JP3596413B2 - High temperature, high pressure conductivity detection sensor - Google Patents

High temperature, high pressure conductivity detection sensor Download PDF

Info

Publication number
JP3596413B2
JP3596413B2 JP2000065810A JP2000065810A JP3596413B2 JP 3596413 B2 JP3596413 B2 JP 3596413B2 JP 2000065810 A JP2000065810 A JP 2000065810A JP 2000065810 A JP2000065810 A JP 2000065810A JP 3596413 B2 JP3596413 B2 JP 3596413B2
Authority
JP
Japan
Prior art keywords
electrode
electrode holder
support hole
screw shaft
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000065810A
Other languages
Japanese (ja)
Other versions
JP2001255294A (en
Inventor
満 野末
努 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2000065810A priority Critical patent/JP3596413B2/en
Publication of JP2001255294A publication Critical patent/JP2001255294A/en
Application granted granted Critical
Publication of JP3596413B2 publication Critical patent/JP3596413B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、ボイラーの缶水の一部を取出したサンプル水の流路の途中に設けた十字形、T字形の継ぎ手等に取付け、4本の電極によりサンプル水の導電率を計測するボイラーのブロー管理装置や、高温冷却水の水質管理装置に使用する導電率検出センサに関する。
【0002】
【従来の技術】
本特許出願人は、そのような高温、高圧タイプの導電率検出センサを特開平11−248658号公報で提案した。この導電率検出センサは2電極式で、各電極の棒形電極部の外周と電極ホルダの段付き孔の大径孔部との間、及び電極ホルダの後部外周とニップルの内周の大径前半部との間をOリングでシールすると共に、各電極の棒状電極部の後端とその後端が対向する段付き孔の段との間、及び電極ホルダの後端とその後端が対向するニップルの段付き中空部の段部との間をシール材でシールしている。
【0003】
【発明が解決しようとする課題】
上記2電極式センサは電極間に流れる電流を直接に測定するため、電極表面に被膜が形成されると電気伝導率を測定するには洗浄及び校正が必要になる。この点、4電極式センサは汚れに対して強いとされているが、2電極式よりも大形になり、それによって配管への取付けが大がかりになる。
【0004】
導電率の測定には温度補正が必要であるため、温度センサを導電率検出センサの内部に埋没させて内部一体型にすることが望ましいが、そうするとボイラー水など検水との接触面積が少なくなって温度応答性が悪くなり、その結果、間違った導電率が計測されることが生じる。
【0005】
【課題を解決するための手段】
請求項1導電率検出センサは4電極式でありながら2電極式と同程度の大きさにまとめたのであって棒形電極部及びその後端から一体に突出したねじ軸を有する金属製の4本の電極と、上記4本の電極の1本宛を軸方向に平行な4つの支持孔に夫々貫通して支持し、各電極の棒形電極部の前端が向いた前端部を検水部とした樹脂製の電極ホルダと、上記電極ホルダの後部を大径中空部に保持した大径前半部及び各電極のねじ軸の後端に接続した導線を小径中空部を通じて外に後向きに引き出す小径後半部を有する段付き中空部を備えた金属性のニップルとからなり、上記4本の各電極の棒形電極部と、上記棒形電極部を収容した電極ホルダの支持孔の電極部収容部分との間を高温乾燥によって固化するシール材でシールすると共に、各電極のねじ軸と、このねじ軸を収容した電極ホルダの支持孔のねじ軸収容部分との間をシールし、電極ホルダの後部外周と、これを保持したニップルの大径中空部の内周との間をOリングでシールし、電極ホルダの後端と、ニップルの大径中空部の後端とをシール材でシールし、且つ各電極のねじ軸の後端に接続した導線を外に引き出したニップルの小径中空部の内部に熱によって固化するシール材を充填し、上記電極ホルダには前端の検水部の回りを囲む前向き筒部を一体に形成し、この前向き筒部の前端をシリコンゴム製の保護キャップで塞ぐと共に、前向き筒部の側面検水を該前向き筒部の直径方向に流すため通水孔を当該直径方向に対向して設けたことを特徴とする。又、請求項の導電率検出センサは、請求項に記載の高温、高圧用導電率検出センサにおいて、電極ホルダには電極の支持孔と平行な第2支持孔を設け、この第2支持孔に棒形電極部及びその後端から一体に突出したねじ軸を有する金属製の1本の温度センサを電極と同方向に貫通して支持し、この温度センサの前端部を電極ホルダの前端の検水部から上記4本の電極の前端よりも前に長く突出させたことを特徴とする。請求項の導電率検出センサは、請求項に記載の高温、高圧用導電率検出センサにおいて、電極ホルダが支持孔に貫通して支持する4本の電極は、電極ホルダの前端の直径方向に沿って一列に配列し、第2支持孔に貫通して支持する1本の温度センサは電極ホルダの前端の中央近傍に設けたことを特徴とする。
【0006】
【発明の実施の形態】
10は導電性の金属、例えばステンレス鋼、銀、銅、黄銅、金、白金、チタン等からなる4本の電極で、棒形電極部11と、その後端から同心状に後向きに突出するほゞ同径の一体のねじ軸13を備え、棒形電極部11は中間よりも前に環状溝12を有する。尚、電極の精度を向上するため電極に銀のロー付けやメッキなどの処理を施すこともある。
【0007】
20はプラスチックで成形した円柱形の電極ホルダで、上記4本の電極10を1本宛、貫通して支持する4つの支持孔21を軸方向に平行に備えている。各支持孔21は棒形電極部収容部分22と、ねじ軸13を収容するねじ孔のねじ軸収容部分23とからなる。
【0008】
各電極10を電極ホルダの支持孔21に貫通して支持する際は、棒形電極部11の外周に高温乾燥によって固化するシール材、例えばコーキング剤を塗布し、且つ、環状溝12にもこれを満たして棒形電極部収容部分22に挿入すると共に、ねじ軸13にはテフロン製のシールテープなどを巻付けてねじ孔のねじ軸収容部分23にねじ込み棒形電極部11、ねじ軸13とも支持孔21にシールして固定する。これにより電極に加わる軸方向の力で電極が支持孔21内でずれ動くのが防止できる。この状態でねじ軸13の後端部は電極ホルダ20の後端から後向きに突出し、被覆した導線14を高温半田などで連結することができる。又、棒形電極部11の前端部は電極ホルダ20の前端から僅かに、例えば1mm突出する。
【0009】
電極ホルダ20の前端の前は検水部24であり、電極ホルダは前端の回りから前向きに突出する同心の前向き筒部25を備えている。
【0010】
そして、温度センサ30を、電極10と一緒に支持するため、電極ホルダ20には左右の直径方向Dの上側に前記4つの支持孔21を左右に一列に設けて前述したように4本の電極10を貫通支持し、直径方向Dの下側の中央部に第2支持孔26を軸方向に設け、この第2支持孔26に温度センサ30を貫通支持する(図1d参照)。
【0011】
温度センサ30はセンサ本体31の前に大径部32を有し、大径部32の前に小判形の感知部33を備えている。感知部33の小判形の円弧面33′,33′は大径部32の外周と連なっている。
【0012】
第2支持孔26は温度センサ30の大径部32と、その直後のセンサ本体31の外周に嵌めたOリング34を受入れる拡径部を前端部に有する。従って第2支持孔26に支持された温度センサ30の小判形の感知部33が電極ホルダの前端から前に突出する長さは、例えば4mmで、4本の電極10の前端よりも前に長く突出している。尚、感知部33は小判形の二つの平らな面を、4つの支持孔の配列と同じく左と右に向けている。温度センサの感知部33をこのように長く電極ホルダの前端の検水部24から突出させることにより検水に対する温度センサの接触面積が増大し、良好な感度を得ることができる。
【0013】
温度センサ30のセンサ本体31の長さは短く、第2支持孔の前半内部に後端が位置し、その後端からは被覆した導線35が延びて第2支持孔の後端から突出する。温度センサを第2支持孔内に固定するため前述したOリング34のほかに、センサ本体の後端に接続した導線35の前端外周には前述した高温乾燥によって固化するシール材、例えばコーキング剤を塗布し、その固化層36で固定する。
【0014】
電極ホルダの前端から突出する前向き筒部25の側面には、検水を流すための通水孔27,27を直径方向に対向して設けてボイラ水などの検水を該前向き筒部25の直径方向に流すことができるようにし、温度センサの小判形の感知部の上下に向いた円弧面33′,33′が通水孔27,27を通って流れるボイラ水などの検水を浴びる。尚、前向き筒部25の前端には中心に孔を有する保護キャップ28を取外し可能に嵌め、検水部24を塞ぐ。保護キャップ28はシリコンゴム製などの容易に脱着できるものであることが好ましい。その側面に直径方向に対向して設けられた通水孔を有する前向き筒部25、及びその前端を塞ぐキャップ28によって4極式導電率測定時のもれ電流によるノイズを防止し、安定した測定を行うことができる。
【0015】
電極ホルダ20の後端には第2支持孔26の左右に一部を埋めて導電部材37,37が取付けてあり、温度センサ30の2本の導線35の芯線を1本宛、上記導電部材37,37に接続する。そして、各導電部材37,37には後向きに被覆導線38,38が高温半田で連結してある。電極ホルダの外周後端には同心の後向き筒29が設けてある。
【0016】
40は金属、例えばステンレス鋼製のニップルで六角形の工具係合部41の前に電極ホルダ20の後部を大径中空部の内周に保持する大径前半部42と、電極のねじ軸13の後端に連結された導線14や、温度センサの導電部材37の後端に連結した導線38を小径中空部を通じて外に引き出す小径後半部43とからなる段付き中空部44を備えている。
【0017】
電極ホルダの後部を大径前半部42の内周に保持するには、段付き中空部44の内部の段面44′にパッキン45を当て、電極ホルダの後部外周の環状溝にOリング46を嵌めて大径前半部42の内周に前から押込み、電極ホルダの後向き筒29の後端で上記パッキン45を圧縮する。そして、大径前半部42の回りに複数個設けた半径方向のネジ孔に止めねじ47をねじ込み、止めねじの先端で電極ホルダ20の後部外周を締付ける。尚、Oリング46は1つでもよいが、図では2個使用し、シール性を高めている。又、電極ホルダの後端から後に延びる各導線14,38を小径中空部から外に後向きに引き出し、段付き中空部の内部に電極ホルダの後向き筒の内部も含んで高温下でシール性を持続できるシール材、例えばエポキシ樹脂などのモールド剤48を充填して固化させる。
【0018】
【発明の効果】
請求項1よれば4電極式でありながら2電極式と同程度の大きさで、汚れに対して強い導電率検出センサが得られる。又、請求項2、3により4電極と一緒に温度センサを電極ホルダに埋没した一体型の温度センサ付き導電率検出センサが得られる。
【図面の簡単な説明】
【図1】図は本発明による導電率検出センサの一実施形態を示すもので、(a)は全体の側面図、(b)は同じく平面図、(c)は(b)を右から見た正面図、(d)は(c)の保護キャップを外した状態の正面図、(e)は(d)のA−A線での断面図、(f)は(d)のB−B線での断面図。
【符号の説明】
10 電極
11 電極の棒形電極部
13 電極のねじ軸
20 電極ホルダ
21 電極の支持孔
22 支持孔の棒形電極部収容部分
23 支持孔のねじ軸収容部分
24 検水部
26 第2支持孔
30 温度センサ
31 温度センサのセンサ本体
32 温度センサの大径部
33 温度センサの小判形感知部
40 ニップル
41 ニップルの工具係合部
42 ニップルの大径前半部
43 ニップルの小径後半部
45 電極ホルダの後端とニップルの大径中空部の後端(段面44′)との間をシールするシール材(パッキン)
48 ニップルの小径中空部(小径後半部の内周)に充填されたシール材(モールド剤)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a boiler for measuring the conductivity of sample water using four electrodes, which is attached to a cross-shaped or T-shaped joint provided in the middle of a flow path of sample water from which a portion of boiler can water has been taken out. The present invention relates to a conductivity detection sensor used for a blow management device and a water quality management device for high-temperature cooling water.
[0002]
[Prior art]
The present applicant has proposed such a high-temperature, high-pressure type conductivity detection sensor in Japanese Patent Application Laid-Open No. H11-248658. This conductivity detection sensor is a two-electrode type, and has a large diameter between the outer periphery of the rod-shaped electrode portion of each electrode and the large-diameter hole of the stepped hole of the electrode holder, and the outer periphery of the rear portion of the electrode holder and the inner periphery of the nipple. A nipple that seals the space between the front half with an O-ring, between the rear end of the rod-shaped electrode portion of each electrode and the step of the stepped hole where the rear end faces, and between the rear end and the rear end of the electrode holder The space between the stepped hollow portion and the stepped portion is sealed with a sealing material.
[0003]
[Problems to be solved by the invention]
Since the two-electrode sensor directly measures the current flowing between the electrodes, when a film is formed on the electrode surface, cleaning and calibration are required to measure the electric conductivity. In this regard, the four-electrode sensor is said to be resistant to dirt, but it is larger than the two-electrode sensor, which requires a large amount of attachment to piping.
[0004]
Temperature measurement is required for conductivity measurement, so it is desirable to immerse the temperature sensor inside the conductivity detection sensor and make it an integral type, but doing so reduces the contact area with boiler water and other water samples. The temperature response becomes poor, and as a result, the wrong conductivity is measured.
[0005]
[Means for Solving the Problems]
The conductivity detection sensor according to claim 1 is a four-electrode type, but has a size similar to that of a two-electrode type, and is formed of a metal having a rod-shaped electrode portion and a screw shaft integrally projecting from a rear end thereof. Four electrodes and one of the four electrodes are supported by penetrating through four support holes parallel to each other in the axial direction, and the front end of the rod-shaped electrode portion of each electrode facing the front end is sampled. A resin-made electrode holder, a large-diameter front part holding the rear part of the electrode holder in the large-diameter hollow part, and a lead wire connected to the rear end of the screw shaft of each electrode are pulled out backward through the small-diameter hollow part. Ri Do and a metallic nipple having a stepped hollow portion having a small diameter rear half portion, the rod-shaped electrode portion of each electrode of the four and, the electrode portion of the support hole of the electrode holder accommodating the rod-shaped electrode portion Seal the space between the housing and the housing with a sealing material that solidifies by high-temperature drying. Between the screw shaft of the electrode holder and the screw shaft accommodating portion of the support hole of the electrode holder accommodating the screw shaft, and the outer periphery of the rear portion of the electrode holder and the inner periphery of the large-diameter hollow portion of the nipple holding the same. The gap was sealed with an O-ring, the rear end of the electrode holder and the rear end of the large-diameter hollow portion of the nipple were sealed with a sealing material, and a lead wire connected to the screw shaft rear end of each electrode was drawn out. filled with a sealing material to solidify inside the small-diameter hollow portion of the nipple by heat, in the above electrode holder to form a forward tubular portion surrounding around the test water portion of the front end together, silicone rubber front end of the forward tubular portion with closed with manufacturing of the protective cap, the side surface of the forward cylindrical portion, characterized in that opposed the water passing holes in the diameter direction for the flow of test water in the diameter direction of the front facing the tubular portion. According to a second aspect of the present invention, there is provided a conductivity detection sensor for high temperature and high pressure according to the first aspect , wherein the electrode holder is provided with a second support hole parallel to the electrode support hole. A single metal temperature sensor having a rod-shaped electrode portion and a screw shaft integrally projecting from the rear end of the hole is supported in the same direction as the electrode, and the front end of the temperature sensor is connected to the front end of the electrode holder. The present invention is characterized in that the four electrodes protrude longer than the front ends of the four electrodes . According to a third aspect of the present invention, there is provided the conductivity detection sensor for high temperature and high pressure according to the second aspect , wherein the four electrodes supported by the electrode holder through the support hole are diametrical at the front end of the electrode holder. One temperature sensor arranged in a line along the line and supported through the second support hole is provided near the center of the front end of the electrode holder.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Reference numeral 10 denotes four electrodes made of a conductive metal, for example, stainless steel, silver, copper, brass, gold, platinum, titanium, or the like. It has an integral screw shaft 13 of the same diameter, and the rod-shaped electrode part 11 has an annular groove 12 before the middle. Incidentally, in order to improve the accuracy of the electrode, the electrode may be subjected to a treatment such as silver brazing or plating.
[0007]
Reference numeral 20 denotes a cylindrical electrode holder formed of plastic, which is provided with four support holes 21 for penetrating and supporting the four electrodes 10 one by one in the axial direction. Each support hole 21 includes a rod-shaped electrode portion accommodating portion 22 and a screw shaft accommodating portion 23 of a screw hole accommodating the screw shaft 13.
[0008]
When each electrode 10 is supported by penetrating through the support hole 21 of the electrode holder, a sealing material, for example, a caulking agent, which is solidified by high-temperature drying is applied to the outer periphery of the rod-shaped electrode portion 11 and the annular groove 12 is also coated with the sealing material. Is filled and inserted into the rod-shaped electrode portion accommodating portion 22, and a Teflon sealing tape or the like is wound around the screw shaft 13 and screwed into the screw shaft accommodating portion 23 of the screw hole. It is sealed in the support hole 21 and fixed. Accordingly, it is possible to prevent the electrode from being displaced and moved in the support hole 21 by the axial force applied to the electrode. In this state, the rear end of the screw shaft 13 projects rearward from the rear end of the electrode holder 20, and the covered conductor 14 can be connected by high-temperature solder or the like. Further, the front end of the rod-shaped electrode portion 11 protrudes slightly, for example, 1 mm from the front end of the electrode holder 20.
[0009]
In front of the front end of the electrode holder 20 is a water detecting unit 24, and the electrode holder is provided with a concentric forward-facing cylinder 25 protruding forward from around the front end.
[0010]
In order to support the temperature sensor 30 together with the electrode 10, the electrode holder 20 is provided with the four support holes 21 in a line on the left and right in the left and right diametric directions D, and as described above, the four electrodes The second support hole 26 is provided in the axial direction at the lower central portion of the diameter direction D, and the temperature sensor 30 is supported through the second support hole 26 (see FIG. 1D).
[0011]
The temperature sensor 30 has a large-diameter portion 32 in front of a sensor main body 31 and an oval-shaped sensing portion 33 in front of the large-diameter portion 32. The oval circular arc surfaces 33 ′, 33 ′ of the sensing portion 33 are connected to the outer periphery of the large diameter portion 32.
[0012]
The second support hole 26 has a large-diameter portion 32 of the temperature sensor 30 and an enlarged-diameter portion for receiving an O-ring 34 fitted on the outer periphery of the sensor main body 31 immediately behind the large-diameter portion 32 at the front end. Therefore, the length of the oval sensing part 33 of the temperature sensor 30 supported by the second support hole 26 protruding forward from the front end of the electrode holder is, for example, 4 mm, and is longer than the front ends of the four electrodes 10. It is protruding. In addition, the sensing part 33 has the two flat surfaces of the oval shape turned to the left and right similarly to the arrangement of the four support holes. By making the sensing part 33 of the temperature sensor protrude from the water detection part 24 at the front end of the electrode holder in this way, the contact area of the temperature sensor with the water sample increases, and good sensitivity can be obtained.
[0013]
The length of the sensor main body 31 of the temperature sensor 30 is short, the rear end is located inside the first half of the second support hole, and the covered conducting wire 35 extends from the rear end and projects from the rear end of the second support hole. In addition to the above-described O-ring 34 for fixing the temperature sensor in the second support hole, a sealing material, such as a caulking agent, which is solidified by high-temperature drying as described above, is applied to the outer periphery of the front end of the conducting wire 35 connected to the rear end of the sensor body. It is applied and fixed with the solidified layer 36.
[0014]
On the side surface of the forward-facing cylinder portion 25 protruding from the front end of the electrode holder, water holes 27, 27 for diametrically facing the water are provided diametrically opposed to each other, so that water such as boiler water is supplied to the forward-facing cylinder portion 25. to be able to flow in the radial direction, arcuate surface 33 facing the upper and lower sensing portion of the oval of the temperature sensor ', 33' are exposed to test water such as boiler water flowing through the water-passing holes 27, 27. In addition, a protective cap 28 having a hole at the center is detachably fitted to the front end of the forward facing tubular portion 25 to close the water detecting portion 24. Preferably, the protective cap 28 is made of silicon rubber or the like and is easily detachable. A forward-facing cylindrical portion 25 having a water hole formed on the side surface facing the diametric direction and a cap 28 closing the front end prevent noise caused by leakage current at the time of four-electrode conductivity measurement, and perform stable measurement. It can be performed.
[0015]
Conductive members 37, 37 are attached to the rear end of the electrode holder 20 so as to partially fill the left and right sides of the second support hole 26, and the cores of the two conductive wires 35 of the temperature sensor 30 are addressed to one. 37, 37. In addition, coated conductive wires 38, 38 are connected to the respective conductive members 37, 37 backward by high-temperature solder. A concentric rearward-facing cylinder 29 is provided at the outer rear end of the electrode holder.
[0016]
Reference numeral 40 denotes a metal, for example, a stainless steel nipple, a large-diameter front half 42 for holding the rear portion of the electrode holder 20 on the inner periphery of the large-diameter hollow portion in front of the hexagonal tool engagement portion 41, and the screw shaft 13 of the electrode. And a small-diameter rear part 43 for drawing out the conductor 38 connected to the rear end of the conductive member 37 of the temperature sensor to the outside through the small-diameter hollow part.
[0017]
In order to hold the rear part of the electrode holder on the inner periphery of the large-diameter front half part 42, a packing 45 is applied to a step surface 44 ′ inside the stepped hollow part 44, and an O-ring 46 is placed in an annular groove on the rear outer periphery of the electrode holder. The packing 45 is compressed at the rear end of the rearward-facing cylinder 29 of the electrode holder by pushing it into the inner periphery of the large-diameter front half portion 42 from the front. Then, a set screw 47 is screwed into a plurality of radial screw holes provided around the large-diameter front half 42, and the outer periphery of the rear portion of the electrode holder 20 is tightened with the tip of the set screw. Although one O-ring 46 may be used, two O-rings are used in the figure to enhance the sealing performance. The conductors 14, 38 extending rearward from the rear end of the electrode holder are drawn out backward from the small-diameter hollow portion, and the inside of the stepped hollow portion includes the rearwardly facing cylinder of the electrode holder to maintain the sealing property at a high temperature. A sealing material, for example, a molding agent 48 such as an epoxy resin is filled and solidified.
[0018]
【The invention's effect】
According to the first aspect, it is possible to obtain a conductivity detection sensor which is a four-electrode type and has the same size as the two-electrode type and is strong against dirt. In addition, according to the second and third aspects, an integrated conductivity detection sensor with a temperature sensor in which a temperature sensor is embedded in an electrode holder together with four electrodes can be obtained.
[Brief description of the drawings]
1A and 1B show an embodiment of a conductivity detection sensor according to the present invention, wherein FIG. 1A is a side view of the whole, FIG. 1B is a plan view of the same, and FIG. (D) is a front view with the protective cap removed in (c), (e) is a cross-sectional view taken along line AA in (d), and (f) is BB in (d). Sectional view at the line.
[Explanation of symbols]
REFERENCE SIGNS LIST 10 electrode 11 electrode rod-shaped electrode part 13 electrode screw shaft 20 electrode holder 21 electrode support hole 22 support hole rod-shaped electrode part accommodation part 23 support hole screw shaft accommodation part 24 water detection unit 26 second support hole 30 Temperature sensor 31 Temperature sensor main body 32 Temperature sensor large diameter part 33 Temperature sensor oval sensing part 40 Nipple 41 Nipple tool engagement part 42 Nipple large diameter front half 43 Nipple small diameter rear half 45 After electrode holder Sealing material (packing) for sealing between the end and the rear end (step surface 44 ') of the large-diameter hollow portion of the nipple
48 Sealing material (molding agent) filled in the small-diameter hollow portion of the nipple (the inner periphery of the second half of the small diameter)

Claims (3)

棒形電極部及びその後端から一体に突出したねじ軸を有する金属製の4本の電極と、上記4本の電極の1本宛を軸方向に平行な4つの支持孔に夫々貫通して支持し、各電極の棒形電極部の前端が向いた前端部を検水部とした樹脂製の電極ホルダと、上記電極ホルダの後部を大径中空部に保持した大径前半部及び各電極のねじ軸の後端に接続した導線を小径中空部を通じて外に後向きに引き出す小径後半部を有する段付き中空部を備えた金属性のニップルとからなり、
上記4本の各電極の棒形電極部と、上記棒形電極部を収容した電極ホルダの支持孔の電極部収容部分との間を高温乾燥によって固化するシール材でシールすると共に、各電極のねじ軸と、このねじ軸を収容した電極ホルダの支持孔のねじ軸収容部分との間をシールし、電極ホルダの後部外周と、これを保持したニップルの大径中空部の内周との間をOリングでシールし、電極ホルダの後端と、ニップルの大径中空部の後端とをシール材でシールし、且つ各電極のねじ軸の後端に接続した導線を外に引き出したニップルの小径中空部の内部に熱によって固化するシール材を充填し、
上記電極ホルダには、前端の検水部の回りを囲む前向き筒部を一体に形成し、この前向き筒部の前端をシリコンゴム製の保護キャップで塞ぐと共に、前向き筒部の側面に、検水を該前向き筒部の直径方向に流すための通水孔を当該直径方向に対向して設けたことを特徴とする高温、高圧用導電率検出センサ。
Four metal electrodes having a rod-shaped electrode portion and a screw shaft integrally projecting from the rear end thereof, and each of the four electrodes is supported by penetrating through four support holes parallel to the axial direction. A resin electrode holder having a front end portion of the rod-shaped electrode portion of each electrode facing the front end as a water detecting portion, a large-diameter front half portion in which a rear portion of the electrode holder is held in a large-diameter hollow portion, and each electrode. Ri Do and a metallic nipple having a stepped hollow portion having a small diameter rear half portion to draw backward out through the small-diameter hollow portion of the conductive wire that is connected to the rear end of the screw shaft,
The gap between the rod-shaped electrode portions of the four electrodes and the electrode portion-accommodating portion of the support hole of the electrode holder accommodating the rod-shaped electrode portion is sealed with a sealing material that is solidified by high-temperature drying. Seal between the screw shaft and the screw shaft receiving portion of the support hole of the electrode holder accommodating this screw shaft, and between the outer periphery of the rear portion of the electrode holder and the inner periphery of the large-diameter hollow portion of the nipple holding this Is sealed with an O-ring, the rear end of the electrode holder and the rear end of the large-diameter hollow portion of the nipple are sealed with a sealing material, and a lead wire connected to the rear end of the screw shaft of each electrode is drawn out. Fill the inside of the small-diameter hollow part with a sealing material that solidifies due to heat,
The electrode holder is integrally formed with a forward-facing cylinder that surrounds the front-end water-sensing section, and the front end of the front-facing cylinder is closed with a protective cap made of silicone rubber. A high-temperature, high-pressure conductivity detection sensor, characterized in that a water passage hole for causing the water to flow in the diametric direction of the forward-facing cylindrical portion is provided opposite to the diametric direction .
請求項1に記載の高温、高圧用導電率検出センサにおいて、電極ホルダには電極の支持孔と平行な第2支持孔を設け、この第2支持孔に棒形電極部及びその後端から一体に突出したねじ軸を有する金属製の1本の温度センサを電極と同方向に貫通して支持し、この温度センサの前端部を電極ホルダの前端の検水部から上記4本の電極の前端よりも前に長く突出させたことを特徴とする高温、高圧用導電率検出センサ。 2. The high-temperature and high-pressure conductivity detection sensor according to claim 1, wherein the electrode holder has a second support hole parallel to the electrode support hole, and the second support hole is integrally formed with the rod-shaped electrode portion and the rear end thereof. A single metal temperature sensor having a protruding screw shaft is supported by penetrating in the same direction as the electrodes, and the front end of the temperature sensor is moved from the water detecting section at the front end of the electrode holder to the front end of the four electrodes. A high-temperature, high-voltage conductivity detection sensor characterized by having a long protruding front. 請求項2に記載の高温、高圧用導電率検出センサにおいて、電極ホルダが支持孔に貫通して支持する4本の電極は、電極ホルダの前端の直径方向に沿って一列に配列し、第2支持孔に貫通して支持する1本の温度センサは、電極ホルダの前端の中央近傍に設けたことを特徴とする高温、高圧用導電率検出センサ。 3. The high-temperature and high-voltage conductivity detection sensor according to claim 2 , wherein the four electrodes supported by the electrode holder through the support hole are arranged in a line along a diametrical direction of a front end of the electrode holder. A high temperature and high pressure conductivity detection sensor, wherein one temperature sensor penetrating and supporting the support hole is provided near the center of the front end of the electrode holder.
JP2000065810A 2000-03-10 2000-03-10 High temperature, high pressure conductivity detection sensor Expired - Fee Related JP3596413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000065810A JP3596413B2 (en) 2000-03-10 2000-03-10 High temperature, high pressure conductivity detection sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000065810A JP3596413B2 (en) 2000-03-10 2000-03-10 High temperature, high pressure conductivity detection sensor

Publications (2)

Publication Number Publication Date
JP2001255294A JP2001255294A (en) 2001-09-21
JP3596413B2 true JP3596413B2 (en) 2004-12-02

Family

ID=18585276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000065810A Expired - Fee Related JP3596413B2 (en) 2000-03-10 2000-03-10 High temperature, high pressure conductivity detection sensor

Country Status (1)

Country Link
JP (1) JP3596413B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4815824B2 (en) * 2005-03-04 2011-11-16 東京電力株式会社 Resistance value management method for water resistance type neutral point grounding resistors
JP2009085851A (en) * 2007-10-01 2009-04-23 Techno Morioka Kk Water quality sensor
DE102008042673A1 (en) * 2008-10-08 2010-06-17 Robert Bosch Gmbh Sensor device for detecting electrical properties of a liquid
KR101189072B1 (en) * 2009-08-10 2012-10-10 고려대학교 산학협력단 Probe for measuring suspension and ground, and apparatus using the same

Also Published As

Publication number Publication date
JP2001255294A (en) 2001-09-21

Similar Documents

Publication Publication Date Title
US20120215127A1 (en) In vivo flow sensor
GB2556170A (en) Integrated pressure and temperature sensor
US3518179A (en) Temperature compensated electrochemical cell
FR2811079A1 (en) SENSOR FOR DETECTING THE TEMPERATURE OF A FLUID
US6602401B1 (en) Amperometric sensor for low level dissolved oxygen with self-depleting sensor design
JP3596413B2 (en) High temperature, high pressure conductivity detection sensor
WO2018198419A1 (en) Electromagnetic flowmeter
CN113167614B (en) Magnetic-inductive flow sensor and measuring point
JP6390184B2 (en) Electrode member, composite electrode, and electrode member manufacturing method
FR3095862A1 (en) Electrochemical sensor with removable working electrode
JP2001141573A (en) Temperature sensor
FR2615093A1 (en) SYSTEM FOR MEASURING THE VOLUME OF A PART OF A HUMAN BODY
US20110180406A1 (en) Temperature compensation for ion-selective electrodes
CN108760828B (en) Device for measuring liquid conductivity
JP2012511713A5 (en)
JP3169173B2 (en) Measurement electrode for PH, ORP, water temperature, etc.
US20080083620A1 (en) Micro ph electrode (reference electrode)
TW202043709A (en) Full bore magnetic flowmeter assembly with temperature sensing element
US3457501A (en) Probe for measuring conductivity of an electrolyte solution
JP5317854B2 (en) Conductive fluid detector
CN220381070U (en) Detection device for liquid chromatography system
JPH09257594A (en) Temperature detecting device
JP2000292390A (en) Conductivity sensor
JP2012032235A (en) Temperature sensor
JP2000292391A (en) Conductivity sensor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040830

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees