JP3598328B2 - Ice tray control device for automatic ice maker - Google Patents

Ice tray control device for automatic ice maker Download PDF

Info

Publication number
JP3598328B2
JP3598328B2 JP3326697A JP3326697A JP3598328B2 JP 3598328 B2 JP3598328 B2 JP 3598328B2 JP 3326697 A JP3326697 A JP 3326697A JP 3326697 A JP3326697 A JP 3326697A JP 3598328 B2 JP3598328 B2 JP 3598328B2
Authority
JP
Japan
Prior art keywords
ice
ice tray
drive motor
pulse signal
delay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3326697A
Other languages
Japanese (ja)
Other versions
JPH10220941A (en
Inventor
利昭 宮前
隆志 池原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP3326697A priority Critical patent/JP3598328B2/en
Priority to KR1019980002554A priority patent/KR100292961B1/en
Priority to CN 98106464 priority patent/CN1093623C/en
Publication of JPH10220941A publication Critical patent/JPH10220941A/en
Application granted granted Critical
Publication of JP3598328B2 publication Critical patent/JP3598328B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、冷蔵庫の自動製氷手段において、製氷した氷を貯氷箱に貯めるまでの一連の手段のうち、製氷皿の基準位置を正確に検知し、当該製氷皿を確実に制御するための技術に関するものである。
【0002】
【従来の技術】
従来から家庭用の冷蔵庫に、製氷皿で製氷が完了すればこれを検知して、その下に設置された貯氷箱に氷を貯める構成は各種開示されている。この基本的な技術は、製氷皿の水が凍ったことを検知し、次に貯氷箱の氷の残量を検知し、氷が満杯であれば製氷皿から離氷を行わず、反対に氷がないか、少ないことを検知した場合には製氷皿から離氷を行って貯氷皿に氷を貯めるというものであり、いずれにしても製氷皿を駆動させた後には再度最初の姿勢まで復帰させて、一連の動作を完了するというものである。
【0003】
【発明が解決しようとする課題】
ところで、上述したような動作を確実に行うためには、動きを行う部分がどのような姿勢にあるかを絶えず検知しておかなければならない。そして、このためには製氷皿がどの位置にあるときを基準、即ち原点位置とするのか決めておかなければならず、しかもこの位置を確実に把握できる構成でなければならない。原点位置が不正確であれば、たとえば製氷皿を捻って離氷させる場合でも捻りが弱かったり、強すぎて合成樹脂製の製氷皿を損傷する原因になるからである。
【0004】
そこで従来は、製氷皿の位置検出を発信手段により行うものとし、製氷皿が水平状態にあるときを原点位置として、この原点位置を境にその前後で出力信号を変化させるという手段を採用していた(図4参照)。この手段によれば出力信号の変化から製氷皿が原点位置、即ち水平状態にあることを検知できるものであるが、上記信号は変化後の状態で定常状態となるため、出力信号が変化したことを確実に捉えるためには、原点位置を境に製氷皿を正逆に回動しなければならない。従って、当該手段によれば、製氷皿の回動制御が複雑になると共に、この動きによって製氷皿に給水した水がこぼれるという課題があった。
【0005】
また、別手段として、復帰動作時に駆動モータの駆動力に抗して製氷皿を水平状態で強制的に停止させるようにし、このとき駆動モータにかかる負荷を検出することによって製氷皿が水平状態にあることを検知する方法があるが、この手段では駆動モータに過負荷がかかるという課題があった。
【0006】
本発明は上述した課題に基づいてなされたものであり、その目的は、簡単な構成で製氷皿が基準位置、即ち水平状態にあることを正確に検知できる自動製氷機における製氷皿の制御装置を提供することである。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明では駆動モータと連動して製氷皿を水平状態から離氷可能な範囲で回動させる製氷皿駆動手段と、上記製氷皿が水平状態にあるときを境として上記製氷皿駆動手段の動作領域とは別に上記駆動モータと連動して独立動作するオーバーラン領域をもつ遅延駆動手段と、この遅延駆動手段のオーバーラン領域における遅延動作中にパルス信号を出力するパルス発生手段とを備え、上記パルス信号の定常状態への変化点を読み取ることにより製氷皿の水平状態を検知するという手段を用いた。又、パルス信号の定常状態への変化点を読み取ると同時に駆動モータを停止させるという手段を選択的に用いた。ここでパルス信号の定常状態への変化点とは正の方向に振幅が変化するパルス信号であればその立下りであり、負の方向に振幅が変化するパルス信号であればその立上りをいうものと定義する。
【0008】
また、上記構成の制御装置において、遅延駆動手段の動作領域で出力されるパルス信号とは別のパルス信号を製氷皿駆動手段の動作領域で出力し、両信号の出現順序から駆動モータの回転方向を判別するという手段を選択的に用いた。さらに、両信号をパルス幅が異なる信号とするという手段を選択的に用いた。
【0009】
【発明の実施の形態】
以下本発明の好ましい実施の形態を添付した図面に従って説明する。図1は本発明に係る自動製氷機における製氷皿の制御装置のブロック図を示したものであり、図2はその具体的構成例を示したものである。図中、1は製氷皿、2は駆動モータ、3は駆動モータ2を正逆に回転したり停止するといった制御を行う制御手段、4は駆動モータ2と連動して製氷皿1を水平状態から離氷可能な範囲で回動させる製氷皿駆動手段である。即ち、図2に示した構成例では、製氷皿駆動手段4は駆動モータ2のピニンオンギアPと噛み合う歯を所定角度(α=160度)に設けたギアで構成されており、その回動軸に製氷皿1が固定されている。
【0010】
ここまでの構成により、製氷皿駆動手段4の動作領域と製氷皿1の回動領域が対応して、製氷皿1は駆動モータ2の正転時(図面においてピニオンギアPが時計回りするとき)に離氷動作を行い、駆動モータ2の逆転と共に水平状態へと復帰動作を行うものである。そして、製氷皿1が復帰動作にある場合、製氷皿駆動手段4は製氷皿1が水平状態に達したと同時に駆動モータ2と連動しなくなるので、その後、駆動モータ2が逆転を続けても製氷皿1を水平状態で静止させることができるのである。
【0011】
次に、5は駆動モータ2の逆転時に製氷皿駆動手段4の動作から遅延動作する遅延駆動手段であって、復帰動作時において製氷皿1が水平状態で静止した後も駆動モータ2と連動して動作するものである。すなわち、図2に示した構成例では、遅延駆動手段5は、所定角度(β=35度)にわたって歯を設けたギアで構成され、このギアを製氷皿1の離氷動作時に製氷皿駆動手段4に先行して駆動モータ2のピニオンギアPと噛み合うように製氷皿駆動手段4と同軸に軸止したものである。従って、遅延駆動手段5は、製氷皿1が水平状態にあるときを境として製氷皿駆動手段4の動作領域とは別に、歯を設けた角度βだけ独立動作するオーバーラン領域をもつものである。
【0012】
さらに、6は上記オーバーラン領域において遅延駆動手段5と連動してパルス信号を制御手段3に出力するパルス発生手段である。すなわち、図2に示した構成例では、先端にホール素子40と対向する磁石21、中間部に支持片22を下向きに設けたスイッチングレバー20を回動自在に軸止する一方、遅延駆動手段5の内側内周にカム山5aを形成し、さらに上記支持片22とカム山5aとの間に略L字状のアシストレバー30を回動自在に軸止することによりパルス発生手段6を構成している。従って、この構成例によれば、カム山5aを形成したギア5が回動したとき、アシストレバー30に突成(図において奥方向)した従動ピン32がカム山5aを乗り越えることによってアシストレバー30が摺動面31を上向きにして回動し、このとき摺動面31に当接するスイッチングレバー20の支持片22が持ち上がることによって、スイッチングレバー20が回動し、その先端に取り付けた磁石21がホール素子40から乖離して、カム山5aに見合ったパルス信号を出力するものである。
【0013】
なお、離氷動作にあたって制御手段3は、製氷検知手段7および検氷手段8から出力される信号によって駆動モータ2を始動するか否かを決定する。すなわち、製氷検知手段7は製氷皿1の製氷状態を検知するものであって、この製氷検知手段7により製氷完了が検知されたならば、制御手段3は駆動モータ2を始動して離氷動作を開始する。また、検氷手段8は貯氷箱9が満氷か未満氷を検知するものであって、この検氷手段8により貯氷箱の未満氷状態が検知されたならば、制御手段3は製氷検知手段7の信号に従い離氷動作を許容する一方、満氷状態が検知されたならば、製氷検知手段7の信号に優先して離氷動作の中止を決定するものである。ここで検氷手段8は製氷皿1を回動させる前に検氷動作を行うことも可能であるが、製氷皿1の回動中に検氷を行うようにし未満氷状態を検知すればそのまま製氷皿1を回動させて離氷動作を継続すると共に、満氷状態を検知すれば制御手段3によって即座に駆動モータ3を逆転し製氷皿1の復帰動作を行うことであってもよい。
【0014】
続いて、上記構成の制御装置による製氷皿の水平位置の検知動作を製氷皿1、駆動モータ2およびパルス発生手段6の動作タイミングを示した図3のタイムチャートに従って説明する。ここで、製氷皿1はAを原点位置として水平状態にあるものとし、駆動モータ2はBを始点として駆動するものとする。
【0015】
先ず、製氷検知手段7および検氷手段8によって製氷皿1の製氷完了および貯氷箱9の未満氷状態が検知されたならば、制御手段3は駆動モータ2を正転方向に始動し、これに伴い遅延駆動手段5が駆動モータ2と連動してAまで動作する。さらに、このA−B間を遅延駆動手段5のオーバーラン領域として、この領域中にパルス発生手段6からパルス信号Tを制御手段3に出力する。そして、上記動作により駆動モータ2の正転時に出力されるパルス信号Tによって制御手段3は駆動モータ3が正常に駆動したことを認識することができる。
【0016】
その後、Aからは製氷皿駆動手段4が遅延動作し、これに伴い製氷皿1が回動して実際の離氷動作が始まる。製氷皿駆動手段4が動作を進めるにつれ、製氷皿1の傾きおよび変形が大きくなり、Cを製氷皿1の回動限界位置として氷が完全に離脱する。そして、制御手段3は離氷完了を検知して駆動モータ2を逆転し、製氷皿1を水平状態へと復帰動作させる。
【0017】
この復帰動作により製氷皿1がAに達すると同時に製氷皿駆動手段4は駆動モータ2と連動しなくなるため、この時点で製氷皿1の復帰動作も終了して水平状態で静止する。その後、駆動モータ2は更に駆動し続け、このとき駆動モータ2と連動して遅延駆動手段5が動作するオーバーラン領域において、再度パルス発生手段6からパルス信号Tが制御回路3に出力される。そして、制御手段3はパルス信号Tの立下りを読み取って製氷皿1が水平状態にあることを検知すると共に、駆動モータ2の駆動を停止し、離氷動作前の初期状態に戻すものである。
【0018】
すなわち、上述した一連の動作のうち、製氷皿1に復帰動作をさせるべく駆動モータ2が逆転しているときにおいて、遅延駆動手段5のオーバーラン領域で発せられるパルス信号Tの立下りを制御手段3で読み取ることで製氷皿1が水平状態にあることを確実に検知できるものである。
【0019】
なお、上記実施形態では立上り、立下りの順からなる正方向のパルス信号を出力し、そのパルス信号の立下りを読み取ることとしたが、立下り、立上りの順からなる負方向のパルス信号を出力することであってもよく、この場合はパルス信号の立上りを読み取ることによって製氷皿1の水平状態を検知することができる。ここで必要なことは、定常状態から振幅が変化し、有限の時間だけ持続して元の定常状態に戻るような信号を出力し、且つ、この信号の定常状態への変化点を読み取ることである。
【0020】
又、制御手段3が駆動モータ2の回転方向を把握できる構成であれば、駆動モータ2の正転時にオーバーラン領域でパルス信号Tを発することは必須ではない。即ち、製氷皿1の水平状態を検知するためには、駆動モータ2が逆転しているときのパルス信号Tの立下りを読み取ることができればよいからである。
【0021】
今仮に、制御手段3に上述した駆動モータ2の回転方向を把握する機能がなく、パルス信号Tが駆動モータ2の正転時にも出力されるものとすれば、この構成で製氷皿1の水平状態を検知するためには、製氷皿1の復帰動作中にも別のパルス信号T1を出力する(図3参照)。これは図2に示した構成例において、製氷皿駆動手段4を構成するギアの内側内周にカム山4aを設け、スイッチングレバー20の支持片22がこのカム山4aを乗り越えることによってカム山4aに見合ったパルス信号T1を出力することができる。つまり、制御手段3はオーバーラン領域のパルス信号Tと復帰動作中のパルス信号T1の出現順序から駆動モータ2の回転方向を把握することができるのである。なお、制御手段3で出現順序を監視するためには、両パルス信号を例えばパルス幅や振幅を変化させることで識別可能な信号とすることが必要であり、図2に示した構成例では、遅延駆動手段5および製氷皿駆動手段4のカム山5a・4aの山高や円弧長を変えることで実現することができる。
【0022】
【発明の効果】
以上説明したように、本発明によれば、駆動モータの逆転時において製氷皿が水平状態で静止した後にパルス信号を出力するようにしたので、このパルス信号の定常状態への変化点を読み取ることで製氷皿が水平状態にあることを確実に検知することができた。また、請求項2の発明では上記変化点を読み取ると同時に駆動モータを停止させるようにしたので、駆動モータに過負荷がかかることを回避することができた。
【0023】
また、請求項3の発明では上記パルス信号とは別に製氷皿駆動手段の動作領域でもパルス信号を出力するようにしたので、両パルス信号の出現順序を検知することで駆動モータが逆転していることを確実に把握することができた。さらに、請求項4の発明では両パルス信号のパルス幅を変えて識別可能としたので、容易に出現順序を検知することができた。
【図面の簡単な説明】
【図1】本発明に係る自動製氷機における製氷皿の制御装置を示したブロック図
【図2】本発明に係る自動製氷機における製氷皿の制御装置を示した具体的構成例
【図3】駆動モータとパルス発生手段の動作タイミングを示したタイムチャート
【図4】従来技術における製氷皿と発信手段との関係を示したタイムチャート
【符号の説明】
1 製氷皿
2 駆動モータ
3 制御手段
4 製氷皿駆動手段
5 遅延駆動手段
4a 製氷皿駆動手段に設けられたカム山
5a 遅延駆動手段に設けられたカム山
6 パルス発生手段
7 製氷検知手段
8 検氷手段
9 貯氷箱
20 スイッチングレバー
21 磁石
22 支持片
30 アシストレバー
31 摺動面
32 従動ピン
40 ホール素子
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a technique for accurately detecting a reference position of an ice tray and reliably controlling the ice tray among a series of means for storing ice in an ice storage box in an automatic ice making means of a refrigerator. Things.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, various types of configurations have been disclosed for detecting the completion of ice making on an ice tray in a home refrigerator and storing the ice in an ice storage box installed thereunder. This basic technology detects that the water in the ice tray has frozen, then detects the amount of ice remaining in the ice bin, and if the ice is full, does not release the ice from the ice tray, If it is detected that there is no or little ice, the ice is removed from the ice tray and ice is stored in the ice tray.In either case, after driving the ice tray, the ice tray is returned to the initial position again. Thus, a series of operations is completed.
[0003]
[Problems to be solved by the invention]
By the way, in order to reliably perform the above-described operation, it is necessary to constantly detect the posture of the part performing the movement. For this purpose, the position where the ice tray is located should be determined as a reference, that is, the origin position, and the configuration must be such that this position can be reliably grasped. If the origin position is incorrect, for example, even if the ice tray is twisted to separate ice, the twist is weak or too strong, which may cause damage to the synthetic resin ice tray.
[0004]
Therefore, conventionally, the position of the ice tray has been detected by the transmitting means, and the origin position is set when the ice tray is in a horizontal state, and the output signal is changed before and after the origin position as a boundary. (See FIG. 4). According to this means, it is possible to detect from the change in the output signal that the ice tray is at the origin position, that is, in the horizontal state. However, since the signal becomes a steady state after the change, the output signal has changed. In order to reliably capture the ice, the ice tray must be turned forward and backward around the origin position. Therefore, according to this means, there is a problem that the rotation control of the ice tray is complicated and the water supplied to the ice tray is spilled by this movement.
[0005]
Further, as another means, the ice tray is forcibly stopped in a horizontal state against the driving force of the drive motor at the time of the return operation, and at this time, the ice tray is brought into a horizontal state by detecting a load applied to the drive motor. Although there is a method for detecting that there is, there is a problem that an overload is applied to the drive motor.
[0006]
The present invention has been made based on the above-described problem, and an object of the present invention is to provide a control device for an ice tray in an automatic ice maker that can accurately detect that the ice tray is in a reference position, that is, in a horizontal state, with a simple configuration. To provide.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention, an ice tray driving means for rotating an ice tray in a range where ice can be released from a horizontal state in cooperation with a drive motor, and when the ice tray is in a horizontal state, A delay drive unit having an overrun region that operates independently of the drive motor in addition to the operation region of the ice tray drive unit; and a pulse that outputs a pulse signal during a delay operation in the overrun region of the delay drive unit. A means for detecting the horizontal state of the ice tray by reading the change point of the pulse signal to a steady state. In addition, a means for stopping the drive motor at the same time as reading the change point of the pulse signal to the steady state is selectively used. Here, the transition point of the pulse signal to the steady state is the falling edge of the pulse signal whose amplitude changes in the positive direction, and the rising edge of the pulse signal whose amplitude changes in the negative direction. Is defined.
[0008]
Further, in the control device having the above configuration, a pulse signal different from the pulse signal output in the operation area of the delay driving means is output in the operation area of the ice tray driving means, and the rotation direction of the drive motor is determined based on the appearance order of both signals. Is selectively used. Further, a means of selectively using both signals as signals having different pulse widths was used.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 shows a block diagram of a control device of an ice tray in an automatic ice making machine according to the present invention, and FIG. 2 shows a specific configuration example thereof. In the figure, 1 is an ice tray, 2 is a drive motor, 3 is control means for controlling the rotation and stop of the drive motor 2 in the normal and reverse directions, and 4 is an interlock with the drive motor 2 to move the ice tray 1 from a horizontal state. This is an ice tray driving unit that rotates in a range where ice can be separated. That is, in the configuration example shown in FIG. 2, the ice tray driving means 4 is constituted by a gear provided with teeth meshing with the pinin-on gear P of the driving motor 2 at a predetermined angle (α = 160 degrees), and the rotation axis thereof is The ice tray 1 is fixed.
[0010]
With the above configuration, the operation area of the ice tray driving means 4 and the rotation area of the ice tray 1 correspond to each other, and the ice tray 1 rotates when the drive motor 2 rotates forward (when the pinion gear P rotates clockwise in the drawing). , And the operation of returning to the horizontal state is performed together with the reverse rotation of the drive motor 2. Then, when the ice tray 1 is in the returning operation, the ice tray driving means 4 does not work with the drive motor 2 at the same time as the ice tray 1 reaches the horizontal state. The plate 1 can be stopped in a horizontal state.
[0011]
Next, reference numeral 5 denotes a delay driving means for delaying the operation of the ice tray driving means 4 when the driving motor 2 rotates in the reverse direction. The delay driving means 5 is interlocked with the driving motor 2 even after the ice tray 1 is stationary in a horizontal state during the return operation. It works. That is, in the configuration example shown in FIG. 2, the delay driving means 5 is constituted by a gear provided with teeth over a predetermined angle (β = 35 degrees). 4, the shaft is coaxially fixed to the ice tray driving means 4 so as to mesh with the pinion gear P of the driving motor 2. Therefore, the delay driving means 5 has an overrun area in which the ice making tray 1 is in a horizontal state and independently of the operation area of the ice making tray driving means 4 by an angle β provided with teeth. .
[0012]
A pulse generator 6 outputs a pulse signal to the controller 3 in conjunction with the delay driver 5 in the overrun region. That is, in the configuration example shown in FIG. 2, the switching lever 20 having the magnet 21 facing the Hall element 40 at the tip and the support piece 22 provided in the middle part facing downward is rotatably fixed to the shaft. The pulse generating means 6 is formed by forming a cam ridge 5a on the inner circumference of the inside and further rotatably fixing an approximately L-shaped assist lever 30 between the support piece 22 and the cam ridge 5a. ing. Therefore, according to this configuration example, when the gear 5 having the cam ridge 5a is rotated, the driven pin 32 projecting from the assist lever 30 (in the depth direction in the figure) rides over the cam ridge 5a, so that the assist lever 30 is moved. Is rotated with the sliding surface 31 facing upward, and at this time, the support piece 22 of the switching lever 20 abutting on the sliding surface 31 is lifted, whereby the switching lever 20 is rotated, and the magnet 21 attached to the tip of the switching lever 20 is rotated. A pulse signal that is separated from the Hall element 40 and that matches the cam peak 5a is output.
[0013]
At the time of the ice releasing operation, the control means 3 determines whether to start the drive motor 2 based on signals output from the ice making detecting means 7 and the ice detecting means 8. That is, the ice making detecting means 7 detects the ice making state of the ice tray 1, and when the ice making detecting means 7 detects the completion of ice making, the control means 3 starts the drive motor 2 to start the ice releasing operation. To start. The ice detecting means 8 detects whether the ice storage box 9 is full or less than ice, and if the ice detecting means 8 detects a state of less than ice in the ice storage box, the control means 3 controls the ice making detecting means. While the ice removing operation is permitted in accordance with the signal 7, if the full ice state is detected, the stop of the ice removing operation is determined prior to the signal of the ice making detecting means 7. Here, the ice detecting means 8 can perform the ice detecting operation before rotating the ice tray 1, but if the ice detecting operation is performed during the rotation of the ice tray 1 and the state of less than ice is detected, the ice detecting means 8 remains unchanged. The ice-making tray 1 may be rotated to continue the ice-separating operation, and if the ice-full state is detected, the control means 3 may immediately reverse the driving motor 3 to perform the returning operation of the ice-making tray 1.
[0014]
Next, the operation of detecting the horizontal position of the ice tray by the control device having the above configuration will be described with reference to the time chart of FIG. 3 showing the operation timings of the ice tray 1, the drive motor 2 and the pulse generating means 6. Here, the ice tray 1 is assumed to be in a horizontal state with A as an origin position, and the drive motor 2 is driven with B as a starting point.
[0015]
First, when the ice making detecting means 7 and the ice detecting means 8 detect the completion of ice making of the ice tray 1 and the state of less than ice in the ice storage box 9, the control means 3 starts the drive motor 2 in the normal rotation direction. Accordingly, the delay drive means 5 operates up to A in conjunction with the drive motor 2. Further, the interval between A and B is set as an overrun area of the delay driving means 5, and a pulse signal T is output from the pulse generating means 6 to the control means 3 in this area. Then, the control means 3 can recognize that the drive motor 3 has been driven normally by the pulse signal T output when the drive motor 2 rotates forward by the above operation.
[0016]
Thereafter, from A, the ice tray driving means 4 performs a delay operation, and accordingly, the ice tray 1 rotates to start the actual ice releasing operation. As the operation of the ice tray driving means 4 proceeds, the inclination and deformation of the ice tray 1 increase, and the ice is completely removed with C being the rotation limit position of the ice tray 1. Then, the control means 3 detects the completion of ice separation, rotates the drive motor 2 in the reverse direction, and returns the ice tray 1 to the horizontal state.
[0017]
As the ice tray 1 reaches A by this returning operation, the ice tray driving means 4 stops operating in conjunction with the drive motor 2 at the same time. At this point, the ice tray 1 also terminates its return operation and stands still in a horizontal state. Thereafter, the drive motor 2 continues to be driven further. At this time, in the overrun region in which the delay drive means 5 operates in conjunction with the drive motor 2, the pulse signal T is output again from the pulse generation means 6 to the control circuit 3. The control means 3 reads the falling edge of the pulse signal T to detect that the ice tray 1 is in a horizontal state, stops driving the drive motor 2, and returns to the initial state before the ice releasing operation. .
[0018]
That is, in the series of operations described above, when the drive motor 2 is rotating in the reverse direction so as to return the ice tray 1 to the return operation, the falling of the pulse signal T generated in the overrun region of the delay drive unit 5 is controlled by the control unit. By reading at 3, the ice tray 1 can be reliably detected as being in a horizontal state.
[0019]
In the above embodiment, a positive-going pulse signal consisting of a rising and a falling order is output, and the falling of the pulse signal is read. However, a negative-going pulse signal consisting of a falling and a rising order is output. The horizontal state of the ice tray 1 can be detected by reading the rising edge of the pulse signal. What is needed here is to output a signal whose amplitude changes from the steady state and lasts for a finite time and returns to the original steady state, and reads the transition point of this signal to the steady state. is there.
[0020]
In addition, if the control means 3 is configured to be able to grasp the rotation direction of the drive motor 2, it is not essential to generate the pulse signal T in the overrun region when the drive motor 2 rotates forward. That is, in order to detect the horizontal state of the ice tray 1, it is only necessary to be able to read the falling edge of the pulse signal T when the drive motor 2 is rotating in the reverse direction.
[0021]
If the control means 3 does not have the function of grasping the rotation direction of the drive motor 2 described above, and the pulse signal T is output even when the drive motor 2 is rotating forward, the horizontal configuration of the ice tray 1 can be achieved with this configuration. In order to detect the state, another pulse signal T1 is output even during the return operation of the ice tray 1 (see FIG. 3). This is because in the configuration example shown in FIG. 2, a cam ridge 4a is provided on the inner periphery of the gear constituting the ice tray driving means 4, and the support piece 22 of the switching lever 20 rides over the cam ridge 4a so that the cam ridge 4a Can be output. That is, the control means 3 can grasp the rotation direction of the drive motor 2 from the appearance order of the pulse signal T in the overrun area and the pulse signal T1 during the return operation. In order to monitor the order of appearance by the control means 3, it is necessary to make both pulse signals identifiable by, for example, changing the pulse width and amplitude. In the configuration example shown in FIG. This can be realized by changing the peak height and the arc length of the cam peaks 5a and 4a of the delay driving means 5 and the ice tray driving means 4.
[0022]
【The invention's effect】
As described above, according to the present invention, the pulse signal is output after the ice tray has stopped in the horizontal state when the drive motor is rotating in the reverse direction, so that the point at which the pulse signal changes to the steady state can be read. It was possible to reliably detect that the ice tray was horizontal. According to the second aspect of the present invention, since the drive motor is stopped at the same time when the change point is read, it is possible to prevent the drive motor from being overloaded.
[0023]
According to the third aspect of the present invention, a pulse signal is also output in the operation region of the ice tray driving means separately from the pulse signal. Therefore, the drive motor is reversed by detecting the appearance order of both pulse signals. I was able to grasp it for sure. Further, according to the invention of claim 4, since the pulse widths of both pulse signals are changed to enable the identification, the order of appearance can be easily detected.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a control device for an ice tray in an automatic ice maker according to the present invention; FIG. 2 is a specific configuration example showing a control device for an ice tray in an automatic ice maker according to the present invention; FIG. Time chart showing operation timing of drive motor and pulse generating means. [FIG. 4] Time chart showing relationship between ice tray and transmitting means in the prior art.
REFERENCE SIGNS LIST 1 ice tray 2 drive motor 3 control means 4 ice tray drive means 5 delay drive means 4a cam peak 5a provided in ice tray drive means cam peak 6 provided in delay drive means 6 pulse generation means 7 ice detection means 8 ice detection Means 9 Ice storage box 20 Switching lever 21 Magnet 22 Support piece 30 Assist lever 31 Sliding surface 32 Follower pin 40 Hall element

Claims (4)

駆動モータと連動して製氷皿を水平状態から離氷可能な範囲で回動させる製氷皿駆動手段と、上記製氷皿が水平状態にあるときを境として上記製氷皿駆動手段の動作領域とは別に上記駆動モータと連動して独立動作するオーバーラン領域をもつ遅延駆動手段と、この遅延駆動手段のオーバーラン領域における遅延動作中にパルス信号を出力するパルス発生手段とを備え、上記パルス信号の定常状態への変化点を読み取ることにより製氷皿の水平状態を検知することを特徴とした自動製氷機における製氷皿制御装置。An ice tray driving means for rotating the ice tray in a range where ice can be released from a horizontal state in conjunction with a drive motor; and an operation area of the ice tray driving means separately when the ice tray is in a horizontal state. A delay drive unit having an overrun region that operates independently in conjunction with the drive motor; and a pulse generation unit that outputs a pulse signal during a delay operation in the overrun region of the delay drive unit. An ice tray control device for an automatic ice maker, wherein a horizontal state of an ice tray is detected by reading a change point to a state. パルス信号の定常状態の変化点を読み取ると同時に駆動モータを停止させる請求項1記載の自動製氷機における製氷皿制御装置。2. The ice tray control device for an automatic ice maker according to claim 1, wherein the drive motor is stopped at the same time as the steady-state change point of the pulse signal is read. 遅延駆動手段の遅延動作中に出力されるパルス信号とは別のパルス信号を製氷皿駆動手段の動作中に出力し、両信号の出現順序から駆動モータの回転方向を判別する請求項1または2記載の自動製氷機における製氷皿制御装置。A pulse signal different from the pulse signal output during the delay operation of the delay driving means is output during the operation of the ice tray driving means, and the rotation direction of the drive motor is determined from the appearance order of both signals. An ice tray control device in the automatic ice maker described in the above. 両信号はパルス幅が、異なる請求項3記載の自動製氷機における製氷皿制御装置。4. The ice tray control apparatus according to claim 3, wherein the two signals have different pulse widths.
JP3326697A 1997-01-30 1997-01-30 Ice tray control device for automatic ice maker Expired - Fee Related JP3598328B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP3326697A JP3598328B2 (en) 1997-01-30 1997-01-30 Ice tray control device for automatic ice maker
KR1019980002554A KR100292961B1 (en) 1997-01-30 1998-01-30 Control apparatus of ice making tray to control driving of said tray by detecting a reference position of said tray
CN 98106464 CN1093623C (en) 1997-01-30 1998-01-30 Detecting base position of ice making disk and ice making disk controller for controlling ice making dick driving

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3326697A JP3598328B2 (en) 1997-01-30 1997-01-30 Ice tray control device for automatic ice maker

Publications (2)

Publication Number Publication Date
JPH10220941A JPH10220941A (en) 1998-08-21
JP3598328B2 true JP3598328B2 (en) 2004-12-08

Family

ID=12381729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3326697A Expired - Fee Related JP3598328B2 (en) 1997-01-30 1997-01-30 Ice tray control device for automatic ice maker

Country Status (1)

Country Link
JP (1) JP3598328B2 (en)

Also Published As

Publication number Publication date
JPH10220941A (en) 1998-08-21

Similar Documents

Publication Publication Date Title
JP2838647B2 (en) Method and apparatus for setting ejector return limit completion position of ejector mechanism in injection molding machine
KR970047507A (en) How to control the ice machine of automatic ice maker
JP2018179142A (en) Shift range control device
JP2014101919A (en) Range changeover device
JP6274085B2 (en) Motor control device
JP3598328B2 (en) Ice tray control device for automatic ice maker
JP2020176638A (en) Shift range control device
DE60020916D1 (en) Pressure control unit, pressure control method and storage media for storing the pressure control program
JP4515564B2 (en) Shift automatic return device in automatic transmission
US5755171A (en) Control apparatus and method for sewing machine
JP4326396B2 (en) Screw removal mold and control method thereof
JP3071599B2 (en) Ice tray drive
JPH0218379Y2 (en)
JP3700494B2 (en) Initializing device for shift control system in continuously variable transmission
JP2007247286A (en) Opening/closing body driving control device
KR980003353A (en) Control Method of Ice Making Mode of Automatic Ice Maker
US11906045B2 (en) Actuator control device
JP2875763B2 (en) Ice making equipment
JP2562912B2 (en) Sewing machine drive
JP3237891B2 (en) Switch signal processing device
JP3422362B2 (en) Disk tray drive
JP4063458B2 (en) Diesel engine control device
JP2681719B2 (en) Ice breaker for ice machine
JPH10220943A (en) Drive control device of ice-making tray of automatic ice-making device
KR100285474B1 (en) Device and method for controlling power-on downshift of automatic transmission

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040629

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040730

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees