JP3597054B2 - Time-of-flight mass spectrometer - Google Patents

Time-of-flight mass spectrometer Download PDF

Info

Publication number
JP3597054B2
JP3597054B2 JP24888498A JP24888498A JP3597054B2 JP 3597054 B2 JP3597054 B2 JP 3597054B2 JP 24888498 A JP24888498 A JP 24888498A JP 24888498 A JP24888498 A JP 24888498A JP 3597054 B2 JP3597054 B2 JP 3597054B2
Authority
JP
Japan
Prior art keywords
ion
time
spectrum
mass spectrum
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24888498A
Other languages
Japanese (ja)
Other versions
JP2000082439A (en
Inventor
国広文夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP24888498A priority Critical patent/JP3597054B2/en
Publication of JP2000082439A publication Critical patent/JP2000082439A/en
Application granted granted Critical
Publication of JP3597054B2 publication Critical patent/JP3597054B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、飛行時間型質量分析計(Time of Flight Mass Spectrometer:TOFMS)で用いられる質量スペクトルの測定方法に関する。
【0002】
【従来の技術】
TOFMSは、イオン源から発生したイオンが自らの質量の大小に依存して加速されることに基づいて、軽いイオンほど速くイオン検出器に到達し、重いイオンほど遅れてイオン検出器に到達することを利用して、イオンの質量分析を行なう装置である。
【0003】
図1は、TOFMSのブロックダイヤグラムを示したものである。通常、TOFMSでは、パルスイオン発生器1において、数ナノ(10−9)秒程度のパルスで試料をイオン化し、イオン検出器2までのイオンの飛行時間(検出器への入射時間)を測定することにより、質量分析する。イオンの飛行時間は数マイクロ(10−6)秒から数百マイクロ秒と短く、また、単独のイオン種の時間的な広がりは数ナノ秒と極めて短いため、イオン検出器2には、物理的な寸法がある程度確保でき、かつ応答性が良いマイクロチャンネルプレート(Micro Channel Plate:MCP)等でイオンを電子に変換して検出する方法が用いられている。イオンと電子の変換効率は、MCPに印加する電圧により、数十から数百万まで適当に選択可能である。
【0004】
また、連続的にイオン化されるGC−MSやLC−MSの分析系にTOFMSを使用する場合、イオンをパルス状にしてTOFMSへ導入するが、次から次ぎへと入射するイオンを処理するための専用測定システムが重要であり、このシステムにより数百から数千回程度平均化された質量スペクトルが得られる。
【0005】
【発明が解決しようとする課題】
ところが、MCPに印加する電圧を固定した場合、出力のダイナミックレンジ(出力範囲)はたかだか数百程度であり、磁場型質量分析計等で使用されている電子増倍管の場合には数十万程度のダイナミックレンジが得られているのに対し、TOFMSとしての最終的なダイナミックレンジは数百程度に限定されてしまうという問題があった。
【0006】
本発明の目的は、上述した点に鑑み、検出器にMCPを用いて、広いダイナミックレンジを備えたTOFMSを提供することにある。
【0007】
【課題を解決するための手段】
この目的を達成するため、本発明にかかるTOFMSは、イオン源からイオンパルスを発生させ、イオンパルスに含まれる質量の異なるイオンがイオン検出部に到達するまでの飛行時間を測定することにより質量スペクトルを測定することを繰り返し行なう飛行時間型質量分析計において、イオン検出部に印加電圧で増倍率を制御できるイオン検出器を用いると共に、イオンパルス毎にイオン検出器への印加電圧を変えることにより異なる増倍率でイオンの質量スペクトルを測定し、測定後に測定時の増倍率で質量スペクトルのゲインを較正して、スペクトル強度の強い箇所では低増倍率で測定した質量スペクトルを採用すると共に、スペクトル強度の弱い箇所では高増倍率で測定した質量スペクトルを採用して、ひとつながりの質量スペクトルを合成するようにしたことを特徴としている。
【0008】
【発明の実施の形態】
以下、図面を参照して、本発明の実施の形態を説明する。図2は、本発明にかかるTOFMSの構成を示したものである。
【0009】
図中、パルス発生器3から発生したパルス信号により、イオン発生器4からイオンパルスが発生し、ある一定電圧が印加されたMCPなどのイオン検出器5に向かって飛行する。イオン検出器5に到達したイオンパルスは、検出信号となって出力され、図示しない処理システムに入力される。
【0010】
このような構成において、TOFMSのパルス発生器3と連動させて、イオン検出器5であるMCPの電圧をステップにて切り替える。例えば、最初のパルスのイオンを検出するときのMCP印加電圧をVm1(低電圧:低増倍率)とし、次のパルスのイオンを検出するときのMCP印加電圧をVm2(高電圧:高増倍率)とし、測定時には、パルス発生器3と連動させて、このMCPへの印加電圧のスイッチ切り替えを順次繰り返す。
【0011】
次に、測定システムでは、パルス発生器3と連動させてスペクトル取り込みスイッチを切り替え、例えばVm1電圧で得られた質量スペクトルはスペクトル1として保存し、Vm2電圧で得られた質量スペクトルはスペクトル2として保存する。このとき、単独の未積算の質量スペクトルを時系列的にすべて保存する場合もあるが、通常は、ある程度の時間、例えば百回程度平均化した質量スペクトルを最終のスペクトルとして保存する方法が取られる。
【0012】
例えば、Vm1で得られたスペクトル1は、百回平均化処理を行ない、最終的にスペクトル1として保存し、Vm2で得られたスペクトル2は、同じ回数平均化処理を行ない、最終的にスペクトル2として保存し、これを繰り返すことにより、一連のスペクトル1の集合体とスペクトル2の集合体とを得る。
【0013】
最後に、測定システムないしは処理システムにおいて、スペクトル1とスペクトル2をそれぞれのMCP印加電圧での増倍率で較正することにより、最終的な一連のスペクトルとする。
【0014】
このとき、図3に示すように、低増倍率のスペクトル1では、強力な信号が適切な強度で記録されていると共に、微弱な信号は弱すぎて見ることができない状態である。一方、高増倍率のスペクトル2では、強力な信号がスケールオーバーして全体像を見ることができないのに対して、微弱な信号は適切な強度で記録されている。そこで、質量スペクトルのイオン強度の強い部分は、低いMCP印加電圧で取得した低増倍率のスペクトル1を使用し、質量スペクトルのイオン強度の弱い部分は、高いMCP印加電圧で取得した高増倍率のスペクトル2を使用するようにする。
【0015】
このようにすることにより、強力な信号から微弱な信号まで、スケールオーバーしたりビット落ちしたりすることのない質量スペクトルが得られ、結果的に、質量スペクトルのダイナミックレンジを拡大することができる。
【0016】
尚、上記実施例では、MCPの印加電圧を2種類に限定して説明を行なったが、複数の電圧の組み合わせで、イオン強度の中間を埋めることも可能である。また、イオン検出器はMCPで記述したが、マイクロスフェアプレート(Micro Sphere Plate:MSP)等の異なるイオン検出器でも、印加電圧でその増倍率が変更できるものであれば、問題なく使用することができる。
【0017】
【発明の効果】
以上述べたごとく、本発明の飛行時間型質量分析計を用いれば、従来のイオン検出器におけるようなダイナミックレンジの制限を克服することができ、強力な信号や微弱な信号が複雑に入り交じった質量スペクトルを、全体として適切なゲインで測定することができるようになる。
【図面の簡単な説明】
【図1】従来の飛行時間型質量分析計を示す図である。
【図2】本発明の飛行時間型質量分析計の一実施例を示す図である。
【図3】本発明の飛行時間型質量分析計で測定された質量スペクトルを示す図である。
【符号の説明】
1・・・パルスイオン発生器、2・・・イオン検出器、3・・・パルス発生器、4・・・イオン発生器、5・・・イオン検出器。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for measuring a mass spectrum used in a time-of-flight mass spectrometer (TOFMS).
[0002]
[Prior art]
TOFMS is based on the fact that ions generated from an ion source are accelerated depending on the magnitude of their own mass, so that lighter ions reach the ion detector faster and heavier ions reach the ion detector later. Is a device that performs mass analysis of ions by utilizing the above.
[0003]
FIG. 1 shows a block diagram of the TOFMS. Normally, in TOFMS, a pulse ion generator 1 ionizes a sample with a pulse of about several nanoseconds (10 −9 ) seconds, and measures the flight time of ions to the ion detector 2 (the time of incidence on the detector). In this way, mass spectrometry is performed. The flight time of ions is as short as several microseconds (10 −6 ) seconds to several hundreds of microseconds, and the time spread of a single ion species is extremely short as several nanoseconds. A method has been used in which ions are converted into electrons using a micro channel plate (MCP) or the like which can secure a certain size to some extent and has a good response, and is detected. The conversion efficiency between ions and electrons can be appropriately selected from several tens to several millions depending on the voltage applied to the MCP.
[0004]
In addition, when TOFMS is used in a GC-MS or LC-MS analysis system that is continuously ionized, ions are introduced into the TOFMS in a pulsed form, but are used to process ions that are incident one after another. A dedicated measurement system is important, and this system can provide a mass spectrum averaged several hundred to several thousand times.
[0005]
[Problems to be solved by the invention]
However, when the voltage applied to the MCP is fixed, the dynamic range of the output (output range) is at most several hundreds, and in the case of an electron multiplier used in a magnetic field type mass spectrometer or the like, hundreds of thousands are used. While a dynamic range of the order is obtained, there is a problem that the final dynamic range as the TOFMS is limited to about several hundreds.
[0006]
In view of the above, an object of the present invention is to provide a TOFMS having a wide dynamic range by using an MCP as a detector.
[0007]
[Means for Solving the Problems]
In order to achieve this object, the TOFMS according to the present invention generates an ion pulse from an ion source and measures a time of flight until ions of different masses contained in the ion pulse reach an ion detection unit, thereby obtaining a mass spectrum. in repeated performing time-of-flight mass spectrometer to measure a Rutotomoni using an ion detector capable of controlling the multiplication factor at the applied voltage to the ion detector, by varying the voltage applied to the ion detector in each pulsed ion Measure the mass spectrum of the ion with a different multiplication factor, calibrate the gain of the mass spectrum with the multiplication factor at the time of measurement after measurement, and adopt the mass spectrum measured with a low multiplication factor at the place where the spectrum intensity is strong, and In places where the intensity is weak, the mass spectrum measured at high It is characterized in that so as to synthesize Le.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 2 shows a configuration of the TOFMS according to the present invention.
[0009]
In the figure, an ion pulse is generated from an ion generator 4 by a pulse signal generated from a pulse generator 3 and flies toward an ion detector 5 such as an MCP to which a certain voltage is applied. The ion pulse that has reached the ion detector 5 is output as a detection signal and input to a processing system (not shown).
[0010]
In such a configuration, the voltage of the MCP, which is the ion detector 5, is switched in steps in conjunction with the pulse generator 3 of the TOFMS. For example, the MCP applied voltage when detecting the ion of the first pulse is V m1 (low voltage: low multiplication factor), and the MCP applied voltage when detecting the ion of the next pulse is V m2 (high voltage: high increase). In the measurement, the switching of the voltage applied to the MCP is sequentially repeated in conjunction with the pulse generator 3.
[0011]
Next, in the measurement system, the spectrum acquisition switch is switched in conjunction with the pulse generator 3. For example, the mass spectrum obtained at the voltage V m1 is stored as spectrum 1, and the mass spectrum obtained at the voltage V m2 is spectrum 2. Save as At this time, there is a case where a single unintegrated mass spectrum is all stored in chronological order.However, usually, a method of saving a mass spectrum averaged for about 100 times as a final spectrum is used as a final spectrum. .
[0012]
For example, spectrum 1 obtained at V m1 is averaged 100 times and finally stored as spectrum 1, and spectrum 2 obtained at V m2 is averaged the same number of times and finally processed. By storing as spectrum 2 and repeating this, a series of aggregates of spectrum 1 and an aggregate of spectrum 2 are obtained.
[0013]
Finally, in the measurement system or the processing system, the spectrum 1 and the spectrum 2 are calibrated by the multiplication factor at the respective MCP applied voltages, thereby forming a final series of spectra.
[0014]
At this time, as shown in FIG. 3, in the low-gain multiplication spectrum 1, a strong signal is recorded at an appropriate intensity, and a weak signal is too weak to be seen. On the other hand, in spectrum 2 with a high multiplication factor, a strong signal scales over and the entire image cannot be seen, whereas a weak signal is recorded with an appropriate intensity. Therefore, a low-gain multiplication spectrum 1 obtained at a low MCP applied voltage is used for a high ion intensity portion of the mass spectrum, and a high multiplication factor obtained at a high MCP application voltage is used for a low mass spectrum ionic intensity portion. The spectrum 2 is used.
[0015]
By doing so, a mass spectrum from a strong signal to a weak signal without scale-over or bit loss is obtained, and as a result, the dynamic range of the mass spectrum can be expanded.
[0016]
In the above-described embodiment, the description has been made by limiting the applied voltage of the MCP to two types. However, it is also possible to fill the middle of the ion intensity by combining a plurality of voltages. Although the ion detector is described in the MCP, a different ion detector such as a microsphere plate (MSP) can be used without any problem as long as the multiplication factor can be changed by an applied voltage. it can.
[0017]
【The invention's effect】
As described above, the use of the time-of-flight mass spectrometer of the present invention can overcome the limitation of the dynamic range as in the conventional ion detector, and a strong signal and a weak signal are mixed. The mass spectrum can be measured as a whole with an appropriate gain.
[Brief description of the drawings]
FIG. 1 is a diagram showing a conventional time-of-flight mass spectrometer.
FIG. 2 is a diagram showing one embodiment of a time-of-flight mass spectrometer of the present invention.
FIG. 3 is a diagram showing a mass spectrum measured by a time-of-flight mass spectrometer of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Pulse ion generator, 2 ... Ion detector, 3 ... Pulse generator, 4 ... Ion generator, 5 ... Ion detector.

Claims (1)

イオン源からイオンパルスを発生させ、イオンパルスに含まれる質量の異なるイオンがイオン検出部に到達するまでの飛行時間を測定することにより質量スペクトルを測定することを繰り返し行なう飛行時間型質量分析計において、イオン検出部に印加電圧で増倍率を制御できるイオン検出器を用いると共に、イオンパルス毎にイオン検出器への印加電圧を変えることにより異なる増倍率でイオンの質量スペクトルを測定し、測定後に測定時の増倍率で質量スペクトルのゲインを較正して、スペクトル強度の強い箇所では低増倍率で測定した質量スペクトルを採用すると共に、スペクトル強度の弱い箇所では高増倍率で測定した質量スペクトルを採用して、ひとつながりの質量スペクトルを合成するようにしたことを特徴とする飛行時間型質量分析計。 In a time-of-flight mass spectrometer that repeatedly generates an ion pulse from an ion source and repeatedly measures the mass spectrum by measuring the time of flight until ions having different masses contained in the ion pulse reach the ion detector. , using an ion detector capable of controlling the multiplication factor at the applied voltage to the ion detector Rutotomoni measures a mass spectrum of ions in different multiplication factor by varying the voltage applied to the ion detector in each ion pulse, after measurement The gain of the mass spectrum is calibrated with the gain at the time of measurement, and the mass spectrum measured at a low gain is used in places where the spectrum intensity is strong, and the mass spectrum measured at a high gain is used in places where the spectrum intensity is weak. Time-of-flight quality characterized by combining a series of mass spectra Spectrometer.
JP24888498A 1998-09-03 1998-09-03 Time-of-flight mass spectrometer Expired - Fee Related JP3597054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24888498A JP3597054B2 (en) 1998-09-03 1998-09-03 Time-of-flight mass spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24888498A JP3597054B2 (en) 1998-09-03 1998-09-03 Time-of-flight mass spectrometer

Publications (2)

Publication Number Publication Date
JP2000082439A JP2000082439A (en) 2000-03-21
JP3597054B2 true JP3597054B2 (en) 2004-12-02

Family

ID=17184883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24888498A Expired - Fee Related JP3597054B2 (en) 1998-09-03 1998-09-03 Time-of-flight mass spectrometer

Country Status (1)

Country Link
JP (1) JP3597054B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0029040D0 (en) 2000-11-29 2001-01-10 Micromass Ltd Orthogonal time of flight mass spectrometer
US7038197B2 (en) 2001-04-03 2006-05-02 Micromass Limited Mass spectrometer and method of mass spectrometry
KR20030084254A (en) * 2002-04-26 2003-11-01 양상식 A micro mass spectrometer using micromachining technology and the fabrication method
EP1365437B1 (en) * 2002-05-17 2014-08-20 Micromass UK Limited Mass spectrometer and method of mass spectrometry
US7047144B2 (en) * 2004-10-13 2006-05-16 Varian, Inc. Ion detection in mass spectrometry with extended dynamic range
JP2009289628A (en) * 2008-05-30 2009-12-10 Hitachi High-Technologies Corp Time-of-flight mass spectrometer
CN105719942B (en) * 2014-12-05 2017-12-26 中国科学院大连化学物理研究所 A kind of HDR detector for flight time mass spectrum

Also Published As

Publication number Publication date
JP2000082439A (en) 2000-03-21

Similar Documents

Publication Publication Date Title
CA2284763C (en) Time of flight mass spectrometer and dual gain detector therefor
Wiley et al. Time‐of‐flight mass spectrometer with improved resolution
US4472631A (en) Combination of time resolution and mass dispersive techniques in mass spectrometry
US6933497B2 (en) Time-of-flight mass analyzer with multiple flight paths
US6812454B2 (en) Multi-anode detector with increased dynamic range for time-of-flight mass spectrometers with counting data acquisition
JP2004533611A (en) High speed variable gain system and control method of the system
EP0747929B1 (en) Method of using a quadrupole ion trap mass spectrometer
US20060016977A1 (en) Time-of-flight analyzer
JP4246662B2 (en) Time-of-flight mass spectrometer and analysis method
JP3597054B2 (en) Time-of-flight mass spectrometer
CN111029242A (en) Ion signal detection device and method for quadrupole rod mass analyzer
CN108089064A (en) A kind of device and method for measuring pulsed ionizing beam pulse width
JP3504854B2 (en) Time-of-flight mass spectrometer
CN210897194U (en) Ion signal detection device for time-of-flight mass spectrometer
JP3701136B2 (en) Time-of-flight mass spectrometer
CN210897193U (en) Ion signal detection device for quadrupole rod mass analyzer
CN210897195U (en) Ion signal detection device for ion trap mass spectrometer
Yoshimura et al. Evaluation of a delay-line detector combined with analog-to-digital converters as the ion detection system for stigmatic imaging mass spectrometry
CN110911264A (en) Ion signal detection device and method for time-of-flight mass spectrometer
Zerega et al. A dual quadrupole ion trap mass spectrometer
JP3551091B2 (en) Ion trap type mass spectrometer and control method therefor
JPS61170652A (en) Mass spectrograph
US20240128070A1 (en) Multimode ion detector with wide dynamic range and automatic mode switching
Wiens et al. Time-of-flight detection coupled to a flowing afterglow: Improvements and characterization
JPH07294459A (en) Sputter neutral particle mass spectrometry

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040907

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees