JP3597906B2 - Method of improving shape recovery characteristics of shape memory alloy - Google Patents

Method of improving shape recovery characteristics of shape memory alloy Download PDF

Info

Publication number
JP3597906B2
JP3597906B2 JP5547595A JP5547595A JP3597906B2 JP 3597906 B2 JP3597906 B2 JP 3597906B2 JP 5547595 A JP5547595 A JP 5547595A JP 5547595 A JP5547595 A JP 5547595A JP 3597906 B2 JP3597906 B2 JP 3597906B2
Authority
JP
Japan
Prior art keywords
shape memory
alloy
shape
memory alloy
recovery characteristics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5547595A
Other languages
Japanese (ja)
Other versions
JPH08253810A (en
Inventor
浩之 棚橋
亮 松橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5547595A priority Critical patent/JP3597906B2/en
Publication of JPH08253810A publication Critical patent/JPH08253810A/en
Application granted granted Critical
Publication of JP3597906B2 publication Critical patent/JP3597906B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Non-Disconnectible Joints And Screw-Threaded Joints (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、配管用の継手などに応用される形状記憶合金に関するものである。
【0002】
【従来の技術】
近年、給水管などの配管の接続に用いる継手や各種機械式固定具に形状記憶合金が応用されている。これに用いる形状記憶合金としては、Ti−Ni系合金、Cu系合金、およびFe−Mn−Si系合金などが考えられ、中でもFe−Mn−Si系合金は材料の加工性が良好で、かつ経済性に優れることから最も適していると考えられる。
【0003】
ところが、継手や各種機械式固定具のように形状回復現象(形状記憶効果)の発現を一度だけ利用するような用途に於ける該形状記憶合金の形状回復特性は、該合金が非熱弾性型マルテンサイト変態を利用しているために、熱弾性型のマルテンサイト変態を利用するTi−Ni系合金やCu系合金に比べて必ずしも十分ではないという問題があった。
【0004】
これに対して、特開昭62−112720号公報には、非熱弾性型マルテンサイト変態を利用している合金の内、Fe−Mn−Si系形状記憶合金の形状回復特性を向上させる目的で、加工と熱処理を組み合わせて繰り返し行う方法が提案されている。しかし該方法では良好な形状記憶効果を得るのに数回の加工と熱処理を繰り返さねばならず、それにより合金本来の経済的優位性が減じてしまう可能性がある。この他に、熱処理の繰り返しによる機械的性質の変化や合金表面の酸化による汚濁も、処理温度や繰り返し数によっては無視し得ない問題と成り得る。
【0005】
また、Fe−Mn−Si系以外の非熱弾性型マルテンサイト変態を利用する形状記憶合金の形状回復特性の向上について検討した例は見あたらない。
【0006】
【発明が解決しようとする課題】
このように、加工と熱処理の繰り返しによる方法では、経済的優位性の消失や、他の特性の変化を伴うことなく非熱弾性型マルテンサイト変態を利用した形状記憶合金の形状回復特性を向上させることは困難である。
本発明は、そのような問題点を有する方法によることなく、該形状記憶合金の形状回復特性を向上させることを目的になされたものである。
【0007】
【課題を解決するための手段】
本発明は、室温より低温側にマルテンサイト変態開始温度を有し、非熱弾性型のマルテンサイト変態をするFe−Mn−Si系形状記憶合金において、応力誘起マルテンサイト相を生じせしめる変形を行った後に、除荷に先立ってマルテンサイト変態開始温度より低温度まで冷却し、次いで除荷することを特徴とする形状記憶合金の形状回復特性向上方法を要旨とするものである。
【0008】
本発明で言う非熱弾性型のマルテンサイト変態を利用する形状記憶合金とは、例えば特開昭61−076647号公報に記載されているFe−Mn−Si系合金などに代表されるものである。
該合金の形状記憶効果は、変形によって「応力誘起されたマルテンサイト相(以下、SIM)」がその後の加熱によって逆変態し消失することによって発現される。この過程の内、初めの変形時に「熱的に誘起されたマルテンサイト相(以下、TIM)」が存在していると、形状回復特性が劣ることが知られている。本発明で、合金を、室温より低温側に「マルテンサイト変態開始温度(以下、Ms 点)」を有するものに限定したのは、こうした状況をさけて、本質的に特性の優れたものに対して本方法を適用するためである。
【0009】
次ぎに、本発明者らは、Fe−Mn−Si系合金において、SIMと、変形後、合金がMs 点以下に冷却された時に生成するTIMとの結晶学的関係を調べた。その結果、SIMを生成させる変形を行った後、除荷してから合金をMs 点以下に冷却した場合には、TIMは、大部分の結晶粒内でSIMとは無関係に生成し、両者の複雑な交差が多く発生する。その結果、この合金を加熱してもSIMの逆変態の部分的な阻害が生じ、従って、形状回復特性がTIMを生成させなかったものよりも劣る。
【0010】
これに対して、SIMを生成させる変形を行った後、除荷せず、そのままの状態でMs 点以下に冷却し、TIMを生成させた場合には、大部分の結晶粒に於いて、TIMはSIMと平行に生成し、両者の交差が生ずる割合が極めて低く、従ってこの合金を加熱した場合には、形状回復特性が劣化しないばかりか、SIMと平行なTIMの逆変態がSIMの逆変態と同一方向の形状記憶効果をもたらすため形状回復特性が向上することを見い出した。
【0011】
また、SIMの生成後除荷することなくMs 点以下に冷却する工程は、変形と熱処理を繰り返す処理よりも、合金の形状記憶処理(形状記憶効果を発現させるための処理)コストに及ぼす影響が極めて低いこと、熱処理を行わないため、合金の機械的な性質の変化や酸化による表面の汚濁の心配のないことも見い出した。
【0012】
本発明はこうした研究結果に基づいてなされたものであり、形状記憶処理コストの上昇を極力抑制しながら、非熱弾性型のマルテンサイト変態を利用する形状記憶合金の形状回復特性を向上させる方法を提供するものである。
【0013】
本発明方法における冷却はどのような方法で行ってもよく、簡便に行えるものとして、例えば液体窒素などを用いることも出来る。冷却は、Ms 点より低温度まで行われれば形状回復特性向上の効果が得られるが、その効果を最大限に引き出すためにはMs 点より概ね30度以上低温度にまで冷却することが望ましい。
この方法は、非熱弾性型のマルテンサイト変態を利用する全ての形状記憶合金の形状回復特性の向上に用いることが出来る。
【0014】
【作用】
非熱弾性型のマルテンサイト変態を利用する形状記憶合金の示す形状回復特性は、結晶中に誘起される特定の結晶方位のSIMの量に依存する。そこでその量を多くするために加える変位を大きくすると異なる結晶方位のSIM同士の交差が生じ、その結果かえって形状回復特性が劣化するので、加え得る変位には限界があった。しかし、本発明の方法を用いれば、特定方位のマルテンサイト相を、お互いに交差させることなく、変形のみによって誘起出来る量以上に誘起することが可能となり、従って良好な形状回復特性を得ることが出来る。
【0015】
【実施例】
[実施例1]
質量比で、Mn,SiおよびCrをそれぞれ28%,6%および5%含有し、残部がFeと不可避な不純物よりなるFe−Mn−Si系形状記憶合金を用いて、厚さ2mm、平行部の長さおよび幅がそれぞれ50mmおよび10mmの平板状引張試験片を作製した。全ての試験片の平行部には、その間の距離がおおよそ45mmであるような2本のけがき線を引いた。
【0016】
これらの試験片に引張変形を加え、種々の大きさの歪を与えた。2体の試験片に同一の歪を与えた後、一方は除荷し、また他方は除荷することなく引張試験機の掴み具に保持したままの状態で液体窒素中に5分間浸し、次いで、液体窒素中から取り上げた後に除荷した。これらの工程を経た試験片を300℃に加熱して形状記憶効果を発現させた。
【0017】
以上の過程において、けがき線間の距離を測定し、それらの変化から次式で定義する付与歪と、形状回復特性としての形状回復歪を調べた。すなわち、変形開始前の距離、変形後除荷前の距離、除荷後の距離、および300℃加熱後室温まで冷却されたときの距離をそれぞれL,L,L、およびLとすると、
付与歪(%)=(L−L)/L×100
形状回復歪(%)=(L−L)/L×100
である。
【0018】
得られた結果を表1に示す。
このように本発明の方法によれば、非熱弾性型のマルテンサイト変態を利用する形状記憶合金の形状回復特性を効率的に向上させることが出来る。
【0019】
【表1】

Figure 0003597906
【0020】
[実施例2]
質量比で、Mn,SiおよびCrをそれぞれ28%,6%および5%含有し、残部がFeと不可避な不純物よりなるFe−Mn−Si系形状記憶合金の丸棒から、肉厚2mm、長さ40mmで異なる内径(外径)を有する種々の円筒を切削加工により作製した。これらの円筒内に、長さ50mmの平行部を有する拡径用マンドレルを通すことによって合金内にSIMを生成させ、その後の加熱によって円筒の径が収縮する形状記憶効果が発現するようにした。マンドレルの平行部の直径は一種類とし、円筒の内径を種々の大きさに作り分けることによって、異なる大きさの、次式で定義する拡径率の拡径を施した。すなわち、拡径前円筒の内直径、およびマンドレルの平行部直径をそれぞれD、およびDとすると、
拡径率(%)=(D−D)/D×100
である。
【0021】
2個の円筒に、等しい拡径率の拡径を行うに当たり、一方には、マンドレルを一定速度で通して、拡径と除荷を連続して行った。これに対して他方には、円筒の全体がマンドレルの平行部上に来たところでマンドレルの動きを止め、−50℃に冷却したエチルアルコール冷浴にマンドレルごと浸して除荷前にTIMを生成させた。冷浴から取り出した後、マンドレルを貫通させて除荷を行った。
【0022】
これらの円筒を300℃に加熱して径収縮を起こさせ、その前後の内直径の変化から次式で定義する内径収縮率を求めた。すなわち、加熱前の内直径、および加熱後室温まで冷却された時の内直径をそれぞれD、およびDとすると、
内径収縮率(%)=(D−D)/D×100
である。なお、D,D,Dには円筒のマンドレル入り側端部における値を用いた。
【0023】
種々の拡径率に対する内径収縮率の結果を表2に示す。
このように本発明の方法によれば、非熱弾性型のマルテンサイト変態を利用する形状記憶合金製円筒の形状記憶効果による内径収縮率、すなわち形状回復特性を効率的に向上させることが出来る。
【0024】
【表2】
Figure 0003597906
【0025】
【発明の効果】
本発明により、非熱弾性型のマルテンサイト変態を利用する形状記憶合金の形状回復特性を向上させることが出来る。またそのために、形状記憶処理コストの大幅な上昇や、合金の機械的性質の変化を招くこともない。[0001]
[Industrial applications]
The present invention relates to a shape memory alloy applied to a joint for piping and the like.
[0002]
[Prior art]
2. Description of the Related Art In recent years, shape memory alloys have been applied to joints used for connecting pipes such as water supply pipes and various mechanical fixtures. As the shape memory alloy to be used for this, a Ti-Ni-based alloy, a Cu-based alloy, an Fe-Mn-Si-based alloy, and the like are considered. Among them, the Fe-Mn-Si-based alloy has good workability of the material, and It is considered to be the most suitable because of its excellent economy.
[0003]
However, the shape-recovery properties of the shape-memory alloy in applications where the appearance of the shape-recovery phenomenon (shape-memory effect) is used only once, such as joints and various mechanical fasteners, are determined by the fact that the alloy is of a non-thermoelastic Since the martensitic transformation is used, there is a problem that it is not necessarily sufficient compared to a Ti-Ni alloy or a Cu alloy using thermoelastic martensitic transformation.
[0004]
On the other hand, Japanese Patent Application Laid-Open No. 62-112720 discloses a method for improving shape recovery characteristics of an Fe-Mn-Si based shape memory alloy among alloys utilizing non-thermoelastic martensitic transformation. A method has been proposed in which processing and heat treatment are repeatedly performed in combination. However, in this method, several times of working and heat treatment must be repeated to obtain a good shape memory effect, which may reduce the original economic advantage of the alloy. In addition to this, changes in mechanical properties due to repetition of heat treatment and contamination due to oxidation of the alloy surface can be a problem that cannot be ignored depending on the treatment temperature and the number of repetitions.
[0005]
In addition, there is no example in which the improvement of the shape recovery characteristics of a shape memory alloy utilizing non-thermoelastic martensitic transformation other than the Fe-Mn-Si system is not found.
[0006]
[Problems to be solved by the invention]
Thus, the method of repetition of processing and heat treatment improves the shape recovery characteristics of the shape memory alloy using the non-thermoelastic martensitic transformation without loss of economic superiority or change of other characteristics. It is difficult.
The present invention has been made to improve the shape recovery characteristics of the shape memory alloy without using a method having such a problem.
[0007]
[Means for Solving the Problems]
The present invention provides a Fe-Mn-Si based shape memory alloy having a martensitic transformation initiation temperature on a lower temperature side than room temperature and performing a non-thermoelastic martensitic transformation, and performing a deformation to generate a stress-induced martensite phase. after the one in which prior to unloading cooled from the martensitic transformation starting temperature to a low temperature and then summarized as shape recovery characteristics method for improving shape memory alloy you characterized by unloading.
[0008]
The shape memory alloy utilizing the non-thermoelastic martensitic transformation referred to in the present invention is represented by, for example, an Fe-Mn-Si alloy described in JP-A-61-076647. .
The shape memory effect of the alloy is manifested by the fact that the “stress-induced martensitic phase (hereinafter, SIM)” is transformed reversely and disappears by subsequent heating due to deformation. It is known that, during this process, if a “thermally induced martensite phase (hereinafter, TIM)” is present at the time of the initial deformation, shape recovery characteristics are inferior. In the present invention, the reason why the alloy is limited to those having a "martensite transformation initiation temperature (hereinafter, referred to as Ms point)" at a temperature lower than room temperature is to avoid alloys having essentially excellent properties. This is to apply this method.
[0009]
Next, the present inventors examined the crystallographic relationship between SIM and Fe-Mn-Si-based alloy, and TIM generated when the alloy was cooled to a temperature equal to or lower than the Ms point after deformation. As a result, when the alloy is cooled to the Ms point or lower after unloading after performing the deformation for generating the SIM, the TIM is generated in most of the crystal grains independently of the SIM, and the TIM is generated. Many complicated intersections occur. As a result, heating this alloy results in partial inhibition of the reverse transformation of the SIM, and therefore, the shape recovery properties are inferior to those that did not produce the TIM.
[0010]
On the other hand, after performing the deformation for generating the SIM, the material is cooled to the Ms point or less without being unloaded, and the TIM is generated in most of the crystal grains. Is formed in parallel with the SIM and the rate of intersection between the two is extremely low. Therefore, when this alloy is heated, not only the shape recovery characteristics do not deteriorate but also the reverse transformation of the TIM parallel to the SIM is the reverse transformation of the SIM. It has been found that the shape recovery effect is improved because of providing the shape memory effect in the same direction as the above.
[0011]
In addition, the step of cooling to below the Ms point without unloading after the generation of the SIM has a greater effect on the shape memory processing (processing for exhibiting the shape memory effect) of the alloy than on the processing of repeating deformation and heat treatment. It was also found that the alloy was extremely low, and that no heat treatment was performed, so that there was no need to worry about changes in the mechanical properties of the alloy or surface contamination due to oxidation.
[0012]
The present invention has been made based on the above research results, and a method for improving the shape recovery characteristics of a shape memory alloy using a non-thermoelastic martensitic transformation while minimizing an increase in shape memory processing cost. To provide.
[0013]
The cooling in the method of the present invention may be performed by any method, and for example, liquid nitrogen can be used as a simple method. If the cooling is performed to a temperature lower than the Ms point, the effect of improving the shape recovery characteristics can be obtained. However, in order to maximize the effect, it is desirable to cool the temperature to a temperature lower by about 30 degrees or more than the Ms point.
This method can be used to improve the shape recovery characteristics of all shape memory alloys utilizing non-thermoelastic martensitic transformation.
[0014]
[Action]
The shape recovery characteristics of a shape memory alloy utilizing a non-thermoelastic type martensitic transformation depend on the amount of SIM having a specific crystal orientation induced in a crystal. Therefore, when the displacement applied to increase the amount is increased, the SIMs having different crystal orientations intersect with each other, and as a result, the shape recovery characteristics are rather deteriorated. However, by using the method of the present invention, it becomes possible to induce a martensitic phase in a specific orientation in an amount greater than that which can be induced only by deformation without intersecting each other, and therefore it is possible to obtain good shape recovery characteristics. I can do it.
[0015]
【Example】
[Example 1]
Using a Fe-Mn-Si based shape memory alloy containing 28%, 6% and 5% of Mn, Si and Cr by mass ratio and the balance of Fe and unavoidable impurities, a thickness of 2 mm and a parallel portion A flat tensile test piece having a length and width of 50 mm and 10 mm, respectively, was prepared. Two scribe lines were drawn on the parallel portions of all the test pieces so that the distance between them was approximately 45 mm.
[0016]
These test pieces were subjected to tensile deformation to give various magnitudes of strain. After subjecting the two specimens to the same strain, one was unloaded and the other was immersed in liquid nitrogen for 5 minutes while remaining unloaded and held in the grip of the tensile tester, and then After unloading from liquid nitrogen, it was unloaded. The test piece that underwent these steps was heated to 300 ° C. to develop a shape memory effect.
[0017]
In the above process, the distance between the scribe lines was measured, and the applied strain defined by the following equation and the shape recovery strain as the shape recovery characteristics were examined from the changes. That is, the distance before the start of deformation, the distance before unloading after deformation, the distance after unloading, and the distance when heated to 300 ° C. and then cooled to room temperature are denoted by L 0 , L 1 , L 2 , and L 3 , respectively. Then
Strain imparted (%) = (L 1 −L 0 ) / L 0 × 100
Shape recovery strain (%) = (L 2 −L 3 ) / L 2 × 100
It is.
[0018]
Table 1 shows the obtained results.
As described above, according to the method of the present invention, the shape recovery characteristics of a shape memory alloy utilizing a non-thermoelastic martensitic transformation can be efficiently improved.
[0019]
[Table 1]
Figure 0003597906
[0020]
[Example 2]
From a round bar of an Fe-Mn-Si based shape memory alloy containing 28%, 6% and 5% by mass of Mn, Si and Cr, respectively, and the balance consisting of Fe and unavoidable impurities, the thickness was 2 mm and the length was 2 mm. Various cylinders having a length of 40 mm and different inner diameters (outer diameters) were produced by cutting. A SIM was generated in the alloy by passing a diameter-enlarging mandrel having a parallel portion having a length of 50 mm through these cylinders, and a shape memory effect in which the diameter of the cylinder shrank by subsequent heating was developed. The diameter of the parallel part of the mandrel was made one type, and the inner diameter of the cylinder was made into various sizes, thereby expanding the diameters of different sizes at an expanding ratio defined by the following equation. That is, assuming that the inner diameter of the pre-expansion cylinder and the parallel part diameter of the mandrel are D 0 and D 1 respectively,
Diameter expansion ratio (%) = (D 1 −D 0 ) / D 0 × 100
It is.
[0021]
In expanding the two cylinders at the same diameter expansion rate, one of the cylinders was passed through a mandrel at a constant speed to continuously perform the diameter expansion and unloading. On the other hand, on the other hand, the movement of the mandrel is stopped when the entire cylinder comes on the parallel part of the mandrel, and the mandrel is immersed in an ethyl alcohol cooling bath cooled to −50 ° C. to generate TIM before unloading. Was. After being taken out of the cold bath, the mandrel was passed through to unload.
[0022]
These cylinders were heated to 300 ° C. to cause radial shrinkage, and the inner diameter shrinkage rate defined by the following equation was determined from changes in inner diameter before and after the shrinkage. That is, assuming that the inner diameter before heating and the inner diameter when cooled to room temperature after heating are D 2 and D 3 respectively,
Inner diameter shrinkage rate (%) = (D 2 −D 3 ) / D 2 × 100
It is. D 0 , D 2 , and D 3 were the values at the end of the cylindrical mandrel.
[0023]
Table 2 shows the results of the inner diameter shrinkage rate for various diameter expansion rates.
As described above, according to the method of the present invention, the inner diameter shrinkage ratio due to the shape memory effect of a non-thermoelastic type martensitic transformation made of a shape memory alloy cylinder, that is, the shape recovery characteristic can be efficiently improved.
[0024]
[Table 2]
Figure 0003597906
[0025]
【The invention's effect】
According to the present invention, it is possible to improve the shape recovery characteristics of a shape memory alloy utilizing a non-thermoelastic martensitic transformation. Therefore, the cost of shape memory processing does not increase significantly and the mechanical properties of the alloy do not change.

Claims (1)

室温より低温側にマルテンサイト変態開始温度を有し、非熱弾性型のマルテンサイト変態をするFe−Mn−Si系形状記憶合金において、応力誘起マルテンサイト相を生じせしめる変形を行った後に、除荷に先立ってマルテンサイト変態開始温度より低温度まで冷却し、次いで除荷することを特徴とする形状記憶合金の形状回復特性向上方法。In a Fe-Mn-Si based shape memory alloy having a martensitic transformation initiation temperature at a temperature lower than room temperature and undergoing a non-thermoelastic martensitic transformation, the Fe-Mn-Si-based shape memory alloy is subjected to deformation that causes a stress-induced martensite phase, and then removed. prior to loading cooled from the martensitic transformation starting temperature to a low temperature, followed by shape recovery properties increase method to that shape memory alloy, characterized in that the unloading.
JP5547595A 1995-03-15 1995-03-15 Method of improving shape recovery characteristics of shape memory alloy Expired - Lifetime JP3597906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5547595A JP3597906B2 (en) 1995-03-15 1995-03-15 Method of improving shape recovery characteristics of shape memory alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5547595A JP3597906B2 (en) 1995-03-15 1995-03-15 Method of improving shape recovery characteristics of shape memory alloy

Publications (2)

Publication Number Publication Date
JPH08253810A JPH08253810A (en) 1996-10-01
JP3597906B2 true JP3597906B2 (en) 2004-12-08

Family

ID=12999643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5547595A Expired - Lifetime JP3597906B2 (en) 1995-03-15 1995-03-15 Method of improving shape recovery characteristics of shape memory alloy

Country Status (1)

Country Link
JP (1) JP3597906B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110067434A (en) * 2019-04-08 2019-07-30 闽江学院 A kind of high voltage power transmission tower with deformation correcting function

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110067434A (en) * 2019-04-08 2019-07-30 闽江学院 A kind of high voltage power transmission tower with deformation correcting function

Also Published As

Publication number Publication date
JPH08253810A (en) 1996-10-01

Similar Documents

Publication Publication Date Title
US3532560A (en) Cold-working process
Chanani et al. Low cycle fatigue of a high strength metastable austenitic steel
JPS60128252A (en) Shape memory alloy
Lenard Modelling hot deformation of steels: an approach to understanding and behaviour
JPH0561344B2 (en)
JPS62149859A (en) Production of beta type titanium alloy wire
JP2001234240A (en) Method for controlling structure of dual-phase steel
JP3597906B2 (en) Method of improving shape recovery characteristics of shape memory alloy
US4129461A (en) Formable high strength low alloy steel
Druker et al. Design of devices and manufacturing of Fe-Mn-Si shape memory alloy couplings
US3230118A (en) Method of developing high physical properties in ferrous material and product produced thereby
JP3379345B2 (en) Method for producing 13Cr stainless steel tube having oxide layer
JPS589921A (en) Manufacture of seamless steel pipe for petroleum industry
JPH036986B2 (en)
Korshunov et al. Grain-structure refinement in titanium alloy under different loading schedules
JPH02228456A (en) Strengthening method for cold-worked mickel-base alloy
Koppenaal et al. The effect of prior deformation on the strength and annealing of reverted austenite
Guilemany et al. A comparison of the two-way shape-memory effect achieved by stabilised stress-induced martensite training in β and martensitic Cu-Zn-Al-Co alloys
JPH09176729A (en) Shape memory alloy having texture and method for allowing the above alloy to show superelastic effect
JPH0317238A (en) Cu-al-mn series shape memory alloy and its manufacture
RU1788077C (en) Method of processing metals and alloys
SU594191A1 (en) Method of treating welded joints made from precipitation-hardening steels of martensitic class
JPS61106740A (en) Ti-ni alloy having reversible shape memory effect and its manufacture
JPH024656B2 (en)
Vandrveken et al. Influence of Thermomechanical Treatments and Cycling on The Martensitic Transformation and Shape Recorvery of Fe-Mn-Si Alloys

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070917

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term