JP3598196B2 - Periodic pattern defect inspection equipment - Google Patents

Periodic pattern defect inspection equipment Download PDF

Info

Publication number
JP3598196B2
JP3598196B2 JP5734597A JP5734597A JP3598196B2 JP 3598196 B2 JP3598196 B2 JP 3598196B2 JP 5734597 A JP5734597 A JP 5734597A JP 5734597 A JP5734597 A JP 5734597A JP 3598196 B2 JP3598196 B2 JP 3598196B2
Authority
JP
Japan
Prior art keywords
difference
defect
output
cycle
operation means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5734597A
Other languages
Japanese (ja)
Other versions
JPH10253332A (en
Inventor
憲一 川路
真幸 川島
晃正 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nireco Corp
Olympus Corp
Original Assignee
Nireco Corp
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nireco Corp, Olympus Corp filed Critical Nireco Corp
Priority to JP5734597A priority Critical patent/JP3598196B2/en
Publication of JPH10253332A publication Critical patent/JPH10253332A/en
Application granted granted Critical
Publication of JP3598196B2 publication Critical patent/JP3598196B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、液晶パネルやそのカラーフィルタ、シャドウマスク等の周期的パターンを有する検査対象における傷や、ピンホール、黒点、ゴミ、パターンの欠け等の欠陥を検査する周期パターン検査装置に関する。
【0002】
【従来の技術】
従来、周期的パターンの欠陥を検出する方法として特開平4−316346号、特開平6−129992号、特開平7−159343号公報等があり、これらは周期的パターンをラインセンサで走査し、元の画像とこれをずらした画像とを比較し、相違した場合、その相違部分を欠陥として検出する技術を開示している。
【0003】
【発明が解決しようとする課題】
欠陥には傷、ピンホール、汚れ、ゴミ、パターンの欠け等があり、これらは画像上、黒くまたは白く表れる。このため、欠陥が黒か白かがわかれば、欠陥の原因もかなり推定できる。また欠陥は1周期長以内の場合が多いが、1周期長を超えるものもある。しかし、従来の技術では白と黒の欠陥を同時刻で区別して検出することができなかった。また1周期長を超える欠陥と、その欠陥が白か黒かの区別を検出することはできなかった。
【0004】
本発明は上述の問題点に鑑みてなされたもので、周期的パターンに生じる欠陥を白欠陥、黒欠陥に区別して検出する検査装置を提供することを目的とする。さらに1周期長を超える大欠陥についても、白欠陥、黒欠陥を区別して検出する装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
請求項の発明では、一定の周期でパターンが反復する検査対象物の欠陥を検査する装置であって、前記パターンを線型走査してイメージセンサで読み取り多値画像を得る画像入力手段と、前記多値画像をAとし、このAより1周期遅延した多値画像をBとし、前記Aより2周期遅延した多値画像をCとし、各多値画像の同時刻における差分であって、AとBとの差分A−B,BとAとの差分B−A,BとCとの差分B−C,CとBとの差分C−Bを演算する差分演算手段と、前記各差分A−B,B−A,B−C,C−Bが所定のしきい値より大きいときは1,未満のときは負の場合も含めて0とする2値化を行う2値化手段と、この2値化手段による各差分の2値化値を対応するアルファベットの小文字によりa−b,b−a,b−c,c−bと表わした場合、b−aとb−cの論理積を演算する第1論理積演算手段と、a−bとc−bとの論理積を演算する第2論理積演算手段と、を備え、前記多値画像はMからN(M,N共正数でM<N)の多値で表されている。
【0008】
多値画像について、最暗レベルは0、最明レベルはNとした場合、白欠陥は周期長だけ離れた両隣の濃度値と比べてあるしきい値(L1)よりも高い濃度レベルを持っており、黒欠陥は他のしきい値(L2,L2<LI)よりも低い濃度レベルを持っている。また欠陥がない場合は両隣とほぼ同様の濃度レベルを持っている。いま、1周期長内に欠陥があって、それが白欠陥であるとする。欠陥の発生した周期の画像Bを中心として同時刻におけるAとの差分B−A,Cとの差分B−Cをとると、差分B−A,差分B−C,は正の値になる。この差分B−A,差分B−Cを所定のしきい値L1と比較し、これより大きいとき1,それ以外のとき0として2値化する。しきい値として適切に欠陥を表す値とすることにより、確実に欠陥を取り出すことができる。そして2値化差分b−a,b−cが共に1のときは白欠陥と判定することができる。つまり、ある周期とこの1つ前の周期の比較、ある周期とこの1つ後の周期の比較をすることにより、ある周期内に欠陥が有るか否か、その欠陥は白欠陥か黒欠陥か、その周期内の欠陥かが分かる。
【0009】
また1周期長以下の黒い欠陥が存在するとき、欠陥の発生した周期の画素Bを中心として同時刻におけるAとの差分A−B,Cとの差分C−Bをとる。差分A−B,差分C−Bは正の値となる。この差分A−B,差分C−Bを所定のしきい値L2と比較し、これより大きい時は1、それ以外は0として2値化する。しきい値として適切に欠陥を表す値とすることにより、確実に欠陥を取り出すことができる。この2値化差分a−b,c−bが共に1のときは黒い欠陥と判定することができる。これにより欠陥の検出のみならず、白い欠陥か黒い欠陥かも判定することができる。
【0010】
請求項の発明では、前記多値画像で、最暗レベルを0、最明レベルをN(正数)で多値化表示しているときは、前記第1論理積演算手段の出力が1ときは1周期長以下の白欠陥、前記第2論理積演算手段の出力が1のときは1周期長以下の黒欠陥と判定する。
【0011】
多値画像で0を最暗レベル、Nを最明レベルとして0よりNまでで多値を表示している場合、1周期長両隣の濃度と比較して、しきい値L1より高いレベルにあるときは白い欠陥である。故に請求項2の場合で説明した2値化差分b−a,b−cが共に1の場合に相当し、これは第1論理積演算手段の出力が1の場合である。また、1周期長両隣の濃度と比較して、しきい値L2(L1>L2)より低いレベルにあるときは黒い欠陥である。故に請求項2の場合で説明した2値化差分a−b,c−bが共に1の場合に相当し、これは第2論理積演算手段の出力が1の場合である。
【0012】
請求項の発明では、前記多値画像で最明レベルを0、最暗レベルをN(正数)で多値化表示している時は、前記第1論理積演算手段の出力が1のときは1周期長以下の黒欠陥、前記第2論理積演算手段の出力が1のときは1周期長以下の白欠陥と判定する。
【0013】
本発明は多値化の設定を請求項の場合と反対にしたもので、0を最明レベル、Nを最暗レベルとして多値化を表した場合である。1周期長離れた両隣よりもしきい値L2より小さな値のときは白い欠陥であり、1周期長離れた両隣よりもしきい値L1(L1>L2)より大きな値のときは黒い欠陥である。黒の欠陥の場合、請求項2の場合で説明した2値化差分b−a,b−cが共に1の場合に相当し、これは第1論理積演算手段の出力が1の場合である。また、1周期長両隣の濃度と比較して、しきい値L2より小さな値のときは白い欠陥である。白い欠陥の場合、請求項の場合で説明した2値化差分a−b,c−bが共に1の場合に相当し、これは第2論理積演算手段の出力が1の場合である。
【0014】
請求項の発明では、一定の周期でパターンが反復する検査対象物の欠陥を検査する装置であって、前記パターンを線形走査してイメージセンサで読み取り多値画像を得る画像入力手段と、前記多値画像をAとし、このAより1周期長遅延した多値画像をBとし、前記Aより2周期長遅延した多値画像をCとし、各多値画像の同時刻における差分であって、AとBとの差分A−B,BとAとの差分B−A,BとCとの差分B−C,CとBとの差分C−Bを演算する差分演算手段と、前記各差分A−B,B−A,B−C,C−Bが所定のしきい値より大きいときは1,未満のときは負の場合も含めて0とする2値化を行う2値化手段と、この2値化手段による各差分の2値化値を対応するアルファベットの小文字によりa−b,b−a,b−c,c−bと表わした場合、b−aの反転値と、b−cと、c−bの1周期遅延値の反転値との論理積を得る第3論理積演算手段と、a−bの反転値と、c−bと、b−cの1周期遅延値の反転値との論理積を得る第4論理積演算手段とを、備える。
【0015】
白い欠陥で1周期長を超える長欠陥の特徴を図8を用いて説明する。まず長欠陥の始まる1周期目について、Pの期間では、BとAが同じレベルで、CはAとBより低いレベルである。さらに、P−1の期間ではBとCは同じレベルである。これは2値化差分b−aが0,b−cが1,c−bの1周期遅延値が0であることを意味する。故にb−aの反転値と、b−cの値と、c−bの1周期遅延値の反転値とが全て1になるので、第3論理積演算手段の出力が1となる。
【0016】
また長欠陥の終わる周期について、Qの期間ではAとBは同じレベルで、CはA,Bより高いレベルである。さらにQ−1期間ではCとBは同じレベルである。これは請求項5の発明で2値化差分a−bが0、c−bが1、b−cの1周期遅延値が0であることを意味する。故にa−bの反転値と、b−cの値と、b−cの1周期遅延値の反転値とが全て1になるので第4論理積演算手段の出力は1となる。
【0017】
黒い欠陥で1周期長を超える長欠陥の特徴を図9を用いて説明する。長欠陥の始まる1周期目について、Pの期間では、BとAが同じレベルで、CはB,Aより高いレベルである。さらにP−1の期間ではBとCは同じレベルである。これは請求項5の発明で2値化差分a−bが0、c−bが1、b−cの1周期遅延値が0であることを意味する。故にa−bの反転値と、b−cの値と、b−cの1周期遅延値の反転値とが全て1となるので、第4論理積演算手段の出力は1となる。
【0018】
また長欠陥の終わる周期について、Qの期間では、BとAが同じレベルであり、CはB,Aよりも低レベルである。さらにQ−1の期間ではBとCは同じレベルである。これは請求項5の発明で2値化差分b−aが0、b−cが1、c−bの1周期遅延値が0であることを意味する。故にb−aの反転値と、b−cの値と、c−bの1周期遅延値の反転値とが全て1になるので、第3論理積演算手段の出力が1となる。
【0019】
以上のように白い欠陥で1周期長を超える長欠陥が存在するとまず第3論理積演算手段の出力が1となり、続いて第4論理積演算手段の出力が1となる。また黒い欠陥で1周期長を超える長欠陥が存在すると、まず第4論理積演算手段の出力が1となり、続いて第3論理積演算手段の出力が1となる。これにより1周期長を超える長欠陥をそれが白い欠陥か、黒い欠陥かを区別して検出することができる。
【0020】
請求項6の発明では、前記多値画像で最暗レベルを0、最明レベルをN(正数)で多値化表示しているときは、前記第3論理積演算手段の出力が1となり、これに続いて前記第4論理積演算手段の出力が1となったとき、1周期長を超える白欠陥と判定し、前記第4論理積演算手段の出力が1となり、これに続いて前記第3論理積演算手段の出力が1となったとき1周期長を超える黒欠陥と判定する。
【0021】
多値化表示を0が最暗レベル、Nが最明レベルとした場合、請求項の発明によれば、白欠陥で1周期長を超える長欠陥が存在する場合、第3論理積演算手段の出力が1となり、続いて第4論理積演算手段の出力が1となる。また黒欠陥で1周期長を超える長欠陥が存在する場合、第4論理積演算手段の出力が1となり、続いて第3論理積演算手段の出力が1となる。
【0022】
請求項7の発明では、前記多値画像で最明レベルを0、最暗レベルをN(正数)で多値化表示している時は、前記第3論理積演算手段の出力が1となり、これに続いて前記第4論理積演算手段の出力が1となったとき、1周期長を超える黒欠陥と判定し、前記第4論理積演算手段の出力が1となり、これに続いて前記第3論理積演算手段の出力が1となったとき、1周期長を超える白欠陥と判定する。
【0023】
多値化表示を0が最明レベル、Nが最暗レベルとした場合、請求項の発明によれば、黒欠陥で1周期長を超える長欠陥が存在すると、まず第3論理積演算手段の出力が1となり、続いて第4論理積演算手段の出力が1となる。また白欠陥で1周期長を超える長欠陥が存在すると、まず第4論理積演算手段の出力が1となり、続いて第3論理積演算手段の出力が1となる。
【0024】
請求項の発明では、一定の周期でパターンが反復する検査対象物の欠陥を検査する装置であって、前記パターンを線形走査してイメージセンサで読み取り多値画像を得る画像入力手段と、前記多値画像をAとし、このAより1周期遅延した多値画像をBとし、前記Aより2周期遅延した多値画像をCとし、各多値画像の同時刻における差分であって、AとBとの差分A−B,BとAとの差分B−A,BとCとの差分B−C,CとBとの差分C−Bを演算する差分演算手段と、前記各差分A−B,B−A,B−C,C−Bが所定のしきい値より大きいときは1,未満のときは負の場合も含めて0とする2値化を行う2値化手段と、この2値化手段による各差分の2値化値を対応するアルファベットの小文字によりa−b,b−a,b−c,c−bと表わした場合、b−aとb−cの論理積を演算する第1論理積演算手段と、a−bとc−bとの論理積を演算する第2論理積演算手段と、b−aの反転値と、b−cと、c−bの1周期遅延値の反転値との論理積を得る第3論理積演算手段と、a−bの反転値と、c−bと、b−cの1周期遅延値の反転値との論理積を得る第4論理積演算手段とを、備える。
【0025】
本発明は、請求項の発明と請求項の発明を連結したもので、1周期長以内の欠陥を白欠陥と黒欠陥を区別して検出できると共に、1周期長を超える長欠陥を白欠陥と黒欠陥とに区別して検出できる。
【0026】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して説明する。
図1は本実施の形態の構成を示すブロック図である。検査対象物1は矢印方向に移動し、この移動方向と直交する方向に周期的パターンを有している。ラインセンサカメラ2は内蔵するラインセンサの長さ方向(センサ素子の並び方向)を検査対象物1の移動方向と直交するように配置し、移動する周期パターンを持った画像を取り込む。A/D変換器3はラインセンサカメラ2からのビデオ信号の濃淡画像をアナログ/デジタル変換して8ビット(256階調)の多値画像に変換し、この多値画像をAとする。1周期長遅延回路4はAを1周期長遅延させこの出力をBとする。2周期長遅延回路5はAを2周期長遅延させこの出力をCとする。欠陥判定回路6はA,B,Cを入力し周期的なパターンに発生した欠陥を検出する。欠陥は傷、ピンホール、汚れ、ゴミ、パターンの欠け等で、これらは多値画像で0を最暗レベル、255を最明レベルとしその間を順次最暗レベルから最明レベルに変化させる階調とする場合、1周期長離れた両隣に比べてあるしきい値L1より高いレベルにあるとき白欠陥、他のしきい値L2(L1>L2)より低いレベルにあるとき黒欠陥とする。以下の説明は0を最暗レベル、255を最明レベルとして説明する。欠陥判定回路6は欠陥をこの白欠陥または黒欠陥に分類して2値化画像として出力する。
【0027】
図2は検査対象物1としての液晶パネルの一例を示す。これはリード線11とゲート線12が格子状に配線され、交点にTFT(Thin Film Transister) が配置されている。格子間隔は横方向、縦方向共規則的に配置され、ラインセンサカメラ2はゲート線方向(横方向)に走査してゆき、リード線11の間隔を1周期長とする画像Aが得られる。欠陥は1周期長以内の白欠陥14、黒欠陥15があり、また1周期長を超える白長欠陥16、黒長欠陥17がある。
【0028】
ラインセンサカメラ2のラインセンサにより撮像される画像は、走査方向(図2で横方向、ゲート線12方向)に1列に並んだ画素列より構成される。ラインセンサは検出精度を高めるように構成されている。つまりパターン検査に必要な分解能が得られるように1周期中の画素数を定めている。ラインセンサのセンサ素子の大きさが撮像される画像の1つの画素の大きさとなっている。この画素の大きさは例えば10μm程度で、1周期長が100μmの場合、ほぼ10個ぐらいの画素で1周期長を表している。しかし、周期長と、センサ素子の大きさはそれぞれ独立のものであるので、1周期長を表す画素の数が整数個とならない場合が普通である。例えば1周期長が9.4画素などで表される。
【0029】
このように1周期長が整数の画素数で表されない場合、1周期遅延画像B、2周期遅延画像Cの作成方法を説明する。例えば、1周期長が9.4画素の場合、1周期を構成する各画素を1周期長(つまり9.4画素)遅延させるには、次に示す(1)式により線形補間して、まず0.4画素遅延した場所のデータを算出する。さらにそのデータを9画素(整数部)遅らせることで、9.4画素遅延させることができる。
【0030】
線形補間式:Qi=(mP+nPi+1 )/10 ……(1)
ここでm+n=10である。Pは遅延させようとする画素の濃淡階調、Pi+1 は隣の画素の濃淡階調、0.4画素遅延する場合はm=6,n=4であり、Qiは0.4画素遅延した位置の濃淡階調である。これにより0.1画素刻みの遅延を行うことができる。2周期遅延の場合は、9.4×2=18.8画素になるので、先と同様に(1)式を用いてm=2,n=8とし、0.8画素遅延した場所のデータを線形補間で算出し、さらにそのデータを18画素(整数部)遅らせることにより、2周期遅延画像を得ることができる。
【0031】
図3は白欠陥、黒欠陥の検出方法を示す。白欠陥、黒欠陥の検出信号の立ち上がりエッジで座標値を読み取ることにより、欠陥の所在位置が判明する。座標値はラインセンサの1画素毎にインクリメントするX座標と、ラインセンサの画像取り込み開始信号毎にインクリメントするY座標とがある。本装置では、欠陥の立ち上がりと、立ち下がりの座標値をランレングスデータとして記憶している。このランレングスデータを連結処理することにより、欠陥の大きさを知ることができる。
【0032】
図4はラインセンサより得られる1ライン画像Aと、このAの1周期遅延画像B、およびAの2周期遅延画像Cの関係を表す図である。▲1▼,▲2▼,▲3▼は連続した3周期長の画像を表す。以下に述べるA,B,C間の差分は同一時刻における各周期長の差分を演算する。例えば、差分B−AはBの▲2▼とAの▲3▼の差分,差分B−CはBの▲2▼とCの▲1▼の差分である。
【0033】
図5は図1の欠陥判定回路6の内容を表す。A,B,Cは図4に示す値である。差分2値化器21aは画像AとBとの差分A−Bを演算し、この値を所定のしきい値で2値化し、これを2値化差分a−bで表す。差分は値が負となった場合は0とする。所定のしきい値は、差分が欠陥を表す限界を示すもので、このしきい値を超える差分は欠陥となり、未満の差分は正常なものとする。このしきい値は検査対象物1の種類などに応じて定められるものである。同様に差分2値化器21bは差分B−Aを演算し、2値化差分b−aを出力し、差分2値化器21cは差分B−Cを演算し、2値化差分b−cを出力し、差分2値化器21dは差分C−Bを演算し、2値化差分c−bを出力する。
【0034】
1周期遅延器22は2値化差分値を1周期遅延する。これにより2値化差分b−cは1周期遅延され、これをD(b−c)で表す。同様に2値化差分c−bの1周期遅延値もD(c−b)で表す。第1論理積演算器23は2値化差分b−aとb−cの論理積を演算する。第2論理積演算器24は2値化差分a−bとc−bの論理積を演算する。第3論理積演算器25は2値化差分b−aの反転値と、b−cと、c−bの1周期遅延値D(c−b)の反転値の論理積を演算する。第4論理積演算器26は2値化差分a−bの反転値と、c−bと、b−cの1周期遅延値D(b−c)の反転値の論理積を演算する。判定回路27は各論理積演算器23〜26の出力から欠陥の判定を行う。
【0035】
判定回路27は次の欠陥判定を行う。第1論理積演算器23の出力が1のとき、白欠陥と判定し、かつ、第3および第4論理積演算器25,26の出力が1でないとき、1周期長以内の白欠陥と判定する。第2論理積演算器24の出力が1のとき、黒欠陥と判定し、かつ、第3および第4論理積演算器25,26の出力が1でないとき1周期長以内の黒欠陥と判定する。第3論理積演算器25の出力が1で、これに続いて第4論理積演算器26の出力が1となるとき、1周期長以上の白欠陥と判定し、第4論理積演算器26の出力が1で、これに続いて第3論理積演算器25の出力が1となる場合、1周期長以上の黒欠陥と判定する。
【0036】
図6〜図9は図5の欠陥判定回路6のタイミングチャートである。図6は1周期長以内の白欠陥を検出するタイミングチャート、図7は1周期長以内の黒欠陥を検出するタイミングチャート、図8は1周期長を超える白欠陥を検出するタイミングチャート、図9は1周期長を超える黒欠陥を検出するタイミングチャートである。
【0037】
図6において、Aはラインセンサより出力される原画像で、検査対象物1としては図2に示した液晶パネルである。周期的に表れる下方に向いたパルス30はリード線11を表し、このパルス間の長さが1周期長となる。パルス間を結ぶ水平線はリード線11間のフィルタの濃淡レベル31を表し、このレベル31より黒は下方、白は上方である。レベル31より上方に盛り上がった形状が1周期長以内の白欠陥32を表している。BはAの1周期遅延画像、CはAの2周期遅延画像である。差分B−A,B−C,A−B,C−Bでは負の値は0とする。これら差分を所定のしきい値で2値化した2値化差分b−a,b−c,a−b,c−bは、差分B−A,B−C,A−B,C−Bと同じ形状となっている。第1論理積演算器23はb−aとb−cの値が1のとき、出力1となる。白欠陥の場合、図6に示すようにb−a,b−cは1となっているので、第1論理積演算器23の出力は1となる。これにより1周期長以内の白欠陥を検出することができる。
【0038】
次に1周期長以下の黒欠陥の検出を説明する。図7において、黒欠陥があるとパルス30間の濃淡レベル31に黒欠陥33が表れる。第2論理積演算器24は2値化差分a−b,c−bが共に1のとき1を出力する。黒欠陥の場合、a−b,c−bは共に1となるので第2論理積演算器24の出力が1のとき1周期長以内の黒欠陥と判定する。
【0039】
次に1周期長を超える白欠陥の検出を説明する。図8において、1周期長を超える白欠陥34が表れている。第3論理積演算器25は2値化差分b−aの反転値と、b−cと、c−bの1周期遅延値D(c−b)の反転値が1のとき1を出力する。また、第4論理積演算器26は2値化差分a−bの反転値と、c−bと、b−cの1周期遅延値D(b−c)の反転値が1のとき、1を出力する。1周期長を超える白欠陥の場合、周期P(最初に白欠陥が表れる周期P−1の次の周期)において、第3論理積演算器25の出力が1となる。また周期Q(C画像で白欠陥が表れる最後の周期)で第4論理積演算器26の出力が1となる。このように第3論理積演算器25の出力が1となり、これに続いて第4論理積演算器26の出力が1となったとき、1周期長を超える白欠陥と判定する。なお、1周期長以内の白欠陥の場合は第3および第4論理積演算器25,26は1とならない。しかし第1論理積演算器23は1周期長を超える白欠陥の場合、1となる場合がある。故に1周期長を超える白欠陥か否かは第3および第4論理積演算器25,26の出力によって判定する。
【0040】
次に1周期長を超える黒欠陥の検出を説明する。図9において、1周期長を超える黒欠陥35が表れている。1周期長を超える黒欠陥の場合、周期P(最初に黒欠陥が表れる周期P−1の次の周期)において、第4論理積演算器26の出力が1となる。また周期Q(C画像で黒欠陥が表れる最後の周期)で第3論理積演算器25の出力が1となる。このように第4論理積演算器26の出力が1となり、続いて第3論理積演算器25の出力が1となったとき、1周期長を超える黒欠陥と判定する。なお、1周期長以内の黒欠陥の場合は第3および第4論理積演算器25,26の出力は1とならない。しかし、第2論理積演算器24は1周期長を超える黒欠陥の場合1となる場合がある。故に1周期長を超える黒欠陥か否かは第3および第4論理積演算器25,26の出力によって判定する。
【0041】
以上の説明は濃淡階調設定において、最暗レベルを0、最明レベルをN(8ビットの濃淡表示の場合N=255)としたが、これを逆にして最暗レベルをN,最明レベルを0としても本発明は成立する。また、実施形態では、リニアセンサを用いた場合で説明したが、面撮像素子の1走査線について行ってもよい。
【0042】
【発明の効果】
以上の説明より明らかなように、本発明は元の画像A,この1周期遅延画像B,Aの2周期遅延画像Cについて、Bに対するAまたはCの差分を求め、この2値化値の論理積を演算することにより、1周期長以内またはこれを超えるか否かを区別し、さらに白欠陥または黒欠陥を判定することができる。
【図面の簡単な説明】
【図1】実施形態の構成を示すブロック図である。
【図2】検査対象物の一例を示す図である。
【図3】欠陥を検出する方法を説明する図である。
【図4】ラインセンサより得られる1ライン画像A,1周期長遅延画像B,2周期長遅延画像Cを示す図である。
【図5】欠陥判定回路の構成を示す図である。
【図6】1周期長以内の白欠陥を検出するタイミングチャートである。
【図7】1周期長以内の黒欠陥を検出するタイミングチャートである。
【図8】1周期長を超える白欠陥を検出するタイミングチャートである。
【図9】1周期長を超える黒欠陥を検出するタイミングチャートである。
【符号の説明】
1 検査対象物
2 ラインセンサカメラ
3 A/D変換器
4 1周期長遅延回路
5 2周期長遅延回路
6 欠陥判定回路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a periodic pattern inspection apparatus for inspecting defects such as scratches, pinholes, black spots, dust, and missing patterns in an inspection object having a periodic pattern such as a liquid crystal panel, a color filter thereof, and a shadow mask.
[0002]
[Prior art]
Conventionally, methods for detecting a defect in a periodic pattern include JP-A-4-316346, JP-A-6-129998, and JP-A-7-159343, which scan a periodic pattern with a line sensor and scan the original pattern. A technique is disclosed in which an image is compared with an image shifted from the image, and if the image is different, the difference is detected as a defect.
[0003]
[Problems to be solved by the invention]
Defects include scratches, pinholes, dirt, dust, missing patterns, etc., which appear black or white on the image. For this reason, if it is known whether the defect is black or white, the cause of the defect can be considerably estimated. In many cases, the defects have a length of one cycle or less, but some defects exceed one cycle. However, according to the conventional technique, it is not possible to detect the white and black defects separately at the same time. Further, it was not possible to detect a defect exceeding one cycle length and whether the defect was white or black.
[0004]
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems, and has as its object to provide an inspection apparatus that detects a defect occurring in a periodic pattern by distinguishing the defect into a white defect and a black defect. It is still another object of the present invention to provide a device for distinguishing and detecting a white defect and a black defect even for a large defect exceeding one cycle length.
[0007]
[Means for Solving the Problems]
The invention according to claim 1 is an apparatus for inspecting a defect of an inspection object in which a pattern is repeated at a constant cycle, wherein the pattern is linearly scanned, and an image sensor is read by an image sensor to obtain a multi-valued image. A multi-valued image is denoted by A, a multi-valued image delayed by one cycle from A is denoted by B, a multi-valued image delayed by two cycles from A is denoted by C, and the difference of each multi-valued image at the same time is A and Difference calculating means for calculating a difference AB between B, a difference BA between B and A, a difference BC between B and C, and a difference CB between C and B; A binarizing means for performing binarization to set B, BA, BC, and CB to 0 when the value is larger than a predetermined threshold value and to 0 when the value is smaller than a predetermined threshold value, including negative values; The binarized value of each difference by the binarizing means is represented by ab, ba, bc, c by the corresponding lowercase alphabet. When expressed as b, first AND operation means for calculating the logical AND of ba and bc, and second AND operation means for calculating the logical AND of ab and cb, The multi-valued image is represented by multi-values from M to N (M and N are both positive and M <N).
[0008]
Assuming that the darkest level is 0 and the brightest level is N for the multi-valued image, the white defect has a density level higher than a certain threshold value (L1) as compared with the density values on both sides separated by the cycle length. Therefore, the black defect has a density level lower than other threshold values (L2, L2 <LI). When there is no defect, the density level is almost the same as that on both sides. Now, it is assumed that there is a defect within one cycle length, which is a white defect. Taking the difference B-A and the difference B-C from A at the same time centering on the image B of the cycle in which the defect occurs, the difference B-A and the difference B-C have positive values. The difference BA and the difference BC are compared with a predetermined threshold value L1. By appropriately setting the threshold value to a value representing the defect, the defect can be reliably taken out. When both the binarized differences ba and bc are 1, it can be determined as a white defect. That is, by comparing a certain period with the immediately preceding period, and comparing a certain period with the immediately following period, it is determined whether or not there is a defect within a certain period, and whether the defect is a white defect or a black defect. , A defect within the period.
[0009]
Further, when there is a black defect of one cycle length or less, the difference AB between A and C at the same time and the difference CB from C at the same time are calculated with the pixel B of the cycle in which the defect occurs as the center. The difference AB and the difference CB are positive values. The difference AB and the difference CB are compared with a predetermined threshold value L2. By appropriately setting the threshold value to a value representing the defect, the defect can be reliably taken out. When both the binarized differences ab and cb are 1, it can be determined as a black defect. As a result, it is possible to determine not only a defect but also a white defect or a black defect.
[0010]
According to the fourth aspect of the present invention, when the darkest level is 0 and the brightest level is N (positive number) in the multivalued image, the output of the first AND operation means is 1 In this case, it is determined that the defect is a white defect of one cycle length or less, and when the output of the second AND operation means is 1, the defect is a black defect of one cycle length or less.
[0011]
When a multi-value image is displayed with multi-values from 0 to N, where 0 is the darkest level and N is the brightest level, the density is higher than the threshold value L1 as compared with the density on both sides of one cycle length. Sometimes a white defect. Therefore, this corresponds to the case where both the binarized differences ba and bc described in claim 2 are 1, which is the case where the output of the first AND operation means is 1. Further, when the density is lower than the threshold value L2 (L1> L2) as compared with the density on both sides of one cycle length, it is a black defect. Therefore, this corresponds to the case where both the binarization differences ab and cb described in claim 2 are 1, which is the case where the output of the second AND operation means is 1.
[0012]
According to the fifth aspect of the present invention, when the brightest level is displayed as 0 and the darkest level is displayed as N (positive number) in the multivalued image, the output of the first AND operation means is 1 In this case, it is determined that the defect is a black defect having one cycle length or less, and when the output of the second AND operation means is 1, the defect is a white defect having one cycle length or less.
[0013]
In the present invention, the setting of the multi-value conversion is reversed from the case of the fourth aspect , and the multi-value conversion is represented with 0 being the brightest level and N being the darkest level. A defect is a white defect when the value is smaller than the threshold L2 than on both sides one cycle away, and a black defect when the value is larger than the threshold L1 (L1> L2) than on both sides one cycle apart. In the case of a black defect, this corresponds to a case where both the binarized differences ba and bc described in claim 2 are 1, and this is a case where the output of the first AND operation means is 1. . When the density is smaller than the threshold value L2 as compared with the density on both sides of one cycle length, it is a white defect. In the case of a white defect, this corresponds to the case where both the binarized differences ab and cb described in claim 1 are 1, which is the case where the output of the second AND operation means is 1.
[0014]
In a second aspect of the present invention, there is provided an apparatus for inspecting a defect of an inspection object in which a pattern is repeated at a constant period, wherein the pattern input is linearly scanned and an image sensor is read by an image sensor to obtain a multi-valued image. A multi-valued image is denoted by A, a multi-valued image delayed by one cycle length from A is denoted by B, a multi-valued image delayed by two cycles from A is denoted by C, and the difference of each multi-valued image at the same time, Difference calculating means for calculating a difference AB between A and B, a difference BA between B and A, a difference BC between B and C, and a difference CB between C and B; A binarizing means for performing binarization to set AB to 0 when the values of AB, BA, BC, and CB are larger than a predetermined threshold value, including 1 when the value is smaller than 1; The binarized value of each difference by the binarizing means is represented by ab, ba, bc by the corresponding lowercase alphabet. When expressed as cb, a third AND operation means for obtaining a logical product of the inverted value of ba, bc, and the inverted value of the one-cycle delay value of cb, A fourth AND operation means for obtaining a logical product of the inverted value, cb, and the inverted value of the one-cycle delay value of bc.
[0015]
The feature of a white defect longer than one cycle length will be described with reference to FIG. First, in the first period in which a long defect starts, in the period P, B and A are at the same level, and C is at a level lower than A and B. Further, during the period of P-1, B and C are at the same level. This means that the one-cycle delay value of the binary difference ba is 0, bc is 1 and cb is 0. Therefore, the inverted value of ba, the value of bc, and the inverted value of the one-cycle delay value of cb all become 1, and the output of the third AND operation means becomes 1.
[0016]
In the period in which the long defect ends, in the period Q, A and B are at the same level, and C is at a higher level than A and B. Further, during the Q-1 period, C and B are at the same level. This means that the binary difference ab is 0, cb is 1, and the one-cycle delay value of bc is 0 in the invention of claim 5. Therefore, since the inverted value of ab, the value of bc, and the inverted value of the one-cycle delay value of bc are all 1, the output of the fourth AND operation means is 1.
[0017]
The feature of a black defect longer than one cycle length will be described with reference to FIG. In the first period in which a long defect starts, in the period P, B and A are at the same level, and C is at a higher level than B and A. Further, during the period P-1, B and C are at the same level. This means that the binary difference ab is 0, cb is 1, and the one-cycle delay value of bc is 0 in the invention of claim 5. Therefore, since the inverted value of ab, the value of bc, and the inverted value of the one-cycle delay value of bc are all 1, the output of the fourth AND operation means is 1.
[0018]
Further, in the cycle in which the long defect ends, in the period Q, B and A are at the same level, and C is at a lower level than B and A. Further, during the period of Q-1, B and C are at the same level. This means that the binary difference ba is 0, bc is 1 and the one-cycle delay value of bb is 0 in the invention of claim 5. Therefore, the inverted value of ba, the value of bc, and the inverted value of the one-cycle delay value of cb all become 1, and the output of the third AND operation means becomes 1.
[0019]
As described above, when there is a white defect having a length exceeding one cycle length, the output of the third AND operation means becomes 1 first, and then the output of the fourth AND operation means becomes 1. If a black defect having a length exceeding one cycle length exists, the output of the fourth AND operation means becomes 1 and then the output of the third AND operation means becomes 1. As a result, a long defect exceeding one cycle length can be detected by distinguishing whether it is a white defect or a black defect.
[0020]
In the invention according to claim 6, when the multi-valued image is displayed by multi-valued display with the darkest level being 0 and the brightest level being N (positive number), the output of the third AND operation means becomes 1. Then, when the output of the fourth AND operation means becomes 1, it is determined that the white defect exceeds one cycle length, and the output of the fourth AND operation means becomes 1, and When the output of the third AND operation unit becomes 1, it is determined that the black defect exceeds one cycle length.
[0021]
According to the second aspect of the present invention, when the multivalued display is such that 0 is the darkest level and N is the brightest level, and there is a long defect exceeding one cycle length as a white defect, the third AND operation means Becomes 1, and then the output of the fourth AND operation means becomes 1. When a black defect having a length exceeding one cycle length exists, the output of the fourth AND operation means becomes 1, and subsequently, the output of the third AND operation means becomes 1.
[0022]
According to the seventh aspect of the present invention, when the brightest level is represented by 0 and the darkest level is represented by N (positive number) in the multivalued image, the output of the third AND operation means becomes 1. When the output of the fourth AND operation unit subsequently becomes 1, it is determined that the black defect exceeds one cycle length, the output of the fourth AND operation unit becomes 1, and When the output of the third AND operation means becomes 1, it is determined that the white defect exceeds one cycle length.
[0023]
According to the second aspect of the present invention, when the multilevel display is 0 for the brightest level and N for the darkest level, if there is a black defect longer than one cycle length, the third AND operation means Becomes 1, and then the output of the fourth AND operation means becomes 1. If a white defect having a length exceeding one cycle length exists, the output of the fourth AND operation means becomes 1 and then the output of the third AND operation means becomes 1.
[0024]
In a third aspect of the present invention, there is provided an apparatus for inspecting a defect of an inspection object in which a pattern is repeated at a constant cycle, wherein the image input means for linearly scanning the pattern and reading the image with an image sensor to obtain a multi-valued image. A multi-valued image is denoted by A, a multi-valued image delayed by one cycle from A is denoted by B, a multi-valued image delayed by two periods from A is denoted by C, and the difference of each multi-valued image at the same time is A and Difference calculating means for calculating a difference AB between B, a difference BA between B and A, a difference BC between B and C, and a difference CB between C and B; A binarizing means for performing binarization to set B, BA, BC, and CB to 0 when the value is larger than a predetermined threshold value and to 0 when the value is smaller than a predetermined threshold value, including negative values; The binarized value of each difference by the binarizing means is represented by ab, ba, bc, c by the corresponding lowercase alphabet. When expressed as b, first AND operation means for calculating the AND of ba and bc, second AND operation means for calculating the AND of ab and cb, b A third AND operation means for obtaining a logical product of an inverted value of -a, bc, and an inverted value of the one-cycle delay value of cb, an inverted value of ab, cb, and a fourth AND operation means for obtaining an AND with an inverted value of the one-cycle delay value of bc.
[0025]
The present invention is a combination of the invention of claim 1 and the invention of claim 2 , wherein defects within one cycle length can be detected by distinguishing between white defects and black defects, and long defects exceeding one cycle length can be detected as white defects. And black defects can be detected separately.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing the configuration of the present embodiment. The inspection object 1 moves in the direction of the arrow, and has a periodic pattern in a direction orthogonal to the moving direction. The line sensor camera 2 arranges the length direction of the built-in line sensor (the arrangement direction of the sensor elements) so as to be orthogonal to the moving direction of the inspection object 1, and captures an image having a moving periodic pattern. The A / D converter 3 converts the grayscale image of the video signal from the line sensor camera 2 from analog to digital and converts it into an 8-bit (256 gradation) multivalued image. The one cycle length delay circuit 4 delays A by one cycle length and sets the output to B. The two-cycle delay circuit 5 delays A by two cycles, and sets the output to C. The defect determination circuit 6 receives A, B, and C, and detects a defect occurring in a periodic pattern. Defects are flaws, pinholes, dirt, dust, missing patterns, etc. These are gradations in which 0 is the darkest level, 255 is the brightest level in the multi-valued image, and the interval between them is sequentially changed from the darkest level to the brightest level. In this case, a white defect is determined when the level is higher than a certain threshold value L1 as compared with the adjacent pixels one cycle long apart, and a black defect is determined when the level is lower than another threshold value L2 (L1> L2). In the following description, 0 is the darkest level and 255 is the brightest level. The defect judging circuit 6 classifies the defect as a white defect or a black defect and outputs it as a binary image.
[0027]
FIG. 2 shows an example of a liquid crystal panel as the inspection object 1. In this configuration, a lead line 11 and a gate line 12 are arranged in a grid pattern, and a TFT (Thin Film Transistor) is arranged at an intersection. The grid intervals are arranged regularly in both the horizontal and vertical directions, and the line sensor camera 2 scans in the gate line direction (horizontal direction) to obtain an image A in which the interval between the lead wires 11 is one cycle length. The defects include a white defect 14 and a black defect 15 within one cycle length, and a white length defect 16 and a black length defect 17 exceeding one cycle length.
[0028]
The image picked up by the line sensor of the line sensor camera 2 is composed of a single pixel line in the scanning direction (horizontal direction in FIG. 2, direction of the gate line 12). The line sensor is configured to increase detection accuracy. That is, the number of pixels in one cycle is determined so that the resolution required for pattern inspection can be obtained. The size of the sensor element of the line sensor is the size of one pixel of the image to be captured. The size of this pixel is, for example, about 10 μm, and when one cycle length is 100 μm, about ten pixels represent one cycle length. However, since the cycle length and the size of the sensor element are independent of each other, it is common that the number of pixels representing one cycle length does not become an integer. For example, one cycle length is represented by 9.4 pixels.
[0029]
In the case where one cycle length is not represented by an integer number of pixels, a method of creating a one-cycle delayed image B and a two-cycle delayed image C will be described. For example, when one cycle length is 9.4 pixels, in order to delay each pixel constituting one cycle by one cycle length (that is, 9.4 pixels), first, linear interpolation is performed by the following equation (1). Calculate the data at the place delayed by 0.4 pixels. Further, by delaying the data by 9 pixels (an integer part), the data can be delayed by 9.4 pixels.
[0030]
Linear interpolation formula: Qi = (mP i + nP i + 1 ) / 10 (1)
Here, m + n = 10. P i is the gray scale of the pixel to be delayed, P i + 1 is the gray scale of the adjacent pixel, m = 6, n = 4 when delayed by 0.4 pixels, and Qi is 0.4 pixel delayed This is the gradation of the shaded position. Thus, a delay of 0.1 pixel can be performed. In the case of a two-cycle delay, 9.4 × 2 = 18.8 pixels, so that m = 2 and n = 8 using equation (1), and data at a location delayed by 0.8 pixels as in the above case. Is calculated by linear interpolation, and the data is further delayed by 18 pixels (an integer part), whereby a two-cycle delayed image can be obtained.
[0031]
FIG. 3 shows a method for detecting a white defect and a black defect. By reading the coordinate value at the rising edge of the detection signal of the white defect and the black defect, the location of the defect is determined. The coordinate value includes an X coordinate that is incremented for each pixel of the line sensor and a Y coordinate that is incremented for each image capture start signal of the line sensor. In this apparatus, the coordinate values of the rise and fall of the defect are stored as run-length data. By linking the run-length data, the size of the defect can be known.
[0032]
FIG. 4 is a diagram showing a relationship between a one-line image A obtained from the line sensor, a one-cycle delayed image B of A, and a two-cycle delayed image C of A. {Circle around (1)}, {circle around (2)}, and {circle around (3)} represent images having three continuous cycle lengths. The difference between A, B, and C described below calculates the difference of each cycle length at the same time. For example, the difference BA is the difference between (2) of B and (3) of A, and the difference BC is the difference between (2) of B and (1) of C.
[0033]
FIG. 5 shows the contents of the defect determination circuit 6 of FIG. A, B, and C are the values shown in FIG. The difference binarizer 21a calculates a difference AB between the images A and B, binarizes this value with a predetermined threshold value, and expresses this as a binarized difference ab. The difference is set to 0 when the value becomes negative. The predetermined threshold value indicates a limit at which the difference indicates a defect. A difference exceeding this threshold value is a defect, and a difference less than the threshold value is normal. This threshold is determined according to the type of the inspection object 1 and the like. Similarly, the difference binarizer 21b calculates the difference BA and outputs a binary difference ba, and the difference binarizer 21c calculates the difference BC and calculates the binary difference bc. , And the difference binarizer 21d calculates the difference CB, and outputs a binarized difference cb.
[0034]
The one-cycle delay unit 22 delays the binarized difference value by one cycle. As a result, the binary difference bc is delayed by one cycle, and is represented by D (bc). Similarly, the one-cycle delay value of the binary difference c-b is also represented by D (c-b). The first AND operator 23 calculates the AND of the binary differences ba and bc. The second AND operator 24 calculates the AND of the binarized differences ab and cb. The third AND operator 25 calculates the logical AND of the inverted value of the binary difference ba, the inverted value of bc and the inverted value of the one-cycle delay value D (cb) of cb. The fourth AND operator 26 calculates the AND of the inverted value of the binarization difference ab, the inverted value of cb and the one-cycle delay value D (bc) of bc. The determination circuit 27 determines a defect from the output of each of the logical product arithmetic units 23 to 26.
[0035]
The determination circuit 27 performs the following defect determination. When the output of the first AND operator 23 is 1, it is determined that the defect is a white defect, and when the outputs of the third and fourth AND operators 25 and 26 are not 1, it is determined that the defect is within one cycle length. I do. When the output of the second AND operator 24 is 1, it is determined as a black defect, and when the outputs of the third and fourth AND operators 25 and 26 are not 1, it is determined as a black defect within one cycle length. . When the output of the third AND operator 25 is 1 and the output of the fourth AND operator 26 subsequently becomes 1, it is determined that the white defect is longer than one cycle length, and the fourth AND operator 26 Is 1 and the output of the third AND operator 25 subsequently becomes 1, it is determined that the black defect has one cycle length or more.
[0036]
6 to 9 are timing charts of the defect determination circuit 6 of FIG. 6 is a timing chart for detecting a white defect within one cycle length, FIG. 7 is a timing chart for detecting a black defect within one cycle length, FIG. 8 is a timing chart for detecting a white defect exceeding one cycle length, and FIG. Is a timing chart for detecting a black defect exceeding one cycle length.
[0037]
In FIG. 6, A is an original image output from the line sensor, and the inspection object 1 is the liquid crystal panel shown in FIG. The downwardly directed pulses 30, which appear periodically, represent the leads 11, the length between the pulses being one period long. The horizontal line connecting the pulses represents the shading level 31 of the filter between the lead wires 11, from which black is below and white is above. The shape raised above the level 31 indicates a white defect 32 within one cycle length. B is a one-cycle delayed image of A, and C is a two-cycle delayed image of A. For the differences BA, BC, AB, and CB, the negative value is 0. The binarized differences ba, bc, ab, and bb obtained by binarizing these differences with a predetermined threshold value are defined as differences BA, BC, AB, and CB. It has the same shape as. The first AND operator 23 outputs 1 when the values of ba and bc are 1. In the case of a white defect, since ba and bc are 1 as shown in FIG. 6, the output of the first AND operator 23 is 1. As a result, a white defect within one cycle length can be detected.
[0038]
Next, detection of a black defect of one cycle length or less will be described. In FIG. 7, if there is a black defect, a black defect 33 appears at the gray level 31 between the pulses 30. The second AND operator 24 outputs 1 when the binary differences ab and cb are both 1. In the case of a black defect, both ab and cb become 1, so when the output of the second AND operator 24 is 1, it is determined that the black defect is within one cycle length.
[0039]
Next, detection of a white defect exceeding one cycle length will be described. In FIG. 8, a white defect 34 exceeding one cycle length appears. The third AND operator 25 outputs 1 when the inverted value of the binary difference ba and the inverted value of the one-cycle delay value D (c−b) of bc and c−b are 1. . The fourth AND operator 26 calculates 1 when the inverted value of the binary difference ab, the inverted value of cb, and the one-cycle delay value D (bc) of bc are 1, Is output. In the case of a white defect exceeding one cycle length, the output of the third AND operator 25 becomes 1 in the period P (the period next to the period P-1 in which the white defect first appears). The output of the fourth AND operator 26 becomes 1 in the cycle Q (the last cycle in which a white defect appears in the C image). As described above, when the output of the third AND operator 25 becomes 1, and subsequently the output of the fourth AND operator 26 becomes 1, it is determined that the white defect exceeds one cycle length. In the case of a white defect within one cycle length, the third and fourth AND operation units 25 and 26 do not become 1. However, the first AND operation unit 23 may become 1 in the case of a white defect exceeding one cycle length. Therefore, whether or not the white defect exceeds one cycle length is determined by the outputs of the third and fourth AND operators 25 and 26.
[0040]
Next, detection of a black defect exceeding one cycle length will be described. In FIG. 9, a black defect 35 exceeding one cycle length appears. In the case of a black defect exceeding one cycle length, the output of the fourth AND operator 26 becomes 1 in the period P (the period next to the period P-1 in which the black defect first appears). Further, the output of the third AND operator 25 becomes 1 in the cycle Q (the last cycle in which the black defect appears in the C image). As described above, when the output of the fourth AND operator 26 becomes 1, and subsequently the output of the third AND operator 25 becomes 1, it is determined that the black defect exceeds one cycle length. In the case of a black defect within one cycle length, the outputs of the third and fourth AND operators 25 and 26 do not become 1. However, the second AND operator 24 may become 1 when a black defect exceeds one cycle length. Therefore, whether or not the black defect exceeds one cycle length is determined based on the outputs of the third and fourth AND operators 25 and 26.
[0041]
In the above description, the darkest level is set to 0 and the brightest level is set to N (N = 255 in the case of 8-bit grayscale display) in the gray scale setting. The present invention holds even when the level is set to 0. Further, in the embodiment, the case where the linear sensor is used has been described, but it may be performed for one scanning line of the surface imaging device.
[0042]
【The invention's effect】
As is clear from the above description, according to the present invention, for the original image A, the one-cycle delayed image B, and the two-cycle delayed image C of A, the difference between A and C with respect to B is obtained, By calculating the product, it is possible to discriminate whether it is within one cycle length or more than one cycle length, and to determine a white defect or a black defect.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating a configuration of an embodiment.
FIG. 2 is a diagram illustrating an example of an inspection object.
FIG. 3 is a diagram illustrating a method for detecting a defect.
FIG. 4 is a diagram showing a one-line image A, a one-cycle length delay image B, and a two-cycle length delay image C obtained from a line sensor.
FIG. 5 is a diagram illustrating a configuration of a defect determination circuit.
FIG. 6 is a timing chart for detecting a white defect within one cycle length.
FIG. 7 is a timing chart for detecting a black defect within one cycle length.
FIG. 8 is a timing chart for detecting a white defect exceeding one cycle length.
FIG. 9 is a timing chart for detecting a black defect exceeding one cycle length.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Inspection object 2 Line sensor camera 3 A / D converter 4 1 cycle length delay circuit 5 2 cycle length delay circuit 6 Defect judgment circuit

Claims (7)

一定の周期でパターンが反復する検査対象物の欠陥を検査する装置であって、前記パターンを線型走査してイメージセンサで読み取り多値画像を得る画像入力手段と、前記多値画像をAとし、このAより1周期長遅延した多値画像をBとし、前記Aより2周期長遅延した多値画像をCとし、各多値画像の同時刻における差分であって、AとBとの差分A−B,BとAとの差分B−A,BとCとの差分B−C,CとBとの差分C−Bを演算する差分演算手段と、前記各差分A−B,B−A,B−C,C−Bが所定のしきい値より大きいときは1,未満のときは負の場合も含めて0とする2値化を行う2値化手段と、この2値化手段による各差分の2値化値を対応するアルファベットの小文字によりa−b,b−a,b−c,c−bと表わした場合、b−aとb−cの論理積を演算する第1論理積演算手段と、a−bとc−bとの論理積を演算する第2論理積演算手段と、を備え、前記多値画像はMからN(M,N共正数でM<N)の多値で表されていることを特徴とする周期パターンの欠陥検査装置。An apparatus for inspecting a defect of an inspection object in which a pattern is repeated at a constant cycle, wherein the pattern is linearly scanned, and an image input means for obtaining a multi-valued image read by an image sensor, and the multi-valued image is A, The multi-valued image delayed by one cycle from A is denoted by B, the multi-valued image delayed by two periods from A is denoted by C, and the difference of each multi-valued image at the same time, which is the difference A between B and A -B, a difference calculation means for calculating a difference BA between B and A, a difference BC between B and C, and a difference CB between C and B; and the difference AB, BA , BC and CB are larger than a predetermined threshold value, and are smaller than 1 when they are smaller than a predetermined threshold value. When the binarized value of each difference is expressed as ab, ba, bc, bb by the corresponding lowercase alphabetic character , A logical product of ba and bc, a second logical product operation device for calculating a logical product of ab and cb; A defect inspection apparatus for a periodic pattern, wherein an image is represented by a multivalue of M to N (M and N are both positive numbers and M <N). 一定の周期でパターンが反復する検査対象物の欠陥を検査する装置であって、前記パターンを線形走査してイメージセンサで読み取り多値画像を得る画像入力手段と、前記多値画像をAとし、このAより1周期長遅延した多値画像をBとし、前記Aより2周期長遅延した多値画像をCとし、各多値画像の同時刻における差分であって、AとBとの差分A−B,BとAとの差分B−A,BとCとの差分B−C,CとBとの差分C−Bを演算する差分演算手段と、前記各差分A−B,B−A,B−C,C−Bが所定のしきい値より大きいときは1,未満のときは負の場合も含めて0とする2値化を行う2値化手段と、この2値化手段による各差分の2値化値を対応するアルファベットの小文字によりa−b,b−a,b−c,c−bと表わした場合、b−aの反転値と、b−cと、c−bの1周期遅延値の反転値との論理積を得る第3論理積演算手段と、a−bの反転値と、c−bと、b−cの1周期遅延値の反転値との論理積を得る第4論理積演算手段とを、備えたことを特徴とする周期パターンの欠陥検査装置。An apparatus for inspecting a defect of an inspection object in which a pattern is repeated at a constant cycle, wherein the pattern is linearly scanned, an image input unit that reads a multivalued image by an image sensor, and the multivalued image is A, The multi-valued image delayed by one cycle from A is denoted by B, the multi-valued image delayed by two periods from A is denoted by C, and the difference of each multi-valued image at the same time, which is the difference A between B and A -B, a difference calculation means for calculating a difference BA between B and A, a difference BC between B and C, and a difference CB between C and B; and the difference AB, BA , BC and CB are larger than a predetermined threshold value, and are smaller than 1 when they are smaller than a predetermined threshold value. When the binarized value of each difference is expressed as ab, ba, bc, bb by the corresponding lowercase alphabetic character , Ba, an inverted value of bc, and an inverted value of the one-period delay value of cb, a third AND operation means; an inverted value of ab, cb And a fourth AND operation means for obtaining an AND of an inverted value of the one-cycle delay value of bc. 一定の周期でパターンが反復する検査対象物の欠陥を検査する装置であって、前記パターンをリニアセンサで読み取り多値画像を得る画像入力手段と、前記多値画像をAとし、このAより1周期長遅延した多値画像をBとし、前記Aより2周期長遅延した多値画像をCとし、各多値画像の同時刻における差分であって、AとBとの差分A−B,BとAとの差分B−A,BとCとの差分B−C,CとBとの差分C−Bを演算する差分演算手段と、前記各差分A−B,B−A,B−C,C−Bが所定のしきい値より大きいときは1,未満のときは負の場合も含めて0とする2値化を行う2値化手段と、この2値化手段による各差分の2値化値を対応するアルファベットの小文字によりa−b,b−a,b−c,c−bと表わした場合、b−aとb−cの論理積を演算する第1論理積演算手段と、a−bとc−bとの論理積を演算する第2論理積演算手段と、b−aの反転値と、b−cと、c−bの1周期遅延値の反転値との論理積を得る第3論理積演算手段と、a−bの反転値と、c−bと、b−cの1周期遅延値の反転値との論理積を得る第4論理積演算手段とを、備えたことを特徴とする周期パターンの欠陥検査装置。An apparatus for inspecting a defect of an object to be inspected in which a pattern is repeated at a constant cycle, wherein said pattern is read by a linear sensor to obtain a multi-valued image; A multi-valued image delayed by a cycle length is denoted by B, a multi-valued image delayed by two periods from A is denoted by C, and a difference between each of the multi-valued images at the same time, that is, a difference AB, B between A and B Calculating means for calculating a difference BA between A and A, a difference BC between B and C, and a difference CB between C and B; and each of the differences AB, BA, BC , CB is larger than a predetermined threshold value, and when it is less than 1, a negative value including a negative value is used, including a case where the difference is negative. When the quantified values are expressed as ab, ba, bc, and bb by the corresponding lowercase letters of the alphabet, ba and b first AND operation means for operating the AND of c, second AND operation means for operating the AND of ab and cb, an inverted value of ba, bc, third AND operation means for obtaining a logical product of the inverted value of the one-cycle delay value of cb and the inverted value of ab, cb, and the inverted value of the one-cycle delay value of bc; And a fourth logical product calculating means for obtaining a logical product of the following. 前記多値画像で、最暗レベルを0、最明レベルをN(正数)で多値化表示しているときは、前記第1論理積演算手段の出力が1ときは1周期長以下の白欠陥、前記第2論理積演算手段の出力が1のときは1周期長以下の黒欠陥と判定することを特徴とする請求項1又は3に記載の周期パターンの欠陥検査装置。When the darkest level is 0 and the brightest level is N (positive number) in the multi-valued image, when the output of the first AND operation unit is 1, the output is shorter than one cycle length. 4. The periodic pattern defect inspection apparatus according to claim 1 , wherein when a white defect and an output of the second AND operation means are 1, the defect is determined to be a black defect having one cycle length or less. 前記多値画像で最明レベルを0、最暗レベルをN(正数)で多値化表示している時は、前記第1論理積演算手段の出力が1のときは1周期長以下の黒欠陥、前記第2論理積演算手段の出力が1のときは1周期長以下の白欠陥と判定することを特徴とする請求項1又は 3に記載の周期パターンの欠陥検査装置。When the brightest level is 0 and the darkest level is N (positive number) in the multi-valued image, when the output of the first AND operation means is 1, the length is less than one cycle length. black defect, the output is a defect inspection apparatus of the periodic pattern according to claim 1 or 3, wherein determining that one period length less white defect when one of the second aND operation means. 前記多値画像で最暗レベルを0、最明レベルをN(正数)で多値化表示しているときは、前記第3論理積演算手段の出力が1となり、これに続いて前記第4論理積演算手段の出力が1となったとき、1周期長を超える白欠陥と判定し、前記第4論理積演算手段の出力が1となり、これに続いて前記第3論理積演算手段の出力が1となったとき1周期長を超える黒欠陥と判定することを特徴とする請求項2又は3に記載の周期パターンの欠陥検査装置。When the darkest level is 0 and the brightest level is N (positive number) in the multi-valued image, the output of the third AND operation means is 1, and subsequently the output of the third AND operation unit is 1. When the output of the four AND operation means becomes 1, it is determined that the white defect exceeds one cycle length, the output of the fourth AND operation means becomes one, and subsequently, the white defect of the third AND operation means becomes one. 4. The defect inspection apparatus for a periodic pattern according to claim 2 , wherein when the output becomes 1, a black defect exceeding one cycle length is determined. 前記多値画像で最明レベルを0、最暗レベルをN(正数)で多値化表示している時は、前記第3論理積演算手段の出力が1となり、これに続いて前記第4論理積演算手段の出力が1となったとき、1周期長を超える黒欠陥と判定し、前記第4論理積演算手段の出力が1となり、これに続いて前記第3論理積演算手段の出力が1となったとき、1周期長を超える白欠陥と判定することを特徴とする請求項2又は3に記載の周期パターンの欠陥検査装置。When the brightest level is 0 and the darkest level is N (positive number) in the multi-valued image, the output of the third AND operation means becomes 1, and subsequently the output of the third AND operation means becomes 1. When the output of the four AND operation means becomes 1, it is determined that the black defect exceeds one cycle length, and the output of the fourth AND operation means becomes one. 4. The defect inspection apparatus for a periodic pattern according to claim 2 , wherein when the output becomes 1, a white defect exceeding one cycle length is determined.
JP5734597A 1997-03-12 1997-03-12 Periodic pattern defect inspection equipment Expired - Fee Related JP3598196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5734597A JP3598196B2 (en) 1997-03-12 1997-03-12 Periodic pattern defect inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5734597A JP3598196B2 (en) 1997-03-12 1997-03-12 Periodic pattern defect inspection equipment

Publications (2)

Publication Number Publication Date
JPH10253332A JPH10253332A (en) 1998-09-25
JP3598196B2 true JP3598196B2 (en) 2004-12-08

Family

ID=13052994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5734597A Expired - Fee Related JP3598196B2 (en) 1997-03-12 1997-03-12 Periodic pattern defect inspection equipment

Country Status (1)

Country Link
JP (1) JP3598196B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140116009A (en) 2013-03-21 2014-10-01 가부시키가이샤 에바라 세이사꾸쇼 Test device and generating method of testing image data, testing display device, method of distinguishing defects and recording medium storing testing display program
JP6794301B2 (en) * 2017-03-13 2020-12-02 株式会社Screenホールディングス Center misalignment detection device and center misalignment detection method
WO2018168068A1 (en) * 2017-03-13 2018-09-20 株式会社Screenホールディングス Center misalignment detection device and center misalignment detection method

Also Published As

Publication number Publication date
JPH10253332A (en) 1998-09-25

Similar Documents

Publication Publication Date Title
JP3576810B2 (en) Image processing device
JPH05227425A (en) Improvement in automatic image segmentation
KR100586293B1 (en) Defect inspection method
GB2108656A (en) Detecting substrate defects
JPH041866A (en) Method and device for image processing
JP3598196B2 (en) Periodic pattern defect inspection equipment
US5245424A (en) Defect detection method
JPH09101236A (en) Method and apparatus for detecting defect of display
JPH1114334A (en) Defect detecting method and device of netset or wired glass
JP2710527B2 (en) Inspection equipment for periodic patterns
JP5136277B2 (en) Defect detection method for netted or lined glass
US6995802B2 (en) Image binarization method and binary image creation method
JPH09161056A (en) Inspecting method for inner surface of circular container
JP3234636B2 (en) Defect inspection equipment
JP2947126B2 (en) Original image capture device
JP3202330B2 (en) Defect inspection equipment
JP2956151B2 (en) Image processing method and apparatus
JPH02277186A (en) Binarizing device
JP2634064B2 (en) Binarization device
JP2931312B2 (en) Defect inspection method
JP3240389B2 (en) Binarization processing device
JP2513528Y2 (en) Gray image processor
JPS6310277A (en) Picture quality inspection device
JPS6393080A (en) Binarization method for image
JPH096954A (en) Low-contrast defect detecting device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040913

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees