipment. In this state, while the differential pressure detector detects the differential pressure between the hydraulic pressure supply path and the hydraulic pressure discharge path from the servo valve, the zero-gating control device determines the zero-adjustment part of the servo valve based on the detection result of the differential pressure detector. Control. In this case, in the manual adjustment operation, the zero adjustment portion of the servo valve is adjusted so that the detection value becomes 0 while observing the detection result of the differential pressure detector. In the automatic adjustment operation, the detection result of the differential pressure detector is adjusted. The signal is taken out as an electric signal, and the zero adjustment controller adjusts the zero adjustment part of the servo valve based on the detection signal.
[0016]
In this way, the zero adjustment of the plurality of servo valves arranged in parallel can be performed by switching off the hydraulic supply / discharge path and setting each servo valve to an isolated state unaffected by the hydraulic equipment. In addition, the adjustment can be performed quickly and quickly, and even a non-skilled person can easily perform the zero adjustment workability.
[0017]
【Example】
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0018]
FIG. 1 shows a schematic configuration of a servo valve zero adjustment device according to an embodiment of the present invention. FIGS. 2 and 3 are cross-sectional views of a switching valve applied to the servo valve zero adjustment device of the embodiment. FIG. 2 shows the communication state of the switching valve, and FIG. 3 shows the shut-off state of the switching valve.
[0019]
In the servo valve zero adjustment device of the present embodiment, as shown in FIG. 1, a pair of servo valves 11 and 21 are provided in a manifold 31 in parallel. In the servo valves 11 and 21, four spools 13 and 23 are integrally formed on the movable shafts 12 and 22, and spool driving units 14 and 24 and servo valve nulling units 15 and 25 are mounted on shaft ends. It is configured. Then, the hydraulic pressure supply passage 16, 26 (P S) is connected from a hydraulic source (not shown) in the respective servo valves 11 and 21, the hydraulic return channel 17 and 27 (R) is connected. The control ports C 1 , C 2 of the servo valve 11 are connected to hydraulic supply / discharge paths 18, 19, while the control ports C 1 , C 2 of the servo valve 21 are connected to hydraulic supply / discharge paths 28, 29. The hydraulic supply / discharge path 18 and the hydraulic supply / discharge path 28 join as a hydraulic supply / discharge path 32, and the hydraulic supply / discharge path 19 and the hydraulic supply / discharge path 29 join as a hydraulic supply / discharge path 33.
[0020]
Then, the hydraulic supply and discharge passage 32 is connected to the supply and discharge port P 1 of the vibrator 34, a hydraulic supply and discharge passage 33 is connected to the supply and discharge port P 2. Further, in the hydraulic supply and discharge passage 18, 19 connected to the control port C 1, C 2 of the servo valve 11, switching valve 41 disconnects the hydraulic supply and discharge passage 18, 19 is interposed. On the other hand, to the hydraulic supply and discharge passage 28 and 29 connected to the control port C 1, C 2 of the servo valve 21, switching valve 51 which disconnects the hydraulic supply and discharge passage 28, 29 is interposed. A differential pressure detector 42 is mounted on the hydraulic supply / discharge passages 18 and 19 between the servo valve 11 and the switching valve 41, while the hydraulic supply / discharge passage 28 between the servo valve 21 and the switching valve 51 is provided. , 29 are provided with a differential pressure detector 52, and the differential pressure detectors 41, 51 can detect the differential pressure between the hydraulic supply path and the hydraulic discharge path of the servo valves 11, 21.
[0021]
These differential pressure detectors 42 and 52 are connected to zero-tone control devices 43 and 53, respectively, and input the detection results. Based on the detection signals of the differential pressure detectors 41 and 51, servo valves are provided. The drive of the servo valve zero-adjustment units 15 and 25 is controlled, and the spool drive units 14 and 24 drive the spools 13 and 23 to perform zero adjustment. Reference numeral 36 denotes a displacement detector 36 mounted on the vibrator 34.
[0022]
Here, the above-described switching valves 41 and 51 will be described. However, since both have almost the same structure, only one of the switching valves 41 will be described. In the switching valve 41, as shown in FIG. 2, a mounting hole 61 is formed in the manifold 31 so as to intersect the hydraulic supply / discharge passages 18, 19, and a cylindrical switching valve body 62 is formed in the mounting hole 61. It is fitted rotatably. The switching valve body 62 has a pair of communication holes 63 and 64 for communicating the hydraulic supply / discharge passages 18 and 19, and a substrate 65 and an operation knob 66 are integrally fixed at one end thereof. 65 can be fixed to the manifold 31 by bolts 67. A seal member 68 for preventing leakage of pressure oil is mounted between the mounting hole 61 and the switching valve main body 62. Further, a drain line 69 for depressurizing is formed at the tip end of the mounting hole 61 to prevent the switching valve main body 62 from being pushed out of the mounting hole 61 by the pressure oil.
[0023]
Therefore, as shown in FIG. 2, when the switching valve 41 is opened, the hydraulic supply / discharge passages 18 and 19 are communicated by the communication holes 63 and 64 of the switching valve main body 62, and the supply and discharge of the pressure oil can be performed. Become. Then, by removing each bolt 67 and turning the switching valve main body 62 approximately 90 degrees by the operation knob 66 to “close”, and fixing the substrate 65 again by each bolt 67 in this state, as shown in FIG. Meanwhile, the hydraulic supply / discharge passages 18 and 19 are shut off by the switching valve main body 62, and supply / discharge of pressure oil is disabled.
[0024]
When zero adjustment is performed by the servo valve zero adjustment device of the present embodiment, as shown in FIG. 1, the switching valves 41 and 51 are closed and the hydraulic supply / discharge passages 18, 19, 28 and 29 are closed. Accordingly, the servo valves 11 and 21 are isolated from the vibrator 34. In this state, the differential pressure detectors 42 and 52 detect the differential pressures ΔP 1 and ΔP 2 of the hydraulic supply / discharge passages 18 and 19, 28 and 29 between the servo valves 11 and 21 and the switching valves 41 and 51. , And outputs the detection results to the zero-tone control devices 43 and 53. The zero-tone control devices 43 and 53 take out the detection results (differential pressures ΔP 1 and ΔP 2 ) of the differential pressure detectors 42 and 52 as electric signals, and based on the electric signals, set the servo valve zeros of the servo valves 11 and 21 to zero. The control units 15 and 25 are driven and controlled. That is, the servo valve zero adjusting units 15 and 25 drive the respective spools 13 and 23 by the spool driving units 14 and 24 to perform zero adjustment.
[0025]
Although the zero-tone control devices 43 and 53 automatically drive-control the servo valve zero-tone parts 15 and 25 based on the electric signals detected by the differential pressure detectors 42 and 52, when the operator performs a manual adjustment operation, An indicator is provided for displaying the differential pressures ΔP 1 , ΔP 2 as the detection results of the differential pressure detectors 42, 52, and the operator can use the display to display the differential pressure ΔP as a detection value of the differential pressure detectors 42, 52. 1 and ΔP 2 , and the servo valve zero-adjusting units 15 and 25 may be manually adjusted so that the differential pressures ΔP 1 and ΔP 2 become zero.
[0026]
The zero adjustment of the plurality of servo valves 11 and 21 arranged in this manner is performed by setting the hydraulic supply / discharge passages 18, 19, 28 and 29 to the disconnected state by the switching valves 41 and 51 and setting the respective servo valves 11 and 21 to the vibrator 34. It is possible to perform the zero adjustment operation accurately and promptly, and it is possible to easily perform the zero adjustment work even if it is not an expert.
[0027]
In this embodiment, the switching valves 41, 51 are provided corresponding to the hydraulic supply / discharge paths 18, 19, 28, 29, but the invention is not limited to this configuration. 4 and 5 show cross sections of another switching valve.
[0028]
As shown in FIG. 4 , in the switching valve 71, mounting holes 72a and 72b are respectively formed in the manifold 31 so as to intersect the hydraulic supply and discharge passages 18 and 19, and the mounting holes 72a and 72b are formed in cylindrical shapes. The switching valve bodies 73a, 73b are rotatably fitted. The switching valve bodies 73a and 73b are formed with a pair of communication holes 74a and 74b that communicate the hydraulic supply and discharge passages 18 and 19, and have substrates 75a and 75b and operation knobs 76a and 76b integrally formed at one end. The substrates 75a and 75b are fixed to the manifold 31 by bolts 77a and 77b. Seal members 78a and 78b for preventing leakage of pressure oil are mounted between the mounting holes 72a and 72b and the switching valve bodies 73a and 73b, and a pressure release drain line is provided at the tip of the mounting holes 72a and 72b. 79 are formed.
[0029]
Therefore, when the operation knobs 76a and 76b of the switching valve 71 are opened, the hydraulic supply / discharge passages 18 and 19 are communicated by the communication holes 74a and 74b of the switching valve bodies 73a and 73b, and the supply of the pressure oil is performed. Expulsion becomes possible. Then, the bolts 77a, 77b are removed, and the switching valve bodies 73a, 73b are turned approximately 90 degrees by the operation knobs 76a, 76b to "close", whereby the hydraulic supply / discharge paths 18, 19 are connected to the switching valve body 73a. , 73b, and the supply and discharge of the pressure oil is disabled. In this way, in the switching valve 71, each of the hydraulic supply / discharge passages 18, 19 can be opened and closed independently.
[0030]
As shown in FIG. 5 , in the switching valve 81, a mounting hole 82 is formed in the manifold 31 so as to intersect the hydraulic supply / discharge passages 18, 19, 28, 29, and the mounting hole 82 has a cylindrical shape. The switching valve body 83 is rotatably fitted. The switching valve body 83 has communication holes 84a, 84b, 84c, 84d communicating with the hydraulic supply / discharge passages 18, 19, 28, 29, and a substrate 85 and an operation knob 86 at one end. The board 85 is fixed to the manifold 31 by bolts 87. Further, a seal member 88 for preventing leakage of pressure oil is mounted between the mounting hole 82 and the switching valve main body 83, and a pressure release drain line 89 is formed at a tip end of the mounting hole 82.
[0031]
Therefore, when the switching knob 81 is opened by the operation knob 86, the hydraulic supply / discharge passages 18, 19, 28, 29 are communicated by the communication holes 84a, 84b, 84c, 84d of the switching valve body 83, and the hydraulic oil Can be supplied and discharged. Then, by removing each bolt 87 and turning the switching valve main body 83 approximately 90 degrees by the operation knob 86 to “close”, the hydraulic supply / discharge passages 18, 19, 28 and 29 are shut off by the switching valve main body 83. It becomes a state, and supply and discharge of pressure oil become impossible. In this way, the switching valve 81 can simultaneously open and close the hydraulic supply / discharge passages 18, 19, 28, and 29.
[0032]
【The invention's effect】
As described above in detail with reference to the embodiments, according to the servo valve zero adjustment device of the present invention, a plurality of servo valves are provided between the hydraulic device and the hydraulic supply / discharge source to operate the hydraulic device. A switching valve, which is disposed in parallel, connects and disconnects the hydraulic supply / discharge path to / from a hydraulic supply / discharge path between the hydraulic device and the servo valve, and a hydraulic supply / discharge path between the switching valve and the servo valve. Since the differential pressure detector for detecting the differential pressure of the hydraulic supply / discharge path is mounted on the hydraulic pressure supply / discharge path, and the zero adjustment control means controls the zero adjustment portion of the servo valve based on the detection result of the differential pressure detector, With the switching valve, the hydraulic supply / discharge path is disconnected and each servo valve can be zero-adjusted as an isolated state unaffected by hydraulic equipment. This zero-adjustment operation can be performed accurately and quickly. It is easy for non-experts to perform zero adjustment workability. Can. In this way, the reliability, speed, and workability of the zero adjustment operation can be improved.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a servo valve zero adjustment device according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a communication state of a switching valve applied to the servo valve zero-adjustment device of the present embodiment.
FIG. 3 is a sectional view showing a shut-off state of a switching valve applied to the servo valve zero-adjustment device of the embodiment.
FIG. 4 is a sectional view of another switching valve.
FIG. 5 is a sectional view of another switching valve.
FIG. 6 is a schematic configuration diagram of a conventional zero adjustment device for a servo valve.
[Explanation of symbols]
11, 21 Servo valve 13, 23 Spool 14, 24 Spool drive unit 15, 25 Sabo valve zero adjustment unit 18, 19, 28, 29 Hydraulic supply / discharge path 34 Vibrators 41, 51 Switching valves 42, 52 Differential pressure detector 43 , 53 Zero-tone controller

Claims (3)

油圧機器を作動するために該油圧機器と油圧給排源との間に複数並列に配設されたサーボバルブの零調装置において、前記油圧機器とサーボバルブとの間の油圧給排路に介装されて該油圧給排路を断接する切換弁と、該切換弁とサーボバルブとの間の油圧給排路に装着されて該油圧給排路の差圧を検出する差圧検出器と、該差圧検出器の検出結果に基づいて前記サーボバルブの零調部を制御する零調手段とを具え、前記切換弁により油圧給排路の全てを断状態として、前記零調手段により前記サーボバルブの零調部を制御することを特徴とするサーボバルブの零調装置。 A plurality of servo valve zero-adjustment devices arranged in parallel between a hydraulic device and a hydraulic supply / discharge source to operate the hydraulic device, the hydraulic device including a hydraulic supply / discharge passage between the hydraulic device and the servo valve. A switching valve mounted on and off the hydraulic supply / discharge path, a differential pressure detector mounted on the hydraulic supply / discharge path between the switching valve and the servo valve to detect a differential pressure of the hydraulic supply / discharge path, Zero adjustment means for controlling a zero adjustment part of the servo valve based on the detection result of the differential pressure detector, wherein the switching valve shuts off all hydraulic supply / discharge paths, and the servo adjustment is performed by the zero adjustment means. A zero adjustment device for a servo valve, which controls a zero adjustment part of the valve. 請求項1に記載の零調装置において、前記差圧検出器の検出結果を表示する表示器を具え、前記表示器に表示された差圧により前記サーボバルブの零調部を手動で調整することを特徴とするサーボバルブの零調装置。2. The zero-adjustment device according to claim 1, further comprising a display for displaying a detection result of the differential pressure detector, wherein the zero-adjustment part of the servo valve is manually adjusted by the differential pressure displayed on the display. A zero adjustment device for a servo valve. 請求項1または2に記載の零調装置において、前記切換弁は、油圧給排路の略垂直方向に延設し、かつ回転自在に支持される切換弁本体を具え、該切換弁本体は油圧給排路の延設方向に開口する油を通す連通孔を有し、前記切換弁は前記切換弁本体の回転により油圧給排路を断接することを特徴とするサーボバルブの零調装置。3. The zero-adjustment device according to claim 1, wherein the switching valve includes a switching valve main body that extends in a substantially vertical direction of a hydraulic supply / discharge passage and is rotatably supported. A servo valve zero adjustment device, comprising: a communication hole through which oil is opened in the direction in which the supply / discharge path extends, and wherein the switching valve disconnects / connects a hydraulic supply / discharge path by rotation of the switching valve body.
JP09094796A 1996-04-12 1996-04-12 Servo valve zero adjustment device Expired - Lifetime JP3600360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09094796A JP3600360B2 (en) 1996-04-12 1996-04-12 Servo valve zero adjustment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09094796A JP3600360B2 (en) 1996-04-12 1996-04-12 Servo valve zero adjustment device

Publications (2)

Publication Number Publication Date
JPH09280209A JPH09280209A (en) 1997-10-28
JP3600360B2 true JP3600360B2 (en) 2004-12-15

Family

ID=14012671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09094796A Expired - Lifetime JP3600360B2 (en) 1996-04-12 1996-04-12 Servo valve zero adjustment device

Country Status (1)

Country Link
JP (1) JP3600360B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104568450B (en) * 2013-10-18 2017-10-17 北京精密机电控制设备研究所 Zero-bit adjusting means is used in the test of torque-motor magnetic parameter
CN109533384B (en) * 2018-11-02 2020-09-18 北京航天控制仪器研究所 Rapid zero setting method for electric steering engine
CN109944838B (en) * 2019-04-09 2020-05-29 鞍钢股份有限公司 Servo valve mechanical zero on-line zero setting method

Also Published As

Publication number Publication date
JPH09280209A (en) 1997-10-28

Similar Documents

Publication Publication Date Title
JP4825765B2 (en) Backhoe hydraulic system
JP4281714B2 (en) Hydraulic circuit of work machine
EP2733362A1 (en) Hydraulic actuator damping control system for construction machinery
US9174670B2 (en) Hydraulic steering and method for detecting a valve position
WO2016114556A1 (en) Control system for construction machine
JPH082269A (en) Travel control circuit for hydraulic drive type traveling device
JP3600360B2 (en) Servo valve zero adjustment device
EP2610409A1 (en) Device for controlling construction equipment
JP4703796B2 (en) Method for adjusting hydraulic pump in hydraulic transmission
JP2000046015A (en) Self-diagnostic device of hydraulic circuit
JP2001180508A (en) Power steering valve
JP2000193563A (en) Hydraulic motor testing device
JP3844167B2 (en) Servo valve
JP2932912B2 (en) Fluid pressure control device for transfer in four-wheel drive vehicles
EP2799692B1 (en) Engine control method of construction machine
JP3399536B2 (en) Valve assembly as connection unit for differential pressure and measurement transducers
JP2002295405A (en) Hydraulic controller, construction machine, and hydraulic shovel
WO2004069633A1 (en) Fully hydraulic steering
JPH0544517A (en) Working machine stop device
KR100440750B1 (en) Valve opening and shutting monitering system
JP2612782B2 (en) Crushing equipment
JPH08200308A (en) Hydraulic circuit
JP2001228047A (en) Volume-adjusting method in air leak testing device and air leak testing device having volume adjusting function
JP3749413B2 (en) Starting method of material test apparatus and material test apparatus
JPH05280071A (en) Confluence device for construction device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 9

EXPY Cancellation because of completion of term