JP3599265B2 - Hydrorefining method of gas oil fraction - Google Patents

Hydrorefining method of gas oil fraction Download PDF

Info

Publication number
JP3599265B2
JP3599265B2 JP21213998A JP21213998A JP3599265B2 JP 3599265 B2 JP3599265 B2 JP 3599265B2 JP 21213998 A JP21213998 A JP 21213998A JP 21213998 A JP21213998 A JP 21213998A JP 3599265 B2 JP3599265 B2 JP 3599265B2
Authority
JP
Japan
Prior art keywords
hydrorefining
gas oil
hydrogen
oil fraction
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21213998A
Other languages
Japanese (ja)
Other versions
JP2000044968A (en
Inventor
哲男 野村
琢也 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP21213998A priority Critical patent/JP3599265B2/en
Publication of JP2000044968A publication Critical patent/JP2000044968A/en
Application granted granted Critical
Publication of JP3599265B2 publication Critical patent/JP3599265B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、直留軽油留分、接触分解軽油、熱分解軽油などの軽油留分を硫黄分150ppm以下に深度脱硫する水素化精製方法に関する。
【0002】
【従来の技術】
従来、軽油留分の水素化精製は、アルミナ、シリカ−アルミナなどで構成される多孔性の無機担体に水素化能を有する活性金属であるモリブデン、タングステン、ニッケル、コバルトなどを担持した触媒を水素雰囲気下において軽油留分と接触させることで行われ、このような水素化精製により、軽油留分中からヘテロ元素、すなわち硫黄、窒素などが除去される。
【0003】
最近、環境保護の観点から軽油中に含まれる硫黄分を500ppm以下に低減させる、いわゆる軽油深度脱硫が要請されている。または、高度な脱窒素処理が要請され、このための精製プロセスの確立が急がれれている。上記の軽油深度脱硫を行うプロセスとして、(1)2段水素添加方法、(2)後段反応塔において原料油と水素を交流接触させる方法、(3)前段反応塔の生成油中に含まれている硫化水素を一旦気液分離槽で抜出し、その後、後段反応塔へフィードする硫化水素濃度の低減方法などが考案されている。
【0004】
【発明が解決しようとする課題】
環境保護の高まりから軽油中の硫黄分をさらに低減し、150ppm以下とするような深度脱硫が望まれている。しかし、従来の軽油深度脱硫では、このような低硫黄濃度の実現には限界があり、複雑な精製装置を新たに設けることや高度な運転技術を必要とする。また、特殊な精製装置を用いるために製油所の運転上のフレキシビリティーが低下してしまうという問題があった。
【0005】
本発明は、上記課題を解決するもので、本発明の目的は、簡単な、従来と同等の精製装置により高度な脱硫・脱窒素が可能な水素化精製方法を提供し、また、装置運転上の制限を緩和することで精製装置のフレキシビリティーを確保することが可能な軽油留分の水素化精製方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明者は、軽油留分を水素化精製する際の運転条件を詳細に検討した結果、液空間速度、水素/油比、および、水素圧力が所定の条件を満たす場合に、高度な精製処理が可能となることを見いだし、本発明を完成したものである。
【0007】
本発明による軽油留分の水素化精製方法は、軽油留分と水素を水素化精製用触媒に接触させ、硫黄分を25ppm以下、窒素分を1ppm以下、全アロマ分が20重量%以下で、かつ、3環以上のアロマ分が0.2重量%以下に水素化精製する方法において、軽油留分の90%留出温度が330〜370℃であり、水素化精製用触媒が多孔性の無機担体に、金属元素換算で5〜20重量%のモリブデンと、金属元素換算で1〜10重量%のコバルトと、りん元素換算で0.1〜8重量%のりんが担持された触媒であり、水素化精製時の液空間速度を0.5〜1.7hr−1(0.5〜1.7/時間)とし、水素/油比を250〜450L/Lとし、水素圧力を45〜90kg/cmとし、反応温度を300〜380℃とし、かつ、水素/油比を液空間速度で割った値が250hr(250時間)以上とするものである。
【0008】
特には、軽油留分の10%留出温度が240〜280℃、50%留出温度が280〜320℃であり、かつ、水素/油比を液空間速度で割った値が250hr以上であることが好ましい。
【0009】
【発明の実施の形態】
[軽油留分] 本発明の原料油となる軽油留分は、直留軽油留分を用いることが好ましく、直留軽油留分単独でもよいが、軽質熱分解油軽油や軽質接触分解軽油を直留軽油留分に混合した混合軽油留分でもよい。この直留軽油留分とは、原油を常圧蒸留して得られる、おおよそ10%留出点が240〜280℃、50%留出点が280〜320℃、90%留出点が330〜370℃からなっているものである。なお、沸点及び留出点は特に断らない限り、JIS K 2254「燃料油蒸留試験方法」による値である。
【0010】
熱分解油とは、重質油留分に熱を加えて、ラジカル反応を主体にした反応により得られた軽質留分油で、例えば、ディレードコーキング法、ビスブレーキング法或いはフルードコーキング法等により得られる留分をいう。これらの留分は得られる全留分を熱分解油としてもちいてもよいが、留出温度が150〜520℃の範囲内にある留分を用いることが好適である。
【0011】
接触分解油とは、中間留分や重質留分、特には減圧蒸留留分等をゼオライト系触媒と接触分解する際に得られる留分、特に高オクタン価ガソリン製造を目的とした流動接触分解装置において副生する分解軽油留分である。この留分は、一般に、沸点が相対的に低い軽質接触分解油と沸点が相対的に高い重質接触分解油とが別々に採取されている。本発明においては、これらの留分のいずれをも用いることができるが、前者の軽質接触分解油、いわゆるライトサイクルオイル(LCO)を用いることが好ましい。このLCOは、一般に、10%留出点が220〜250℃、50%留出点が260〜290℃、90%留出点が310〜355℃の範囲内にある。また、重質接触分解油、いわゆるヘビーサイクルオイル(HCO)は、10%留出点が280〜340℃、50%留出点が390〜420℃、90%留出点が450℃以上にある。
【0012】
[水素化精製用触媒]本発明に用いる水素化精製用触媒としては、アルミナ担体にモリブデンを金属元素換算で約5〜20重量%と、コバルトを金属元素換算で1〜10重量%担持させ、更に燐をリン元素換算で0.1〜8重量%担持した触媒を用いることが好ましい。
【0013】
反応塔への触媒の充填は、触媒層内における効率のよい気液接触を確保するため、触媒充填機を用いるとよい。この充填機の使用によって充填時の反応塔内における触媒層面はほぼ水平となり、触媒層内における流体の偏流やこのような偏流に起因すると考えられているホットスポットの発生を防止できるだけでなく、反応塔に密に触媒が充填されるために触媒活性や触媒寿命に好ましい影響を与える。触媒層内の水平方向面内の複数ヶ所で測定した温度差が10℃以下、特には5℃以下であることが好ましい。
【0014】
[水素化精製] 本発明による水素化精製条件は、液空間速度を0.5〜1.7hr−1とし、水素/油比を250〜450L/Lとし、水素圧力を45〜90kg/cmとし、かつ、水素/油比を液空間速度で割った値が200hr以上である。さらには、水素/油比を液空間速度で割った値が250hr以上であることが好ましい。反応温度は、300〜380℃が用いられる。
【0015】
本発明による水素化精製条件では、原料油中に含まれる硫黄化合物の水素化脱硫反応やアロマ分への水素添加反応などの進行に伴う発熱量が大きく、この発熱によって反応器内の触媒層が急激な温度上昇にさらされる可能性が大きい。この温度上昇は、多環アロマの生成やそれに起因する生成油の色相悪化、触媒活性の低下や触媒寿命の短命化などの原因となる。そこで本発明では、水素化精製反応装置として通常水素化精製に用いられる反応器を用いることが出来るが、上記の様な温度上昇を効果的に防止するために、反応器内の触媒層を必要に応じて複数の床に分割し、かつ必要に応じて各床の間に水素を供給できることが好ましい。この時分割した各触媒床における入口と出口の温度差は50℃以下、特には25℃以下にすることが好ましい。
【0016】
本発明により水素化精製された軽油留分は、硫黄分が25ppm以下となる。
特には、水素/油比を液空間速度で割った値が250hr以上の条件下では、硫黄分が50ppm以下であり、全アロマ分が20重量%以下で、かつ、2環以上のアロマ分が1重量%以下とすることが可能である。また、通常窒素分は、1ppm以下とすることができ、3環以上のアロマ分が0.2重量%以下、特には0.1重量%以下とすることができる。
【0017】
【発明の効果】
本発明による水素化精製方法は、液空間速度、水素/油比、水素圧力が所定の条件を満たすものであり、複雑な精製装置を用いることなく、硫黄分・窒素分の十分な低減のみでなく、アロマ分、特には2環以上のアロマ分をも低減することができる。したがって、環境に配慮された自動車用軽油などの基材に用いられる軽油留分を工業的に製造することが可能となる。
【0018】
【実施例】
本発明を実施例により詳しく説明する。
【0019】
原料油として中東系直留軽油留分を、水素化精製触媒として市販触媒(オリエントキャタリスト製、HOP463)を用い、表1の条件で反応温度、水素圧力、液空間速度、水素/油比を変えて水素化精製を行った。用いた中東系直留軽油留分の性状は、比重0.8558、硫黄分1.47重量%、窒素分138重量ppm、10%留出温度275℃、50%留出温度307℃、90%留出温度355℃である。用いた水素化精製触媒は、アルミナなどからなる担体に触媒に対する重量%としてMoを元素として10wt%、Coを3wt%、Pを2wt%担持したものである。
【0020】
水素化精製した軽油留分について、硫黄分をJIS K 2541 電流滴定酸化法により、窒素分をJIS K 2609 化学発光法により、また、アロマ分を石油学会規格に準拠してそれぞれ測定し、その結果を表1に併せて示す。
【0021】
【表1】

Figure 0003599265
【0022】
評価結果から、水素圧力が45kg/cm以上であり、水素/油比を液空間速度で割った値([水素/油比]/[液空間速度])が250hr以上である実験例1〜2において、硫黄分が25ppm以下で、アロマ分19%以下となることが分かる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hydrorefining method for deep-desulfurizing a gas oil fraction such as a straight gas oil fraction, a catalytic cracking gas oil, and a pyrolysis gas oil to a sulfur content of 150 ppm or less.
[0002]
[Prior art]
Conventionally, hydrorefining of a gas oil fraction has been carried out by using a catalyst in which molybdenum, tungsten, nickel, cobalt, etc., which are active metals having hydrogenation ability, are supported on a porous inorganic carrier composed of alumina, silica-alumina, etc. It is carried out by bringing the gasoline into contact with a gas oil fraction under an atmosphere, and such hydrorefining removes hetero elements, that is, sulfur, nitrogen, and the like from the gas oil fraction.
[0003]
In recent years, from the viewpoint of environmental protection, there has been a demand for so-called gas oil deep desulfurization in which the sulfur content in gas oil is reduced to 500 ppm or less. Alternatively, advanced denitrification treatment is required, and the establishment of a purification process for this purpose is urgently required. As the process for performing the above-mentioned gas oil deep desulfurization, (1) a two-stage hydrogenation method, (2) a method in which a feed oil and hydrogen are brought into AC contact in a latter-stage reaction tower, and (3) a process oil contained in the oil produced in the former-stage reaction tower A method for reducing the concentration of hydrogen sulfide, which is once extracted from a gas-liquid separation tank and then fed to a subsequent reaction tower, has been devised.
[0004]
[Problems to be solved by the invention]
Due to increasing environmental protection, there is a demand for deep desulfurization in which the sulfur content in light oil is further reduced to 150 ppm or less. However, in the conventional deep oil desulfurization, there is a limit in realizing such a low sulfur concentration, and it is necessary to newly install a complicated refining device and to use advanced operation technology. In addition, there is a problem that the operational flexibility of the refinery is reduced due to the use of a special refining device.
[0005]
An object of the present invention is to solve the above-mentioned problems, and an object of the present invention is to provide a hydrorefining method capable of performing a high degree of desulfurization and denitrification by a simple and equivalent purifying apparatus. It is an object of the present invention to provide a gas oil fraction hydrorefining method capable of securing the flexibility of a refining device by relaxing the restrictions of the above.
[0006]
[Means for Solving the Problems]
The present inventor has studied the operating conditions for hydrorefining a gas oil fraction in detail, and found that, when the liquid hourly space velocity, the hydrogen / oil ratio, and the hydrogen pressure satisfy the predetermined conditions, advanced purification treatment is performed. Have been found possible, and the present invention has been completed.
[0007]
The hydrorefining method of a gas oil fraction according to the present invention comprises contacting a gas oil fraction and hydrogen with a hydrorefining catalyst, the sulfur content is 25 ppm or less, the nitrogen content is 1 ppm or less, the total aroma content is 20 wt% or less, In the method for hydrorefining the aroma content of three or more rings to 0.2% by weight or less , the 90% distillation temperature of the gas oil fraction is from 330 to 370 ° C, and the hydrorefining catalyst is a porous inorganic material. A catalyst in which 5 to 20% by weight of molybdenum in terms of a metal element, 1 to 10% by weight of cobalt in terms of a metal element, and 0.1 to 8% by weight of phosphorus in terms of a phosphorus element are supported on a carrier; The liquid hourly space velocity during hydrorefining is 0.5 to 1.7 hr -1 (0.5 to 1.7 / hour), the hydrogen / oil ratio is 250 to 450 L / L, and the hydrogen pressure is 45 to 90 kg / hour. cm 2, and the reaction temperature was 300 to 380 ° C., and a hydrogen / Value obtained by dividing the ratio in the liquid space velocity is to a 250 hr (250 hours) or more.
[0008]
In particular, the 10% distillation temperature of the gas oil fraction is 240 to 280 ° C, the 50% distillation temperature is 280 to 320 ° C, and the value obtained by dividing the hydrogen / oil ratio by the liquid hourly space velocity is 250 hours or more . Is preferred.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
[Light Oil Fraction] As the light oil fraction to be used as the feed oil of the present invention, it is preferable to use a straight gas oil fraction, and a straight gas oil fraction may be used alone. A mixed gas oil fraction mixed with the gas oil fraction may be used. The straight-run gas oil fraction is obtained by distilling crude oil at normal pressure, and has an approximate 10% distillation point of 240 to 280 ° C, a 50% distillation point of 280 to 320 ° C, and a 90% distillation point of 330 to 330 ° C. It consists of 370 ° C. Unless otherwise specified, the boiling point and the distillation point are values according to JIS K 2254 “Test method for distillation of fuel oil”.
[0010]
Pyrolysis oil is a light distillate oil obtained by adding heat to a heavy oil fraction and reacting mainly by a radical reaction, for example, by a delayed coking method, a visbreaking method or a fluid coking method. Refers to the fraction obtained. For these fractions, the entire fraction obtained may be used as the pyrolysis oil, but it is preferable to use a fraction having a distillation temperature in the range of 150 to 520 ° C.
[0011]
Catalytic cracking oil refers to a fraction obtained when catalytically cracking an intermediate fraction or a heavy fraction, particularly a vacuum distillation fraction, etc., with a zeolite-based catalyst, particularly a fluid catalytic cracking apparatus for producing high octane gasoline. Is a cracked gas oil fraction by-produced in the above. In this fraction, generally, a light catalytic cracking oil having a relatively low boiling point and a heavy catalytic cracking oil having a relatively high boiling point are separately collected. In the present invention, any of these fractions can be used, but it is preferable to use the former light catalytic cracking oil, so-called light cycle oil (LCO). The LCO generally has a 10% distillation point in the range of 220-250 ° C, a 50% distillation point in the range of 260-290 ° C, and a 90% distillation point in the range of 310-355 ° C. Heavy catalytic cracking oil, so-called heavy cycle oil (HCO), has a 10% distillation point of 280 to 340 ° C, a 50% distillation point of 390 to 420 ° C, and a 90% distillation point of 450 ° C or more.
[0012]
[Hydrorefining Catalyst] As the hydrorefining catalyst used in the present invention, about 5 to 20% by weight of molybdenum in terms of a metal element and 1 to 10% by weight of cobalt in terms of a metal element are supported on an alumina carrier. Further, it is preferable to use a catalyst supporting 0.1 to 8% by weight of phosphorus in terms of phosphorus element.
[0013]
For filling the reaction tower with the catalyst, a catalyst filling machine may be used to ensure efficient gas-liquid contact in the catalyst layer. By using this filling machine, the surface of the catalyst layer in the reaction tower at the time of filling becomes almost horizontal, which not only prevents the drift of the fluid in the catalyst layer and the generation of hot spots thought to be caused by such drift, but also the reaction Since the catalyst is densely packed in the column, it has a favorable effect on the catalyst activity and catalyst life. The temperature difference measured at a plurality of points in the horizontal plane in the catalyst layer is preferably 10 ° C. or less, particularly preferably 5 ° C. or less.
[0014]
[Hydrorefining] The hydrorefining conditions of the present invention are as follows: liquid hourly space velocity is 0.5 to 1.7 hr -1 , hydrogen / oil ratio is 250 to 450 L / L, and hydrogen pressure is 45 to 90 kg / cm 2. And the value obtained by dividing the hydrogen / oil ratio by the liquid hourly space velocity is 200 hours or more. Further, the value obtained by dividing the hydrogen / oil ratio by the liquid hourly space velocity is preferably 250 hours or more. A reaction temperature of 300 to 380 ° C is used.
[0015]
Under the hydrorefining conditions according to the present invention, the calorific value accompanying the progress of the hydrodesulfurization reaction of the sulfur compound contained in the feedstock oil and the hydrogenation reaction to the aroma component is large, and this heat generation causes the catalyst layer in the reactor to become large. It is likely to be exposed to sudden temperature rise. This increase in temperature causes the formation of polycyclic aroma and the resulting hue deterioration of the resulting oil, a decrease in catalytic activity and a shortened life of the catalyst. Therefore, in the present invention, a reactor usually used for hydrorefining can be used as a hydrorefining reactor, but in order to effectively prevent the above-mentioned temperature rise, a catalyst layer in the reactor is required. Is preferably divided into a plurality of beds, and hydrogen can be supplied between the beds as needed. The temperature difference between the inlet and the outlet of each time-divided catalyst bed is preferably 50 ° C. or less, particularly preferably 25 ° C. or less.
[0016]
The gas oil fraction hydrorefined according to the present invention has a sulfur content of 25 ppm or less.
In particular, under the condition that the value obtained by dividing the hydrogen / oil ratio by the liquid hourly space velocity is 250 hr or more, the sulfur content is 50 ppm or less, the total aroma content is 20% by weight or less, and the aroma content of two or more rings is It can be less than 1% by weight. Further, the nitrogen content can be usually 1 ppm or less, and the aroma content of three or more rings can be 0.2% by weight or less, particularly 0.1% by weight or less.
[0017]
【The invention's effect】
In the hydrorefining method according to the present invention, the liquid hourly space velocity, the hydrogen / oil ratio, and the hydrogen pressure satisfy predetermined conditions, and only a sufficient reduction of the sulfur content and the nitrogen content without using a complicated purification device. In addition, the aroma content, particularly the aroma content of two or more rings can be reduced. Therefore, it becomes possible to industrially produce a light oil fraction used for base materials such as light oil for automobiles, which is environmentally friendly.
[0018]
【Example】
The present invention will be described in more detail with reference to examples.
[0019]
The reaction temperature, hydrogen pressure, liquid space velocity, and hydrogen / oil ratio were determined under the conditions shown in Table 1 using a Middle Eastern straight gas oil fraction as a feed oil and a commercially available catalyst (HOP463 manufactured by Orient Catalyst) as a hydrorefining catalyst. Hydrorefining was carried out in a different manner. The properties of the used Middle Eastern straight-run gas oil fraction are specific gravity 0.8558, sulfur content 1.47% by weight, nitrogen content 138 weight ppm, 10% distillation temperature 275 ° C, 50% distillation temperature 307 ° C, 90% The distillation temperature is 355 ° C. The hydrorefining catalyst used is such that 10 wt% of Mo as an element, 3 wt% of Co, and 2 wt% of P are supported on a carrier made of alumina or the like as a weight% with respect to the catalyst.
[0020]
For the hydrorefined gas oil fraction, the sulfur content was measured according to JIS K 2541 amperometric oxidation method, the nitrogen content was measured according to JIS K 2609 chemiluminescence method, and the aroma content was measured according to the Japan Petroleum Institute standard. Are also shown in Table 1.
[0021]
[Table 1]
Figure 0003599265
[0022]
From the evaluation results, Experimental Example 1 in which the hydrogen pressure was 45 kg / cm 2 or more, and the value obtained by dividing the hydrogen / oil ratio by the liquid hourly space velocity ([hydrogen / oil ratio] / [liquid hourly space velocity]) was 250 hr or more. 2 shows that the sulfur content is 25 ppm or less and the aroma content is 19% or less.

Claims (2)

軽油留分と水素を水素化精製用触媒に接触させ、硫黄分を25ppm以下、窒素分を1ppm以下、全アロマ分を20重量%以下で、かつ、3環以上のアロマ分が0.2重量%以下に水素化精製する方法において、
軽油留分の90%留出温度が330〜370℃であり、
水素化精製用触媒が多孔性の無機担体に、金属元素換算で5〜20重量%のモリブデンと、金属元素換算で1〜10重量%のコバルトと、りん元素換算で0.1〜8重量%のりんが担持された触媒であり、
水素化精製時の液空間速度を0.5〜1.7hr−1とし、水素/油比を250〜450L/Lとし、水素圧力を45〜90kg/cmとし、反応温度を300〜380℃とし、かつ、水素/油比を液空間速度で割った値が250hr以上である軽油留分の水素化精製方法。
The gas oil fraction and hydrogen are brought into contact with a hydrorefining catalyst, the sulfur content is 25 ppm or less, the nitrogen content is 1 ppm or less, the total aroma content is 20% by weight or less, and the aroma content of three or more rings is 0.2% by weight. % Or less in the method of hydrorefining,
90% distillation temperature of gas oil fraction is 330-370 ° C,
The catalyst for hydrorefining is formed on a porous inorganic carrier by adding 5 to 20% by weight of molybdenum in terms of a metal element, 1 to 10% by weight of cobalt in terms of a metal element, and 0.1 to 8% by weight in terms of a phosphorus element. Phosphorus supported catalyst,
The liquid hourly space velocity during hydrorefining is 0.5 to 1.7 hr -1 , the hydrogen / oil ratio is 250 to 450 L / L, the hydrogen pressure is 45 to 90 kg / cm 2 , and the reaction temperature is 300 to 380 ° C. Wherein the value obtained by dividing the hydrogen / oil ratio by the liquid hourly space velocity is 250 hr or more.
軽油留分の10%留出温度が240〜280℃、50%留出温度が280〜320℃であり、かつ、水素/油比を液空間速度で割った値が250hr以上である請求項1に記載の軽油留分の水素化精製方法。 The 1% distillation temperature of the gas oil fraction is 240 to 280 ° C, the 50% distillation temperature is 280 to 320 ° C, and the value obtained by dividing the hydrogen / oil ratio by the liquid hourly space velocity is 250 hours or more. 3. The hydrorefining method for a gas oil fraction according to item 1.
JP21213998A 1998-07-28 1998-07-28 Hydrorefining method of gas oil fraction Expired - Lifetime JP3599265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21213998A JP3599265B2 (en) 1998-07-28 1998-07-28 Hydrorefining method of gas oil fraction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21213998A JP3599265B2 (en) 1998-07-28 1998-07-28 Hydrorefining method of gas oil fraction

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004139370A Division JP4771509B2 (en) 2004-05-10 2004-05-10 Hydrorefining method for diesel oil fraction

Publications (2)

Publication Number Publication Date
JP2000044968A JP2000044968A (en) 2000-02-15
JP3599265B2 true JP3599265B2 (en) 2004-12-08

Family

ID=16617546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21213998A Expired - Lifetime JP3599265B2 (en) 1998-07-28 1998-07-28 Hydrorefining method of gas oil fraction

Country Status (1)

Country Link
JP (1) JP3599265B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG174338A1 (en) 2009-03-13 2011-11-28 Jx Nippon Oil & Energy Corp Process for producing low-sulfur gas-oil fraction, and low-sulfur gas oil
CN102041045B (en) * 2009-10-21 2014-12-10 中国石油化工股份有限公司 On-stream method of residual oil hydrogenation process
CN102041044B (en) * 2009-10-21 2013-11-20 中国石油化工股份有限公司 On-stream method of residual oil hydrogenation process

Also Published As

Publication number Publication date
JP2000044968A (en) 2000-02-15

Similar Documents

Publication Publication Date Title
JP4260477B2 (en) Refined oil and method for producing the same
EP1600491A1 (en) Catalytic hydrorefining process for crude oil
US6328880B1 (en) Process for hydrotreating hydrocarbon oil
JP2007533836A (en) Method for producing low sulfur diesel fuel
RU2663896C2 (en) Residue hydrocracking processing
JPS5850636B2 (en) Desulfurization treatment method for heavy hydrocarbon oil
JP2008127569A (en) Depth desulfurization process for cracked gasoline with reduced loss of octane value
KR20150127143A (en) Integration of residue hydrocracking and hydrotreating
CN102041084A (en) Heavy hydrocarbon hydrogenation combined process
CN102899081B (en) Wax oil hydrotreating method
CN102876364B (en) Hydrotreatment method
US20090159490A1 (en) Method of hydrogenolysis of wax and process for producing fuel base
JP2011079995A (en) Method for producing high aromatic hydrocarbon oil
JP3599265B2 (en) Hydrorefining method of gas oil fraction
WO2001074973A1 (en) Process for hydrodesulfurization of light oil fraction
JP2013249385A (en) Hydrotreatment method of heavy oil
JPH04288397A (en) Hydrogenated denitrification process
JP5465055B2 (en) Hydrorefining method for kerosene fraction
JP5220456B2 (en) Decomposition method of atmospheric distillation residue oil
JPH0753968A (en) Hydrotreatment of heavy hydrocarbon oil
WO1993017082A1 (en) Process for hydrotreating heavy hydrocarbon oil
JP5419672B2 (en) Hydrorefining method of hydrocarbon oil
JP2005015766A (en) Production method for low-sulfur catalytically cracked gasoline
JP4900885B2 (en) Process for hydrotreating a mixture of hydrocarbon compounds rich in olefins and aromatic compounds
JP2004269900A (en) Hydrogenation purification method for gas oil fraction

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040209

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040510

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070924

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term