JP3599553B2 - Groove processing method - Google Patents

Groove processing method Download PDF

Info

Publication number
JP3599553B2
JP3599553B2 JP1699198A JP1699198A JP3599553B2 JP 3599553 B2 JP3599553 B2 JP 3599553B2 JP 1699198 A JP1699198 A JP 1699198A JP 1699198 A JP1699198 A JP 1699198A JP 3599553 B2 JP3599553 B2 JP 3599553B2
Authority
JP
Japan
Prior art keywords
groove
cup
grindstone
side wall
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1699198A
Other languages
Japanese (ja)
Other versions
JPH11207590A (en
Inventor
敦 篠▲崎▼
孝 繁松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP1699198A priority Critical patent/JP3599553B2/en
Publication of JPH11207590A publication Critical patent/JPH11207590A/en
Application granted granted Critical
Publication of JP3599553B2 publication Critical patent/JP3599553B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、光部品や光部品を作製するのに要する金型を製作する上で必要とされる溝の加工法に関するものである。
【0002】
【従来の技術】
光通信分野で使用されている多心光コネクタは、ほとんどがプラスチック成形により製造されている。この光コネクタは光ファイバの接続に使用されるもので、低接続損失を実現するために、光ファイバのコア同士を精度良く突き合わせる必要がある。このため、光コネクタの成形用金型は高い加工精度が要求される。特に、この金型の光ファイバおよびガイドピンの挿入孔を形成する部分は、成形されたコネクタの特性を大きく左右するため、高い加工精度が要求される。
【0003】
この金型は、図5に示すように、ガイドピン挿入孔成形ピン10とファイバ挿入孔成形ピン11を、V型溝金型部材9のV型溝10a、11aの両斜面の2点と、矩形もしくは多角形の溝10bを有する押さえ金型部材8の上面の1点の計3点で保持して構成され、高精度に位置決めされたガイドピン挿入孔とファイバ挿入孔を有する光コネクタを成形する。
この押さえ金型部材8は、成形誤差などを考慮して、0.1μm以下の加工精度で加工されていることが望ましい。また、金型部材8、9は耐摩耗性などを考慮した材料(例えば超硬材料)で構成され、ダイヤモンド砥石により研削加工される。
【0004】
押さえ金型部材8の加工の方法は、図6に示すように、先ず被加工部材3を平砥石5で平面研削して、高さHを所定の寸法高さHに加工する(図6(a))。次いで、溝形状に合わせて高精度に成形された総型砥石6を使用し、その砥石6の回転形状をそのまま転写する総型研削法(図6(b))、もしくは溝幅より狭い薄刃砥石7を用いて所定の寸法になるように微少ピッチで砥石7を送りながら加工を行うならい研削法(図6(c))などの加工方法で、所定寸法の深さに溝を加工する。このように、平面と溝の加工を砥石、加工機を変えて、2工程で行う。
【0005】
【発明が解決しようとする課題】
しかしながら、上述の加工法には次のような問題があった。即ち、
1)総型研削法では、高精度に成形された総型砥石を使用しても、回転する総型砥石中の砥粒が断続的に加工面に当たり、研削するため、脆性破壊が起こり(表面がボロボロになるように加工される)、表面粗さがよくない。
また、総型研削法では、砥石の回転形状を転写する加工のため、砥石の形状維持が重要である。従って、所定の精度に加工するためには、頻繁に砥石の形状調整を行う必要があり、作業能率がよくない。
2)ならい研削法では、回転する砥石を微小ピッチで送るため、加工面は送りピッチに合った微少なうねりを有する面となる。また、微小ピッチの送りで加工を行うため、加工時間が長くなるので、砥石の回転による発熱などによる加工環境の温度変化の影響により、加工精度に限界が生じる。
3)さらに、平面加工と溝加工の2工程に分けて加工をしているため、再セット時の取り付けなどで誤差が生じ易く、加工精度に限界が生じる。
【0006】
本発明は、光ファイバを押さえるための溝を有する光部品のファイバ押さえ部材や、光コネクタ成形用金型の押さえ金型部材などを精度よく加工することができる、溝の加工法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は上記問題点を解決すべくなされたもので、外径が被加工部材に加工する溝の幅に対して十分大きく、かつ、幅が前記溝の幅より狭い円環状の開口部を有するカップ型砥石を用い、
被加工部材の所定位置にカップ型砥石により円弧状溝を形成しながら、被加工部材とカップ型砥石を加工する溝に平行になるように相対的に移動させて、前記円弧状溝の外側の側壁を直線状にして第1側壁を形成し、
次いで被加工部材とカップ型砥石を相対的に移動させて、カップ型砥石の外面が前記加工する溝の他方の側壁に接触し、カップ型砥石の内面が前記第1側壁に接触しないようにして、第1側壁と同様に第2側壁を形成し、第1および第2側壁からなる直線状の溝を形成することを特徴とする溝の加工法である。
ここで、カップ型砥石の『外径が被加工部材に加工する溝の幅に対して十分大きい』という意味は、図2(a)に示すように、カップ型砥石の曲率を有する研削部分が溝の長さL内で溝の幅W内に納まるように、十分に曲率が小さい、言い換えると、外径が大きいということである。
【0008】
本発明によれば、総型研削とは異なり、回転する砥石中の砥粒が回転面内で連続的に加工表面を研削するため、切削加工のように表面を剥いだ状態になり、表面粗さが優れた加工面が得られる。また、カップ型砥石の形状管理は容易で、砥石の形状調整間隔は長くなり、高能率で作業することができる。
【0009】
また、円環状の開口部を有するカップ型砥石で溝の加工を行うと、曲率を有する溝が形成される。本発明によれば、図1に示すように、幅Wが前記溝の幅Wより狭い円環状の開口部を有するカップ型砥石2を用いる。そして、図2(a)に示すように、カップ型砥石2の回転軸を前記溝に平行にAD端からBC端に移動させながら、カップ型砥石2を回転させ、被加工部材3を研削すると、砥石2の外周部が研削した部分の側壁(砥石外周軌跡)は直線状になり、加工しようとする溝の片側の側壁(第1側壁)を直線状に形成することができる。但し、溝の他の側は移動したカップ型砥石の内周部の軌跡に相当する曲線状になっている。なお、カップ型砥石2は、外径2Rが加工する溝の幅Wに対して十分大きく、かつ、幅Wが前記溝の幅Wより狭い円環状の開口部を有するため、図2(a)に示すように、研削部分が溝の幅Wより広くなることはない。
次いで、図2(a)から図2(b)に示すように、次いで被加工部材とカップ型砥石を相対的に移動させて、カップ型砥石の外面が前記加工する溝の他方の側壁に接触し、カップ型砥石の内面が前記第1側壁に接触しないようにして、第1側壁と同様に溝の他の側の側壁(第2側壁)を直線状に形成することができる。
このように、2回の研削により、第1側壁と第2側壁からなる直線状の溝を形成することができる。
【0010】
さらに、一度セットすれば、カップ型砥石で被加工部材の上面も加工することができるので、上面と溝を、被加工部材や砥石を再取り付けをすることなく、精度よく加工することができる。
【0011】
【発明の実施の形態】
以下、図面に基づいて本発明の実施の形態を詳細に説明する。
(実施形態1)
図1は、本発明による溝の加工方法の一実施形態の説明図である。本実施形態は、長さL、幅Wの2本の直線状の溝α、βを平行に間隔Pで加工する。その工程は以下のとおりである。即ち、
1)図1において、外径2R、幅Wのカップ型砥石2を、X・Y・Zの3軸方向の位置をNC制御する加工機主軸1に取り付ける。また、被加工部材3を180゜の回転位置決めをすることができる反転テーブル4の上に固定する。
2)次いで、カップ型砥石2で被加工部材3の上面を所定の高さ寸法Hに加工する。
3)その後、図3(a)〜(d)に示す方法で溝加工を行う。
先ず、上面加工終了位置より、カップ型砥石2のZ方向(高さ方向)の位置を変えず、カップ型砥石2をY方向に移動し、カップ型砥石2の外周が溝αの外壁に位置するように、カップ型砥石2を位置決めする。
次いで、カップ型砥石2をZ方向に任意の量を切り込んで回転させ、X方向(溝の方向)に距離L送り、溝αを形成する(図3(a))。
4)次にZ方向の位置を保持したまま、砥石2を所定距離PだけY方向に移動し、もう一方の溝βの内壁に砥石2の外周を位置決めする。この位置でX方向に距離L送りをかけることによりもう一方の溝βの内壁を形成する(図3(b))。
このようにして形成された溝α、βは、図2(a)に示すように、片側の側壁は直線で、もう片側の側壁は曲率を有する形状になっている。
5)次いで、反転テーブル4を180゜回転後、同様に溝βの外壁を加工し(図3(c))、また、カップ型砥石2を所定距離PだけY方向に移動して、溝αの内壁を加工する(図3(d))。
【0012】
この一連の溝加工をNCプログラムで行い、加工と測定を繰り返し、所定の寸法になるまで加工を行うことにより、表面粗さ、真直度および深さ精度に優れた溝の加工を容易に行える。また、カップ型砥石や加工機の交換がないので、再セットによる取り付け誤差はなくなる。また、一回の加工時間が非常に短いので、加工環境の熱の影響を受けにくいので、高精度の加工が可能になる。
【0013】
なお、カップ型砥石の形状(外径、幅)により、加工する溝の幅、長さは制約される。ただし、使用するカップ砥石の形状としては、外径は大きいほど、砥石内周の研削壁が直線状に近くなるので好ましく、幅は少なくとも加工する溝の幅以下にする。
例えば、カップ型砥石の外径2Rを100mm、幅Wを0.11mmとして、幅Wが0.3mmの溝を形成する。この場合、砥石の送り距離が4.93mmまでは、送り距離と加工される溝の長さを等しくすることができる。しかしながら、送り距離が4.93mmより大きくなると、図2(a)において、カップ型砥石内周軌跡が溝のDC側面を越えてしまう。従って、加工溝長さは最大4.93mmとなる。
【0014】
(実施形態2)
前記実施形態では被加工部材を固定したテーブルを180゜回転することにより溝の両側壁を研削して溝加工を行ったが、本発明は前記実施形態に限定されることはない。
例えば、図3において、被加工部材3を回転させることなく、カップ型砥石2をY方向に移動することにより溝を形成することもできる。以下に、図4(a)〜(d)を用いて、その加工方法を説明する。即ち、
1)先ず、外径2Rのカップ型砥石2を使用して、幅Wの溝αの外壁を砥石の外周部により加工する(図4(a))。
2)次いで、二つの溝α、β間の距離Pだけカップ型砥石2をY方向、右方に移動し、溝βの内壁を加工する(図4(b))。
3)次いで、カップ型砥石外径2Rから加工する溝の幅Wを引いた2R−Wの距離だけ砥石2をY方向、左方にオフセットし、溝βの外側を加工する(図4(c))。
4)最後に、カップ型砥石2を距離PだけY方向、左方に移動し、溝αの内側を加工する(図4(d))。
【0015】
上記実施形態は、MTコネクタ用金型の押さえ部材に相当する加工例であるが、本発明はこれに限定されず、光部品の構成部材、例えば、図7に示すファイバアレイなどの光部品の光ファイバ固定用部材12の加工にも適用できる。なお、図7において、13はV溝基板、14は光ファイバである。
【0016】
【発明の効果】
本発明によれば、表面状態のよい直線状の溝を作業性よく加工することでき、また、平面加工と溝加工を一度のセットで行うことができるので、加工精度が向上するという優れた効果がある。本発明は、光ファイバを押さえるための溝を有する光部品のファイバ押さえ部材や、光コネクタ成形用金型の押さえ金型部材などを精度よく加工するために、特に有効なものである。
【図面の簡単な説明】
【図1】本発明に係る溝の加工方法の一実施形態の説明図である。
【図2】(a)、(b)は、本発明に係る溝の加工方法の原理説明図である。
【図3】(a)〜(d)は、図1に示した実施形態の加工工程の説明図である。
【図4】(a)〜(d)は、図1に示した実施形態の他の加工工程の説明図である。
【図5】光コネクタ成形用金型の断面図である。
【図6】(a)〜(c)は、光コネクタ成形用金型の押さえ金型部材の加工法を説明する図である。
【図7】光部品の断面図である。
【符号の説明】
1 加工機主軸
2 カップ型砥石
3 被加工部材
4 反転テーブル
α、β 溝
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical component and a method of processing a groove required for manufacturing a mold required for manufacturing the optical component.
[0002]
[Prior art]
Most multi-core optical connectors used in the optical communication field are manufactured by plastic molding. This optical connector is used for connecting an optical fiber, and it is necessary to accurately butt the cores of the optical fiber in order to realize a low connection loss. For this reason, a molding die for an optical connector requires high processing accuracy. In particular, the portion of the mold in which the optical fiber and the guide pin insertion hole are formed greatly affects the characteristics of the molded connector, so that high processing accuracy is required.
[0003]
As shown in FIG. 5, the mold includes a guide pin insertion hole forming pin 10 and a fiber insertion hole forming pin 11, and two points on both slopes of the V-shaped grooves 10a and 11a of the V-shaped groove mold member 9. An optical connector having a guide pin insertion hole and a fiber insertion hole that is configured to be held at three points, one point on the upper surface of the holding die member 8 having the rectangular or polygonal groove 10b, and that is positioned with high precision. I do.
It is desirable that the pressing die member 8 is processed with a processing accuracy of 0.1 μm or less in consideration of molding errors and the like. The mold members 8 and 9 are made of a material (e.g., a super hard material) in consideration of wear resistance and the like, and are ground by a diamond grindstone.
[0004]
The method of working of the presser mold member 8, as shown in FIG. 6, firstly the workpiece 3 by surface grinding a flat grindstone 5 to process the height H 1 to a predetermined size height H 2 (FIG. 6 (a)). Next, a full-type grinding method (FIG. 6 (b)), in which a full-type grindstone 6 molded with high precision according to the groove shape is used, and the rotational shape of the grindstone 6 is directly transferred, or a thin blade whetstone narrower than the groove width. A groove is machined to a depth of a predetermined size by a processing method such as a grinding method (FIG. 6C) in which the grindstone 7 is processed while being sent at a fine pitch so as to have a predetermined size by using the 7. As described above, the processing of the plane and the groove is performed in two steps by changing the grindstone and the processing machine.
[0005]
[Problems to be solved by the invention]
However, the above-mentioned processing method has the following problems. That is,
1) In the die shaping method, even if a high-precision die wheel is used, brittle fracture occurs because the abrasive grains in the rotating die wheel intermittently hit the work surface and grind. Is processed to be tattered), and the surface roughness is not good.
Also, in the die grinding method, it is important to maintain the shape of the grindstone for the process of transferring the rotational shape of the grindstone. Therefore, in order to perform processing with a predetermined accuracy, it is necessary to frequently adjust the shape of the grindstone, and the working efficiency is not good.
2) In the profile grinding method, since the rotating grindstone is fed at a minute pitch, the processed surface has a slight undulation corresponding to the feed pitch. Further, since the processing is performed by feeding at a fine pitch, the processing time becomes long, and thus the processing accuracy is limited due to the influence of the temperature change of the processing environment due to the heat generated by the rotation of the grindstone.
3) Further, since the processing is performed in two steps of the flat processing and the groove processing, an error is apt to occur in mounting at the time of resetting, and the processing accuracy is limited.
[0006]
An object of the present invention is to provide a groove processing method capable of accurately processing a fiber pressing member of an optical component having a groove for holding an optical fiber and a pressing mold member of an optical connector molding die. With the goal.
[0007]
[Means for Solving the Problems]
The present invention has been made to solve the above problems, and has an annular opening whose outer diameter is sufficiently large with respect to the width of a groove to be machined on a workpiece, and whose width is smaller than the width of the groove. Using a cup-shaped whetstone,
While forming an arc-shaped groove with a cup-shaped grindstone at a predetermined position on the workpiece, the workpiece and the workpiece are relatively moved so as to be parallel to the groove for processing the cup-shaped grindstone. Forming a first side wall by straightening the side wall;
Next, the workpiece and the cup-shaped grindstone are relatively moved so that the outer surface of the cup-shaped grindstone contacts the other side wall of the groove to be processed, and the inner surface of the cup-shaped grindstone does not contact the first side wall. , A second side wall is formed in the same manner as the first side wall, and a linear groove formed by the first and second side walls is formed.
Here, the meaning that “the outer diameter is sufficiently larger than the width of the groove to be machined on the workpiece” of the cup-shaped grindstone means that the grinding portion having the curvature of the cup-shaped grindstone has a curvature as shown in FIG. The curvature is small enough to fit within the groove width W within the groove length L, in other words, the outer diameter is large.
[0008]
According to the present invention, unlike the form grinding, the abrasive grains in the rotating grindstone continuously grind the processing surface within the rotating surface, so that the surface is stripped like a cutting process, and the surface roughness is reduced. A machined surface with excellent properties can be obtained. Further, the shape of the cup-shaped grindstone can be easily controlled, the shape-adjustment interval of the grindstone becomes long, and the work can be performed with high efficiency.
[0009]
Further, when the groove is machined with a cup-shaped grindstone having an annular opening, a groove having a curvature is formed. According to the present invention, as shown in FIG. 1, using a cup-shaped grinding wheel 2 which is the width W 0 having openings narrower annular than the width W of the groove. Then, as shown in FIG. 2A, the cup-type grindstone 2 is rotated while the rotation axis of the cup-type grindstone 2 is moved from the AD end to the BC end in parallel with the groove, and the workpiece 3 is ground. The side wall (grinding wheel outer peripheral trajectory) of the portion where the outer peripheral portion of the grindstone 2 is ground becomes linear, and the side wall (first side wall) on one side of the groove to be processed can be formed linearly. However, the other side of the groove has a curved shape corresponding to the locus of the inner peripheral portion of the moved cup-shaped grindstone. Incidentally, the cup-shaped grinding wheel 2 is sufficiently large with respect to the width W of the groove the outer diameter 2R is processed, and, since the width W 0 having openings narrower annular than the width W of the groove, FIG. 2 (a ), The ground portion does not become wider than the width W of the groove.
Next, as shown in FIGS. 2 (a) to 2 (b), the workpiece and the cup-shaped grindstone are relatively moved so that the outer surface of the cup-shaped grindstone contacts the other side wall of the groove to be machined. Then, similarly to the first side wall, the side wall (the second side wall) on the other side of the groove can be formed linearly so that the inner surface of the cup-shaped grindstone does not contact the first side wall.
In this way, a linear groove formed by the first side wall and the second side wall can be formed by the two grindings.
[0010]
Furthermore, once set, the upper surface of the workpiece can be machined with the cup-type grindstone, so that the upper surface and the groove can be machined with high accuracy without reattaching the workpiece or the grindstone.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(Embodiment 1)
FIG. 1 is an explanatory view of an embodiment of a groove processing method according to the present invention. In this embodiment, two linear grooves α and β having a length L and a width W are machined in parallel at an interval P. The steps are as follows. That is,
In 1) FIG. 1, an outer diameter 2R, the cup-shaped grinding wheel 2 of a width W 0, attaching a third axial position of the X · Y · Z in machine spindle 1 to NC control. Further, the workpiece 3 is fixed on a reversing table 4 which can be rotated by 180 °.
2) Next, the upper surface of the workpiece 3 is processed to a predetermined height H by the cup-type grindstone 2.
3) Thereafter, groove processing is performed by the method shown in FIGS.
First, the cup-shaped grindstone 2 is moved in the Y-direction without changing the position of the cup-shaped grindstone 2 in the Z direction (height direction) from the upper surface processing end position, and the outer periphery of the cup-shaped grindstone 2 is positioned on the outer wall of the groove α. So that the cup-shaped grindstone 2 is positioned.
Next, the cup-shaped grindstone 2 is cut in an arbitrary amount in the Z direction and rotated to feed a distance L in the X direction (groove direction) to form a groove α (FIG. 3A).
4) Next, while maintaining the position in the Z direction, the grindstone 2 is moved in the Y direction by a predetermined distance P, and the outer periphery of the grindstone 2 is positioned on the inner wall of the other groove β. At this position, the inner wall of the other groove β is formed by feeding a distance L in the X direction (FIG. 3B).
As shown in FIG. 2 (a), the grooves α and β thus formed have a shape in which one side wall is straight and the other side wall has a curvature.
5) Next, after rotating the reversing table 4 by 180 °, the outer wall of the groove β is similarly processed (FIG. 3C), and the cup-shaped grindstone 2 is moved by a predetermined distance P in the Y direction to obtain the groove α. (FIG. 3D).
[0012]
This series of groove processing is performed by the NC program, processing and measurement are repeated, and processing is performed until a predetermined dimension is reached, whereby grooves having excellent surface roughness, straightness, and depth accuracy can be easily processed. In addition, since there is no need to replace the cup-type grindstone or the processing machine, there is no mounting error due to resetting. In addition, since one processing time is very short, the processing is hardly affected by the heat of the processing environment, so that high-precision processing can be performed.
[0013]
The width and length of the groove to be processed are restricted by the shape (outer diameter and width) of the cup-shaped grindstone. However, the shape of the cup grindstone used is preferably larger as the outer diameter is larger, because the grinding wall on the inner circumference of the grindstone becomes closer to a straight line, and the width is at least equal to or less than the width of the groove to be machined.
For example, 100 mm outer diameter 2R of the cup-shaped grindstone, the width W 0 as 0.11 mm, the width W to form a groove of 0.3 mm. In this case, the feed distance and the length of the groove to be processed can be made equal to each other until the feed distance of the grindstone is 4.93 mm. However, if the feed distance is larger than 4.93 mm, the inner locus of the cup-shaped grindstone exceeds the DC side surface of the groove in FIG. Therefore, the processing groove length is a maximum of 4.93 mm.
[0014]
(Embodiment 2)
In the above embodiment, the table on which the workpiece is fixed is rotated by 180 ° to grind both side walls of the groove to perform the groove processing. However, the present invention is not limited to the embodiment.
For example, in FIG. 3, the groove can be formed by moving the cup-type grindstone 2 in the Y direction without rotating the workpiece 3. The processing method will be described below with reference to FIGS. That is,
1) First, using a cup-type grindstone 2 having an outer diameter of 2R, the outer wall of the groove α having a width W is processed by the outer peripheral portion of the grindstone (FIG. 4A).
2) Next, the cup-type grindstone 2 is moved rightward in the Y direction by the distance P between the two grooves α and β to machine the inner wall of the groove β (FIG. 4B).
3) Next, the grindstone 2 is offset to the left in the Y direction by a distance of 2R-W, which is obtained by subtracting the width W of the groove to be machined from the cup-shaped grindstone outer diameter 2R, and machine the outside of the groove β (FIG. 4 (c)). )).
4) Finally, the cup-shaped grindstone 2 is moved to the left in the Y direction by the distance P to process the inside of the groove α (FIG. 4D).
[0015]
The above embodiment is a processing example corresponding to the pressing member of the mold for the MT connector, but the present invention is not limited to this, and the constituent members of the optical component, for example, the optical component such as the fiber array shown in FIG. It can be applied to the processing of the optical fiber fixing member 12. In FIG. 7, 13 is a V-groove substrate, and 14 is an optical fiber.
[0016]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the linear groove | channel with a good surface state can be processed with good workability, and since the planar processing and the groove | channel processing can be performed by one set, the outstanding effect that processing precision improves. There is. INDUSTRIAL APPLICABILITY The present invention is particularly effective for precisely processing a fiber pressing member of an optical component having a groove for holding an optical fiber, a pressing die member of an optical connector molding die, and the like.
[Brief description of the drawings]
FIG. 1 is an explanatory view of one embodiment of a groove processing method according to the present invention.
FIGS. 2A and 2B are explanatory views illustrating the principle of a groove processing method according to the present invention.
FIGS. 3A to 3D are explanatory views of the processing steps of the embodiment shown in FIG. 1;
FIGS. 4A to 4D are explanatory views of other processing steps of the embodiment shown in FIG. 1;
FIG. 5 is a sectional view of an optical connector molding die.
FIGS. 6A to 6C are diagrams illustrating a method of processing a pressing die member of the optical connector molding die.
FIG. 7 is a sectional view of an optical component.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Processing machine spindle 2 Cup-shaped grindstone 3 Workpiece 4 Reversing table α, β Groove

Claims (3)

外径が被加工部材に加工する溝の幅に対して十分大きく、かつ、幅が前記溝の幅より狭い円環状の開口部を有するカップ型砥石を用い、
被加工部材の所定位置にカップ型砥石により円弧状溝を形成しながら、被加工部材とカップ型砥石を加工する溝に平行になるように相対的に移動させて、前記円弧状溝の外側の側壁を直線状にして第1側壁を形成し、
次いで被加工部材とカップ型砥石を相対的に移動させて、カップ型砥石の外面が前記加工する溝の他方の側壁に接触し、カップ型砥石の内面が前記第1側壁に接触しないようにして、第1側壁と同様に第2側壁を形成し、第1および第2側壁からなる直線状の溝を形成することを特徴とする溝の加工法。
The outer diameter is sufficiently large with respect to the width of the groove to be processed on the workpiece, and the width is smaller than the width of the groove using a cup-type grindstone having an annular opening,
While forming an arc-shaped groove with a cup-shaped grindstone at a predetermined position on the workpiece, the workpiece and the workpiece are relatively moved so as to be parallel to the groove for processing the cup-shaped grindstone. Forming a first side wall by straightening the side wall;
Next, the workpiece and the cup-shaped grindstone are relatively moved so that the outer surface of the cup-shaped grindstone contacts the other side wall of the groove to be processed, and the inner surface of the cup-shaped grindstone does not contact the first side wall. Forming a second side wall in the same manner as the first side wall, and forming a linear groove formed by the first and second side walls.
第1側壁を形成し、次いで、被加工部材を加工面内で180゜回転して、前記第2側壁を形成することを特徴とする請求項1記載の溝の加工法。2. The method according to claim 1, wherein the first side wall is formed, and then the workpiece is rotated by 180 [deg.] In the processing plane to form the second side wall. 第1側壁を形成し、次いで、カップ型砥石外径から加工する溝幅を引いた距離だけ、被加工部材を前記溝に対して直角に、かつ前記カップ型砥石の中心軸方向に相対的に移動させ、第2側壁を形成することを特徴とする請求項1記載の溝の加工法。The first side wall is formed, and then, the workpiece is perpendicular to the groove by a distance obtained by subtracting the groove width to be machined from the outer diameter of the cup-shaped grindstone, and relatively to the center axis direction of the cup-shaped grindstone. 2. The method according to claim 1, wherein the groove is moved to form a second side wall.
JP1699198A 1998-01-29 1998-01-29 Groove processing method Expired - Lifetime JP3599553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1699198A JP3599553B2 (en) 1998-01-29 1998-01-29 Groove processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1699198A JP3599553B2 (en) 1998-01-29 1998-01-29 Groove processing method

Publications (2)

Publication Number Publication Date
JPH11207590A JPH11207590A (en) 1999-08-03
JP3599553B2 true JP3599553B2 (en) 2004-12-08

Family

ID=11931502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1699198A Expired - Lifetime JP3599553B2 (en) 1998-01-29 1998-01-29 Groove processing method

Country Status (1)

Country Link
JP (1) JP3599553B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116810503B (en) * 2023-08-30 2023-12-08 长沙华实半导体有限公司 Processing method of C-shaped cavity of plasma confinement ring

Also Published As

Publication number Publication date
JPH11207590A (en) 1999-08-03

Similar Documents

Publication Publication Date Title
JP2626552B2 (en) Spherical processing device and method
JP5355206B2 (en) Processing apparatus and processing method
JP3599553B2 (en) Groove processing method
JP2006289566A (en) Grinding processing method and grinding processing device of forming die of micro lens array
JP2009107055A (en) Polishing tool and polishing device
JP3789672B2 (en) Grinding method
JP2007090489A (en) Die cutting method and device therefor
JP3305120B2 (en) Processing method of mold member for forming optical element
CN100532016C (en) High-accuracy centerless grinding method for processing axially grooved shaft parts
CN210452327U (en) Circular arc indexing tool for precision ceramic machining
JP2577300B2 (en) Manufacturing method of ceramic ferrule
JPH0420908A (en) Optical fiber connector terminal
JP4374161B2 (en) Cutting method of optical lens or its mold
JPS5824203B2 (en) Manufacturing method for optical fiber connector plugs
JP2001162429A (en) Grooving method and grooving tool
CN111571132A (en) Thin-wall bearing outer ring turning method and outer ring end surface groove symmetry measuring method of thin-wall bearing
JP2000052217A (en) Tool and processing method
JPH10240322A (en) Curved surface machining method
JP2003161325A (en) Manufacturing method of ball bearing
JPH10166202A (en) Machining method for die for forming fresnel lens
JPH11309628A (en) V-shaped groove forming method and manufacture of tool to be used for that method
KR0163718B1 (en) Groove surface making apparatus and method
JP2006116673A (en) Concentric groove working method, concentric groove work-piece manufactured by this method and concentric groove molded article
JPH0428486B2 (en)
JP2005059155A (en) Groove processing method, groove workpiece, and molded article

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8