JP3596312B2 - Heat treatment equipment - Google Patents

Heat treatment equipment Download PDF

Info

Publication number
JP3596312B2
JP3596312B2 JP30486098A JP30486098A JP3596312B2 JP 3596312 B2 JP3596312 B2 JP 3596312B2 JP 30486098 A JP30486098 A JP 30486098A JP 30486098 A JP30486098 A JP 30486098A JP 3596312 B2 JP3596312 B2 JP 3596312B2
Authority
JP
Japan
Prior art keywords
substrate
heat treatment
processed
heating
treatment apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30486098A
Other languages
Japanese (ja)
Other versions
JP2000130952A (en
Inventor
仁一 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP30486098A priority Critical patent/JP3596312B2/en
Publication of JP2000130952A publication Critical patent/JP2000130952A/en
Application granted granted Critical
Publication of JP3596312B2 publication Critical patent/JP3596312B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Tunnel Furnaces (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置の製造などに用いられる熱処理装置および熱処理方法に関するものである。
【0002】
【従来の技術】
半導体装置の製造においては、その製造の過程で不純物の拡散、酸化処理や加熱による薄膜の緻密化処理、スピンオンガラス(以下SOGと記す)の焼成、レジストのベーキングに用いる加熱処理など各種の熱処理が行われるが、これら熱処理には、通常、加熱源としてのヒーターが周囲に配置された石英等の耐熱性チューブ内に多数枚の被処理基板を挿入して加熱処理を行う熱処理装置(以下、バッチ炉と記す)、抵抗加熱手段などの加熱源の下をベルトコンベヤーなどに積載した被処理基板を搬送して加熱処理を行う熱処理装置(以下、焼成炉と記す)、あるいは赤外線ランプ等の加熱源に対向させて1枚の被処理基板を設置して加熱処理を行う熱処理装置(以下、枚葉炉と記す)などが用いられる。
【0003】
【発明が解決しようとする課題】
半導体装置の生産性向上のために半導体基板を大型化(以下、大口径化と記す)することによって、1枚の半導体基板からの半導体素子の取れ数を増やすことが行われている。しかしながら、従来の熱処理装置では被処理基板としての半導体基板の大口径化に伴って、被処理基板面内の温度ばらつきが重要な問題となる。
【0004】
バッチ炉においては石英チューブの外部にあるヒーターに対して垂直な位置関係で石英チューブの内部に被処理基板を設置するために、被処理基板面内の温度上昇は被処理基板の周辺部から中心部へ熱が伝わる形をとる。このため、被処理基板の大口径化によって熱伝導の距離が長くなるために被処理基板の周辺部と中心部の温度差が大きくなり、被処理基板内に形成される半導体素子の特性が被処理基板面内の位置によって異なるという問題が発生する。また、焼成炉や枚葉炉においては加熱源と被処理基板とを対向させた関係で加熱処理がなされるために、加熱源の面内温度のばらつきや、加熱源と被処理基板との対向距離のばらつきが直接、被処理基板面内の温度ばらつきとなる。
【0005】
被処理基板の大口径化に伴い加熱源を大型化する対策を講じた場合、加熱源の均熱長を確保するためには被処理基板に比べて非常に大きい加熱源を必要とする。このために熱処理装置が極めて大型化し、実用に供し難いものとなる。また、焼成炉や枚葉炉では加熱源の大型化によって加熱源の面内温度のばらつきが増大し、被処理基板内に作り込まれる半導体素子の特性が被処理基板面内の位置によって異なるという問題が顕著になる。
【0006】
また、被処理基板に形成される薄膜の緻密化処理、スピン・オン・ガラス(以下、SOGと記す)膜の焼成、あるいはフォトレジスト(以下、レジストと記す)膜のベーキングなどのための熱処理を施すと、薄膜、SOG膜、あるいはレジスト膜から吸湿水分や膜の構成物質がガス状(以下、アウトガスと記す)になって放出される。このアウトガスの放出量は被処理基板の大口径化につれて増大する。被処理基板が小口径の場合、被処理基板表面と加熱源との間に形成される空間が小さいために、アウトガスはこの空間から対流によって速やかに運び去られる。しかし、被処理基板が大口径になると、被処理基板表面と加熱源との間の空間が広がるために、この空間内、とりわけ被処理基板の中央付近の空間にアウトガスが滞留して加熱処理中の被処理基板に影響を与える。その影響は薄膜の膜質変化や被処理基板へのパーティクルの発生などであり、作製する半導体素子の歩留まりを低下させるという問題となる。
【0007】
本発明は、大口径化した被処理基板の熱処理に際して、均熱性の良い熱処理を実現する熱処理装置と熱処理方法を提供することを第1の目的とし、アウトガスによる被処理基板への影響を低減することができる熱処理装置と熱処理方法を提供することを第2の目的とする。
【0015】
【課題を解決するための手段】
前記第2の目的を達成するために、本発明に係る熱処理装置は、複数の加熱体からなる加熱源と、前記加熱源の下を被処理基板が通過する領域とを有する熱処理装置で、前記各加熱体と前記被処理基板が通過する領域との距離が段階を追って増加する構成かまたは減少する構成、あるいは前記各加熱体のうち両端の加熱体以外の加熱体と前記被処理基板が通過する領域との距離が最小で、両端の加熱体に向かって各加熱体と前記被処理基板が通過する領域との距離が増加していく構成で、熱処理装置の中央部に不活性ガスを導入するガス導入口を供え、前記中央部から前記両端へ前記不活性ガスの流れを作ることを特徴とする。また、この熱処理装置によると、複数の加熱体を外部に向かって開口するように並べることによって、加熱によって前記被処理基板から発生するアウトガスを前記加熱源と前記被処理基板の搬送面とで作る空間から速やかに排出し、アウトガスによる被処理基板への影響を無くすことができる。
【0016】
【発明の実施の形態】
(第1の参考例
以下、本発明の熱処理装置における第1の参考例について、図面を参照しながら説明する。
【0017】
図1(a)、(b)、(c)は、本実施形態における熱処理装置の斜視構造図、熱処理装置の搬送ベルト側から見た裏面図と上面図を示す。図1において、11は被処理基板、12は加熱源、13は搬送ベルト、14は被処理基板の回転方向、14aは搬送ベルトの搬送方向を示す。図1(b)は搬送ベルト13の裏面を示し、被処理基板11の積載部13aは中央に自転ギア15を持っており、搬送ベルト13とはベアリング16を介して接続されている。自転ギア15はガイドギア17と噛み合いの関係にある。
【0018】
次に、図1を参照しながら本実施の形態による熱処理方法を説明する。被処理基板11を搬送ベルト13の積載部13aに積載し、搬送ベルト13を搬送方向14aへ搬送する。搬送ベルト13の移動によって積載部13aの裏面に取り付けている自転ギア15はガイドギア17により積載部13aを回転させる。この動きによって、加熱源12の下を被処理基板11は回転しながら搬送される。
【0019】
本実施の形態によれば均熱性の悪い加熱源の下でも被処理基板が回転しながら通過することで、加熱処理での被処理基板面内の温度ばらつきを分散させることになり、被処理基板における均一な加熱処理を実現することができる。
【0020】
また、焼成炉による被処理基板の加熱過程は、焼成炉に入った被処理基板の領域への加熱源からの輻射熱による加熱と、輻射熱で加熱された被処理基板の領域から被処理基板の未加熱領域への熱伝搬とによって行われる。本実施の形態による被処理基板の加熱過程を、図2に示す熱処理装置の上面図を用いて説明する。領域11aは加熱源12の下で加熱されている被処理基板の領域、既加熱領域11bは加熱源12の下で既に加熱され、回転によって加熱源12の下から外れた領域、未加熱領域11cは被処理基板の未加熱の領域を示す。被処理基板11の回転が無い従来の熱処理装置に比べ、本実施の形態の熱処理装置では既加熱領域11bが増加することになり、被処理基板の加熱が速く行われることを示す。さらに、従来の熱処理装置による加熱処理に比べて、加熱された領域が広くなることにより、加熱された領域から未加熱領域11cへの熱伝導11dは速やかに行われる。
【0021】
また、本実施の形態による熱処理装置では、図1(c)に示すように加熱源12が被処理基板11の直径より短い場合でも均一な加熱を被処理基板11に施すことができ、熱処理装置を小型にすることができる。
【0022】
前記熱処理装置を用いた半導体装置の熱処理方法について説明する。
フォトリソグラフィでは、レジスト膜を塗布した被処理基板に120℃程度の加熱処理を施してレジスト材料に含有する有機溶剤を除いてレジスト膜を硬化させること(以下、プリベークと記す)や、露光・現像後、膨潤したレジストパターンに120℃程度の加熱処理を施してレジストパターンを硬化させること(以下、ポストベークと記す)が行われる。
【0023】
一方、加熱源の温度ばらつきはレジスト膜の硬化ばらつきや、レジストパターンの硬化ばらつきを招き、被処理基板上のレジストパターン寸法ばらつきの増大を引き起こし、被処理基板上に引き続き作製する半導体装置の特性劣化を生じさせる。
【0024】
本実施の形態による熱処理方法では、レジスト膜やレジストパターンを有する被処理基板に均一な加熱を施すことができることと、被処理基板の直径に比べて短い加熱源の熱処理装置を用いることでアウトガスを速やかに排出することができるために、硬化むらの無いレジスト膜の形成や寸法精度の良好なレジストパターンの形成が可能となる。
【0025】
(第2の参考例
次に、本発明の第2の参考例について説明する。
【0026】
図3(a)、(b)は、本実施形態における焼成炉の熱処理装置の側面図と上面図を、図4は加熱源の温度設定図を示す。図3において、31は被処理基板、32a、32b、32c、32d、32eはそれぞれ独立して温度制御可能な加熱体、33は基板ホルダー、34は回転機構による被処理基板の回転方向、34aは搬送ベルトの搬送方向を示す。
【0027】
前記熱処理装置を用いた熱処理方法について説明する。トランジスタ領域が作られたシリコン半導体基板に形成する絶縁膜として、SiHガスとOガスを用いた常圧ケミカル・ベーパー・デポジション(以下、常圧CVDと記す)法により450℃の堆積温度で形成するSiO膜が用いられる。しかし、常圧CVD法で形成したSiO膜は緻密性に欠けており、引き続く半導体素子の作製のためのフッ酸水溶液によるエッチングの耐性が弱いという加工上の問題を持っている。そのために、SiO膜を形成した被処理基板を700℃程度に加熱して緻密性を改善する処理(以下、緻密化処理と記す)が、通常施されている。
【0028】
一方、従来の熱処理装置では加熱源の大型化により加熱源の均熱性が低下するために、被処理基板の面内における緻密化に差異が生じ、エッチング時におけるエッチングむらを引き起こして半導体素子の歩留まりを低下させていた。
【0029】
また、大口径の被処理基板を回転させずに従来の熱処理装置で700℃の高温加熱処理を施すと、被処理基板面内で加熱された領域と未加熱の領域とに分かれた状態が長く続くために、被処理基板面内で大きな熱ストレスが生じ、被処理基板の割れを引き起こしていた。
【0030】
加熱体32a、32b、32c、32d、32eを図4に示す温度に設定した本実施の形態の熱処理装置を用いて、常圧CVD法で形成したSiO膜の緻密化処理を行った。まず、第1枚目の被処理基板31は室温の状態から500℃に設定された加熱体32aの下に搬送される。引き続き被処理基板31は加熱体32bで700℃に昇温され、加熱体32cで750℃の加熱処理を施された後、700℃設定の加熱体32dと500℃設定の加熱体32eを順次通過して外部に搬出される。このとき被処理基板は回転しながら搬送されるために被処理基板面内の昇温は速やかに、かつ均一に行われる。また、被処理基板の昇温と降温は段階を追って為されるために、エッチングむらと被処理基板の割れのない加熱処理を施すことができる。
【0031】
なお、本実施の形態では複数の加熱体の温度設定を各々独立して行ったが、各加熱体を同一の温度に設定し、各加熱体と被処理基板との距離を各々変えることで同様の効果を得ることもできる。
【0032】
(第3の参考例
次に、本発明の第3の参考例について説明する。
【0033】
図5は、本実施形態に用いる熱処理装置の側面図を示す。図5において、51は被処理基板、52は加熱源、53は搬送ベルト、55は被処理基板からのアウトガス、55aは熱処理装置外へのアウトガスの流れを示す。
【0034】
図5に示すように加熱源52と搬送ベルト53の搬送面は傾いた非平行の関係である。被処理基板51から放出されるアウトガス55は傾きに沿って熱処理装置外に対流によって排出されるために、前記加熱源52と搬送ベルト53との間にアウトガス55が滞留することはない。
【0035】
なお、回転機構により被処理基板を回転させると被処理基板面内の温度ばらつきの低減も同時に行うことができる。
【0036】
(第4の参考例
次に、本発明の第4の参考例について説明する。
【0037】
図6(a)、(b)は、本実施形態における枚葉炉の熱処理装置の側面図と上面図を示す。図6において、61は被処理基板、62は加熱源、62aは加熱源の中心点、63は基板ホルダー、63aは基板ホルダーの回転軸を示し、基板ホルダーの回転軸63aは加熱源の中心点62aに対して偏心した位置関係に設定している。
【0038】
通常、枚葉炉の加熱源62の温度は中心部が高く、周辺に向かって低くなる傾向がある。これは加熱源の中心部に熱伝搬が集中することと、加熱処理時に加熱された気体が加熱源の外周部へ流れるために外周部の温度低下をもたらすことなどによる。そのために均熱性の悪い加熱源に対向して被処理基板を回転させずに行う従来の加熱処理や、加熱源の中心と被処理基板の中心とが一致した状態で被処理基板を回転させて行う従来の加熱処理を被処理基板に施すと、加熱源の温度分布を投影した形の温度ばらつきを被処理基板面内に生じさせる。
【0039】
他方、本実施の形態における熱処理装置では、加熱源の中心と被処理基板の中心が偏心した関係で被処理基板を回転させることにより、加熱源の高温部分や低温部分と対向する被処理基板の位置が変わることになり、被処理基板面内の温度ばらつきが軽減される。
【0040】
図7は本発明における第4の実施形態の他の熱処理装置を示す側面図である。図7において、基板ホルダー63の回転軸63aは加熱源62の中心点62aと対向してほぼ同じ位置関係にある。被処理基板61の中心点61aは回転軸63aと偏心した関係で設置しているため、被処理基板61は加熱源62に対して偏心して回転する。このことにより被処理基板面内の温度ばらつきが低減される。
【0041】
なお、図7の熱処理装置において被処理基板を自転させる機構を設置して被処理基板を自公転させてもよい。
【0042】
(第5の参考例
次に、本発明の第5の参考例について説明する。
【0043】
図8は、本実施形態における枚葉炉の熱処理装置の側面図を示す。図8において、81は被処理基板、82は加熱源、82aは加熱用の赤外ランプ、83は基板ホルダー、84は加熱源82に設けた開口部、85aと85bは被処理基板81からのアウトガスの流れを示す。
【0044】
従来の熱処理装置では、被処理基板81から放出されたアウトガスは被処理基板81と加熱源82の間に滞留していたが、開口部84を設けることによって熱処理装置の外部に速やかに排出することが可能となった。
【0045】
前記熱処理装置を用いた半導体装置の熱処理方法について説明する。
通常、ゲート電極が形成された半導体基板からなる被処理基板への平坦な絶縁膜の形成はSiHガス、Oガス、Bガス、PHガスを用いた常圧CVD法でBとPを含有したボロ・フォスフォ・シリケートガラス膜(以下、BPSG膜と記す)を形成し、続いて850℃程度の加熱処理を施してガラス軟化(以下、ガラスフローと記す)を施すことで行われる。
【0046】
しかし、BPSG膜は吸湿性が高いために、ガラスフローを行うと水分とともにリン酸水和物やホウ酸水和物がアウトガスとしてBPSG膜から放出される。従来の熱処理装置では、大量に放出されるアウトガスが被処理基板と加熱源とで作る空間に滞留し、BPSG膜と反応してBPO化合物の析出物を生じさせる。この析出物は極めてエッチングされにくく、突起形状を有しているために、引き続くBPSG膜の微細パターン形成やエッチング加工で不良を起こし、被処理基板上に形成する半導体素子の歩留まりを低下させる。
【0047】
ところで本実施の形態による熱処理装置を用いてBPSG膜のガラスフローを行うと、被処理基板81からのアウトガスは加熱源82の端部からの流れ85aと加熱源82に設けた開口部84を通る流れ85bになって、滞留せずに速やかに排出される。このために析出物のまったく無いBPSG膜のガラスフローを行うことができ、被処理基板上に形成する半導体素子の歩留まり低下を防ぐことができた。
【0048】
(第の実施形態)
次に、本発明の第の実施形態について説明する。
【0049】
図9は、本実施形態における熱処理装置の側面図を示す。図9において、91は被処理基板、92は加熱源、92a、92b、92cは加熱体、93は搬送ベルト、94はガス導入口、94aは導入するガスの流れ、95は被処理基板からのアウトガス、95aは熱処理装置外へのアウトガスの流れを示す。
【0050】
加熱体92a、92b、92cは加熱源92の中央から加熱源92の外部に向かって搬送ベルト93との距離が大きくなるように設定する。この設定によって被処理基板からのアウトガス95は加熱体92a、92b、92cの作る傾きによって熱処理装置外部に排出される。さらに本実施の形態では熱処理装置の中央部にあるガス導入口94から不活性ガスを熱処理装置に導入することによって、熱処理装置外へのアウトガスの流れ95aを加速する効果を持たせている。
【0051】
前記熱処理装置を用いた半導体装置の熱処理方法について説明する。
通常、半導体装置の絶縁膜に用いられるSOG膜は、有機溶媒中にシラノールなどのシリコン化合物を含有したSOG材料を被処理基板に塗布し、400℃程度で焼成させて形成される。しかし、SOG材料中には有機溶媒を含んでいるために、加熱処理時に多量のアウトガスを発生する。従来の熱処理装置で大口径の被処理基板の加熱処理を施すと、熱処理基板と加熱源との間の空間の中心付近に不均一なアウトガスの滞留が生じる。有機溶媒を主成分とする多量のアウトガスが、SOG膜に接触するとSOG膜の焼成効果を低下させ、SOG膜の硬度や緻密性の低下を招く。このために上記従来の熱処理装置では不均一に滞留したアウトガスにより、被処理基板面上で硬度や緻密性の不均質なSOG膜が形成され、引き続いて作製する半導体素子の歩留まりを低下させていた。本実施形態の熱処理装置ではアウトガスが速やかに排出されるために、この熱処理装置を用いた熱処理方法では、均質なSOG膜の形成ができ、引き続いて形成する半導体素子の歩留まりも良好であった。
【0052】
なお、本実施の形態では熱処理装置の中央部にある加熱体92aと搬送ベルト93との距離を最小となるように設定しているが、熱せられたアウトガスを排出するためには、各加熱体と搬送ベルトとの距離が階段状あるいは傾きを持って増加あるいは減少する構成であればよい。
【0059】
【発明の効果】
本発明の熱処理装置によれば、複数の加熱体を外部に向かって開口する傾きで並べ、中央部に不活性ガスを導入する構造の熱処理装置とすることによって、被処理基板からのアウトガスを熱処理装置内から速やかに排出できるために、被処理基板周辺にアウトガスが滞留することによって生じる半導体装置の劣化を防ぐことができる。
【図面の簡単な説明】
【図1】本発明の第1の参考例に係る熱処理装置の構成図
【図2】本発明の第1の参考例に係る熱処理装置の部分拡大上面図
【図3】本発明の第2の参考例に係る熱処理装置の構成図
【図4】本発明の第2の参考例に係る熱処理装置の温度設定を示す図
【図5】本発明の第3の参考例に係る熱処理装置の構成図
【図6】本発明の第4の参考例に係る熱処理装置の構成図
【図7】本発明の第4の他の参考例に係る熱処理装置の構成図
【図8】本発明の第5の参考例に係る熱処理装置の構成図
【図9】本発明の第の実施形態に係る熱処理装置の構成図
【符号の説明】
11 被処理基板
12 加熱源
13 搬送ベルト
14 被処理基板の回転方向
14a 搬送ベルトの搬送方向
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat treatment apparatus and a heat treatment method used for manufacturing a semiconductor device and the like.
[0002]
[Prior art]
In the manufacture of semiconductor devices, various heat treatments such as diffusion of impurities, densification of thin films by oxidation or heating, baking of spin-on glass (hereinafter abbreviated as SOG), and baking of resist are performed in the process of manufacturing semiconductor devices. These heat treatments are usually performed by a heat treatment apparatus (hereinafter, referred to as a batch) in which a large number of substrates are inserted into a heat-resistant tube made of quartz or the like around which a heater as a heating source is placed to perform heat treatment. Furnace), a heat treatment apparatus (hereinafter, referred to as a baking furnace) that carries a heat treatment by transporting a substrate loaded on a belt conveyor or the like under a heating source such as a resistance heating means, or a heating source such as an infrared lamp. For example, a heat treatment apparatus (hereinafter, referred to as a single-wafer furnace) for performing a heat treatment by setting one substrate to be processed facing the substrate is used.
[0003]
[Problems to be solved by the invention]
2. Description of the Related Art In order to improve the productivity of semiconductor devices, the size of a semiconductor substrate is increased (hereinafter, referred to as an increase in diameter) to increase the number of semiconductor elements that can be obtained from one semiconductor substrate. However, in a conventional heat treatment apparatus, as the diameter of a semiconductor substrate as a substrate to be processed increases, temperature variation in the surface of the substrate to be processed becomes an important problem.
[0004]
In a batch furnace, since the substrate to be processed is placed inside the quartz tube in a position perpendicular to the heater outside the quartz tube, the temperature rise in the surface of the substrate Take the form that heat is transmitted to the part. For this reason, since the distance of heat conduction is increased by increasing the diameter of the substrate to be processed, the temperature difference between the peripheral portion and the central portion of the substrate to be processed increases, and the characteristics of the semiconductor elements formed in the substrate to be processed are affected. There is a problem that it differs depending on the position in the processing substrate surface. Further, in a baking furnace or a single-wafer furnace, heat treatment is performed in such a manner that the heat source and the substrate to be processed face each other, so that the in-plane temperature of the heat source varies and the heat source faces the substrate to be processed. Variations in the distance directly result in temperature variations in the surface of the substrate to be processed.
[0005]
When measures are taken to increase the size of the heating source in accordance with the increase in the diameter of the substrate to be processed, a very large heating source is required as compared with the substrate to be processed in order to secure a uniform heating length of the heating source. For this reason, the heat treatment apparatus becomes extremely large, and becomes difficult to be put to practical use. In addition, in a baking furnace or a single-wafer furnace, the size of the heating source increases due to an increase in the size of the heating source, and the characteristics of the semiconductor element formed in the substrate to be processed differ depending on the position in the surface of the substrate. The problem becomes noticeable.
[0006]
Further, heat treatment for densification of a thin film formed on a substrate to be processed, baking of a spin-on-glass (hereinafter, referred to as SOG) film, or baking of a photoresist (hereinafter, referred to as resist) film is performed. When applied, moisture absorption moisture and constituent materials of the film are released from the thin film, the SOG film, or the resist film in a gaseous state (hereinafter, referred to as outgas). The outgassing amount increases as the diameter of the substrate to be processed increases. When the substrate to be processed has a small diameter, the space formed between the surface of the substrate to be processed and the heating source is small, and the outgas is quickly carried away from this space by convection. However, when the substrate to be processed has a large diameter, the space between the surface of the substrate to be processed and the heating source is widened. Affects the substrate to be processed. The effect is a change in film quality of the thin film or generation of particles on the substrate to be processed, which causes a problem of lowering the yield of the semiconductor element to be manufactured.
[0007]
The first object of the present invention is to provide a heat treatment apparatus and a heat treatment method that realize heat treatment with good uniformity in heat treatment of a large-diameter substrate to be processed, and reduce the influence of outgas on the substrate to be processed. A second object is to provide a heat treatment apparatus and a heat treatment method that can perform the heat treatment.
[0015]
[Means for Solving the Problems]
To achieve the second object, the thermal processing apparatus Ru engaged to the present invention includes a heat source consisting of a plurality of heating elements, the lower the heat source in a heat treatment device having a region in which the processing substrate passes A configuration in which the distance between each of the heating elements and the region through which the substrate to be processed passes increases or decreases stepwise, or a configuration in which the heating elements other than the heating elements at both ends of the heating elements and the processing target substrate The minimum distance to the region through which the substrate passes, and the distance between each heating member and the region through which the substrate to be processed increases toward the heating members at both ends, and the inert gas is located at the center of the heat treatment apparatus. A gas inlet for introducing the inert gas, and the flow of the inert gas is created from the central portion to the both ends. Further, according to the heat treatment apparatus of this, by arranging so as to open toward a plurality of heating elements to the outside, conveying surface of the substrate to be processed and the outgassing heat source generated from the substrate to be treated by heating and in It can be quickly discharged from the space to be formed, and the influence of the outgas on the substrate to be processed can be eliminated.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
(First Reference Example )
Hereinafter, a first reference example of the heat treatment apparatus of the present invention will be described with reference to the drawings.
[0017]
1A, 1B, and 1C show a perspective view of a heat treatment apparatus according to the present embodiment, and a rear view and a top view of the heat treatment apparatus as viewed from a conveyor belt. In FIG. 1, reference numeral 11 denotes a substrate to be processed, 12 denotes a heating source, 13 denotes a transport belt, 14 denotes a rotation direction of the substrate to be processed, and 14a denotes a transport direction of the transport belt. FIG. 1B shows the back surface of the transport belt 13. The loading section 13 a of the substrate 11 has a rotation gear 15 at the center, and is connected to the transport belt 13 via a bearing 16. The rotation gear 15 is in mesh with the guide gear 17.
[0018]
Next, the heat treatment method according to the present embodiment will be described with reference to FIG. The substrate 11 to be processed is loaded on the loading portion 13a of the transport belt 13, and the transport belt 13 is transported in the transport direction 14a. The rotation gear 15 attached to the back surface of the loading unit 13 a rotates the loading unit 13 a by the guide gear 17 by the movement of the transport belt 13. Due to this movement, the substrate 11 to be processed is conveyed under the heating source 12 while rotating.
[0019]
According to the present embodiment, the substrate to be processed passes while rotating even under a heating source having poor heat uniformity, thereby dispersing temperature variations in the surface of the substrate to be processed during the heat treatment, and , A uniform heat treatment can be realized.
[0020]
In addition, the process of heating the substrate to be processed by the firing furnace is performed by heating the region of the substrate to be processed entering the firing furnace by radiant heat from a heating source, and by heating the region of the substrate to be processed heated by the radiant heat. This is done by heat propagation to the heating zone. The process of heating the substrate to be processed according to the present embodiment will be described with reference to the top view of the heat treatment apparatus shown in FIG. The region 11a is a region of the substrate to be heated under the heating source 12, the heated region 11b is a region already heated under the heating source 12 and deviated from under the heating source 12 by rotation, and an unheated region 11c. Indicates an unheated region of the substrate to be processed. Compared to a conventional heat treatment apparatus in which the substrate 11 is not rotated, the heat treatment apparatus of the present embodiment increases the heated area 11b, which indicates that the substrate to be processed is heated more quickly. Furthermore, compared to the heat treatment by the conventional heat treatment apparatus, the heated region is enlarged, so that the heat conduction 11d from the heated region to the unheated region 11c is performed quickly.
[0021]
In the heat treatment apparatus according to the present embodiment, even when the heating source 12 is shorter than the diameter of the substrate 11 as shown in FIG. 1C, uniform heating can be applied to the substrate 11. Can be reduced in size.
[0022]
A heat treatment method for a semiconductor device using the heat treatment apparatus will be described.
In photolithography, a substrate to which a resist film is applied is subjected to a heat treatment at about 120 ° C. to cure the resist film except for an organic solvent contained in the resist material (hereinafter, referred to as pre-bake), and to expose and develop. Thereafter, the swollen resist pattern is subjected to a heat treatment at about 120 ° C. to cure the resist pattern (hereinafter, referred to as post bake).
[0023]
On the other hand, variations in the temperature of the heating source cause variations in the curing of the resist film and variations in the curing of the resist pattern, causing an increase in the dimensional variation of the resist pattern on the substrate to be processed, and deteriorating the characteristics of the semiconductor device to be subsequently manufactured on the substrate to be processed. Cause.
[0024]
In the heat treatment method according to the present embodiment, it is possible to uniformly heat a substrate to be processed having a resist film or a resist pattern, and to use a heat treatment apparatus with a heating source shorter than the diameter of the substrate to be processed to reduce outgas. Since it can be discharged quickly, it is possible to form a resist film without curing unevenness and to form a resist pattern with good dimensional accuracy.
[0025]
(Second reference example )
Next, a description will be given of a second exemplary embodiment of the present invention.
[0026]
3A and 3B are a side view and a top view of a heat treatment apparatus for a firing furnace according to the present embodiment, and FIG. 4 is a temperature setting diagram of a heating source. In FIG. 3, 31 is a substrate to be processed, 32a, 32b, 32c, 32d, and 32e are heating elements that can be independently controlled in temperature, 33 is a substrate holder, 34 is a rotation direction of the substrate to be processed by a rotation mechanism, and 34a is This shows the transport direction of the transport belt.
[0027]
A heat treatment method using the heat treatment apparatus will be described. A deposition temperature of 450 ° C. by an atmospheric pressure chemical vapor deposition (hereinafter, referred to as an atmospheric pressure CVD) method using a SiH 4 gas and an O 2 gas as an insulating film formed on a silicon semiconductor substrate in which a transistor region is formed. SiO 2 film in form are used. However, the SiO 2 film formed by the normal pressure CVD method lacks denseness, and has a processing problem that etching resistance with a hydrofluoric acid aqueous solution for subsequent fabrication of a semiconductor element is weak. For this purpose, a process of heating the substrate on which the SiO 2 film is formed to about 700 ° C. to improve the compactness (hereinafter, referred to as a compaction process) is usually performed.
[0028]
On the other hand, in the conventional heat treatment apparatus, since the uniformity of the heat source is reduced due to the increase in the size of the heat source, a difference is caused in the densification in the surface of the substrate to be processed, which causes unevenness in etching at the time of etching, resulting in a semiconductor device yield. Had been lowered.
[0029]
In addition, when a large-diameter substrate to be processed is subjected to a high-temperature heat treatment at 700 ° C. by using a conventional heat treatment apparatus without rotating, a state in which a heated region and an unheated region in the surface of the substrate to be processed are separated for a long time. Because of the continuation, a large thermal stress occurs in the surface of the substrate to be processed, causing cracks in the substrate to be processed.
[0030]
Using the heat treatment apparatus of the present embodiment in which the heating bodies 32a, 32b, 32c, 32d, and 32e were set to the temperatures shown in FIG. 4, the densification treatment of the SiO 2 film formed by the normal pressure CVD method was performed. First, the first substrate 31 to be processed is transported from a room temperature state to below a heating body 32a set at 500 ° C. Subsequently, the substrate 31 to be processed is heated to 700 ° C. by the heating body 32b and subjected to a heat treatment of 750 ° C. by the heating body 32c, and then sequentially passes through the heating body 32d set at 700 ° C. and the heating body 32e set at 500 ° C. And carried out. At this time, since the substrate to be processed is conveyed while rotating, the temperature in the surface of the substrate to be processed is quickly and uniformly increased. In addition, since the temperature of the substrate to be processed is raised and lowered step by step, heat treatment without uneven etching and cracking of the substrate to be processed can be performed.
[0031]
Note that, in the present embodiment, the temperature settings of the plurality of heating elements are independently performed, but the same is performed by setting each heating element to the same temperature and changing the distance between each heating element and the substrate to be processed. The effect of can also be obtained.
[0032]
(Third reference example )
Next, a description will be given of a third exemplary embodiment of the present invention.
[0033]
FIG. 5 shows a side view of the heat treatment apparatus used in the present embodiment. In FIG. 5, reference numeral 51 denotes a substrate to be processed, 52 denotes a heating source, 53 denotes a conveyor belt, 55 denotes outgas from the substrate to be processed, and 55a denotes a flow of outgas out of the heat treatment apparatus.
[0034]
As shown in FIG. 5, the heating surface of the heating source 52 and the conveying surface of the conveying belt 53 are inclined and non-parallel. Since the outgas 55 discharged from the substrate 51 is discharged by convection outside the heat treatment apparatus along the slope, the outgas 55 does not stay between the heating source 52 and the transport belt 53.
[0035]
Note that when the substrate to be processed is rotated by the rotating mechanism, temperature variations in the surface of the substrate to be processed can be reduced at the same time.
[0036]
(Fourth reference example )
Next, a fourth reference example of the present invention will be described.
[0037]
FIGS. 6A and 6B show a side view and a top view of the heat treatment apparatus for a single-wafer furnace in the present embodiment. 6, reference numeral 61 denotes a substrate to be processed, 62 denotes a heating source, 62a denotes a center point of the heating source, 63 denotes a substrate holder, 63a denotes a rotation axis of the substrate holder, and a rotation axis 63a of the substrate holder denotes a center point of the heating source. The positional relationship is set to be eccentric with respect to 62a.
[0038]
Normally, the temperature of the heating source 62 of a single-wafer furnace tends to be high at the center and lower toward the periphery. This is due to the fact that heat propagation is concentrated at the center of the heat source and that the gas heated during the heat treatment flows to the outer periphery of the heat source, resulting in a decrease in the temperature of the outer periphery. For this purpose, conventional heat treatment is performed without rotating the substrate to be processed in opposition to a heat source having poor heat uniformity, or by rotating the substrate to be processed in a state where the center of the heat source and the center of the substrate are aligned. When a conventional heat treatment to be performed is performed on a substrate to be processed, a temperature variation in a form in which a temperature distribution of a heating source is projected is caused in a surface of the substrate to be processed.
[0039]
On the other hand, in the heat treatment apparatus according to the present embodiment, by rotating the substrate to be processed in such a manner that the center of the heating source and the center of the substrate to be processed are eccentric, the substrate to be processed facing the high-temperature portion or the low-temperature portion of the heating source is rotated. The position is changed, and the temperature variation in the surface of the substrate to be processed is reduced.
[0040]
FIG. 7 is a side view showing another heat treatment apparatus according to the fourth embodiment of the present invention. In FIG. 7, the rotation shaft 63a of the substrate holder 63 faces the center point 62a of the heating source 62 and has substantially the same positional relationship. Since the center point 61a of the substrate 61 to be processed is installed in an eccentric relationship with the rotating shaft 63a, the substrate 61 to be processed is eccentrically rotated with respect to the heating source 62. This reduces temperature variations in the surface of the substrate to be processed.
[0041]
Note that a mechanism for rotating the substrate to be processed may be provided in the heat treatment apparatus of FIG. 7 to cause the substrate to be processed to revolve on its own axis.
[0042]
(Fifth reference example )
Next, a fifth reference example of the present invention will be described.
[0043]
FIG. 8 is a side view of a heat treatment apparatus for a single-wafer furnace according to the present embodiment. In FIG. 8, reference numeral 81 denotes a substrate to be processed, 82 denotes a heating source, 82a denotes an infrared lamp for heating, 83 denotes a substrate holder, 84 denotes an opening provided in the heating source 82, and 85a and 85b denote portions from the substrate 81 to be processed. 4 shows the flow of outgas.
[0044]
In the conventional heat treatment apparatus, the outgas released from the target substrate 81 stays between the target substrate 81 and the heating source 82. However, by providing the opening 84, the outgas can be quickly discharged to the outside of the heat treatment apparatus. Became possible.
[0045]
A heat treatment method for a semiconductor device using the heat treatment apparatus will be described.
Normally, a flat insulating film is formed on a substrate to be processed, which is a semiconductor substrate having a gate electrode formed thereon, by a normal pressure CVD method using a SiH 4 gas, an O 2 gas, a B 2 H 6 gas, and a PH 3 gas. A borophosphosilicate glass film (hereinafter, referred to as a BPSG film) containing 2 O 3 and P 2 O 5 is formed, and subsequently subjected to a heat treatment at about 850 ° C. to soften the glass (hereinafter, referred to as a glass flow). ).
[0046]
However, since the BPSG film has a high hygroscopicity, phosphate hydrate and boric acid hydrate are released from the BPSG film as outgas together with water when glass flow is performed. In a conventional heat treatment apparatus, a large amount of outgas released stays in a space formed between a substrate to be processed and a heating source and reacts with the BPSG film to generate a BPO 4 compound precipitate. Since this precipitate is extremely difficult to be etched and has a protruding shape, a failure occurs in the subsequent formation of a fine pattern or etching of the BPSG film, and the yield of semiconductor elements formed on the substrate to be processed is reduced.
[0047]
By the way, when the glass flow of the BPSG film is performed using the heat treatment apparatus according to the present embodiment, the outgas from the target substrate 81 flows through the flow 85 a from the end of the heating source 82 and the opening 84 provided in the heating source 82. It becomes stream 85b and is quickly discharged without stagnation. For this reason, the glass flow of the BPSG film without any precipitate was able to be performed, and a decrease in the yield of the semiconductor element formed on the substrate to be processed could be prevented.
[0048]
( 1st Embodiment)
Next, a first embodiment of the present invention will be described.
[0049]
FIG. 9 shows a side view of the heat treatment apparatus in the present embodiment. 9, reference numeral 91 denotes a substrate to be processed, 92 denotes a heating source, 92a, 92b and 92c denote heating bodies, 93 denotes a conveyor belt, 94 denotes a gas inlet, 94a denotes a flow of a gas to be introduced, and 95 denotes a flow from the substrate to be processed. Outgas 95a indicates the flow of the outgas outside the heat treatment apparatus.
[0050]
The heating bodies 92a, 92b, and 92c are set so that the distance from the center of the heating source 92 to the outside of the heating source 92 to the transport belt 93 increases. With this setting, the outgas 95 from the substrate to be processed is discharged to the outside of the heat treatment apparatus by the inclination created by the heating bodies 92a, 92b, and 92c. Further, in the present embodiment, the effect of accelerating the outgas flow 95a out of the heat treatment apparatus is obtained by introducing an inert gas into the heat treatment apparatus from the gas inlet 94 at the center of the heat treatment apparatus.
[0051]
A heat treatment method for a semiconductor device using the heat treatment apparatus will be described.
Usually, an SOG film used for an insulating film of a semiconductor device is formed by applying an SOG material containing a silicon compound such as silanol in an organic solvent to a substrate to be processed and baking it at about 400 ° C. However, since the SOG material contains an organic solvent, a large amount of outgas is generated during the heat treatment. When a large-diameter substrate to be heated is subjected to heat treatment by a conventional heat treatment apparatus, non-uniform outgassing occurs near the center of the space between the heat treatment substrate and the heat source. When a large amount of outgas containing an organic solvent as a main component comes into contact with the SOG film, the firing effect of the SOG film is reduced, and the hardness and denseness of the SOG film are reduced. For this reason, in the above-described conventional heat treatment apparatus, the outgas that has non-uniformly accumulated forms an SOG film having inhomogeneity in hardness and denseness on the surface of the substrate to be processed, thereby lowering the yield of semiconductor elements to be manufactured subsequently. . In the heat treatment apparatus of the present embodiment, since the outgas is quickly discharged, the heat treatment method using this heat treatment apparatus can form a uniform SOG film, and the yield of subsequently formed semiconductor elements is also good.
[0052]
In the present embodiment, the distance between the heating member 92a at the center of the heat treatment apparatus and the conveyor belt 93 is set to be the minimum. However, in order to discharge heated outgas, each heating member is required. Any configuration may be used as long as the distance between the belt and the conveyor belt increases or decreases stepwise or with a slope.
[0059]
【The invention's effect】
According to the heat treatment apparatus of the present invention , a plurality of heating elements are arranged at an inclination opening toward the outside, and a heat treatment apparatus having a structure in which an inert gas is introduced into a central portion is used to heat-treat outgas from a substrate to be processed. Since the gas can be quickly discharged from the inside of the apparatus, deterioration of the semiconductor device caused by stagnation of outgas around the substrate to be processed can be prevented.
[Brief description of the drawings]
[1] This first aspect of the heat treatment apparatus according to the reference example diagram Figure 2 of the heat treatment apparatus according to a first exemplary embodiment of the present invention partially enlarged top view Figure 3 a second of the present invention configuration diagram of a heat treatment apparatus according to a third reference example of FIG. 5 shows the present invention showing the temperature setting of the heat treatment apparatus according to a second reference example of the block diagram FIG. 4 the invention of a heat treatment apparatus according to the reference example FIG. 6 is a configuration diagram of a heat treatment apparatus according to a fourth reference example of the present invention; FIG. 7 is a configuration diagram of a heat treatment apparatus according to a fourth other reference example of the present invention; FIG. FIG. 9 is a configuration diagram of a heat treatment apparatus according to a reference example . FIG. 9 is a configuration diagram of a heat treatment apparatus according to the first embodiment of the present invention.
11 substrate to be processed 12 heating source 13 transport belt 14 rotation direction 14a of substrate to be processed transport direction of transport belt

Claims (2)

複数の加熱体からなる加熱源と、同加熱源の下を被処理基板が通過する領域とを有する熱処理装置の前記各加熱体と前記被処理基板が通過する領域との距離が段階を追って増加するもしくは減少する構成であり、熱処理装置の中央部に不活性ガスを導入するガス導入口を供え、前記中央部から前記両端へ前記不活性ガスの流れを作ることを特徴とする熱処理装置。In a heat treatment apparatus having a heating source including a plurality of heating elements and an area through which the substrate passes below the heating source, the distance between each of the heating elements and the area through which the substrate passes increases step by step. A heat treatment apparatus , wherein a gas inlet for introducing an inert gas is provided at a central portion of the heat treatment device, and the flow of the inert gas is generated from the central portion to the both ends . 複数の加熱体からなる加熱源と、同加熱源の下を被処理基板が通過する領域とを有する熱処理装置の前記各加熱体と前記被処理基板が通過する領域との距離が、両端の加熱体以外の加熱体と前記被処理基板が通過する領域との距離が最小で両端の加熱体に向かって各加熱体と前記被処理基板が通過する領域との距離が増加していく構成であり、熱処理装置の中央部に不活性ガスを導入するガス導入口を供え、前記中央部から前記両端へ前記不活性ガスの流れを作ることを特徴とする熱処理装置。The distance between each heating element and the area where the substrate to be processed passes in the heat treatment apparatus having a heating source composed of a plurality of heating elements and an area where the substrate to be processed passes under the same heating source, the heating at both ends. The distance between the heating body other than the body and the area through which the substrate to be processed passes is the minimum, and the distance between each heating body and the area through which the substrate to be processed passes increases toward the heating bodies at both ends. A heat inlet provided with a gas inlet for introducing an inert gas at a central portion of the heat treating device , wherein the inert gas flows from the central portion to the both ends .
JP30486098A 1998-10-27 1998-10-27 Heat treatment equipment Expired - Fee Related JP3596312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30486098A JP3596312B2 (en) 1998-10-27 1998-10-27 Heat treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30486098A JP3596312B2 (en) 1998-10-27 1998-10-27 Heat treatment equipment

Publications (2)

Publication Number Publication Date
JP2000130952A JP2000130952A (en) 2000-05-12
JP3596312B2 true JP3596312B2 (en) 2004-12-02

Family

ID=17938160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30486098A Expired - Fee Related JP3596312B2 (en) 1998-10-27 1998-10-27 Heat treatment equipment

Country Status (1)

Country Link
JP (1) JP3596312B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4348122B2 (en) * 2003-06-18 2009-10-21 エスペック株式会社 Heating device
JP4806898B2 (en) * 2004-03-26 2011-11-02 セイコーエプソン株式会社 Drying device, drying method, method for manufacturing organic electroluminescence device, method for manufacturing color filter
JP4566711B2 (en) * 2004-11-25 2010-10-20 株式会社リコー Heating device
JP4672538B2 (en) * 2005-12-06 2011-04-20 東京エレクトロン株式会社 Heat treatment device
JP5129249B2 (en) * 2007-06-20 2013-01-30 高周波熱錬株式会社 Hybrid heat treatment machine and method thereof
JP2010014290A (en) * 2008-07-01 2010-01-21 Ihi Corp Multiple-chamber type heat treat furnace
JP4756076B2 (en) * 2009-02-24 2011-08-24 東京エレクトロン株式会社 Substrate processing system
US9239192B2 (en) * 2013-02-20 2016-01-19 Taiwan Semiconductor Manufacturing Co., Ltd. Substrate rapid thermal heating system and methods
KR102367094B1 (en) * 2018-02-23 2022-02-25 어플라이드 머티어리얼스, 인코포레이티드 EPI thickness adjustment by pulse or profile point heating

Also Published As

Publication number Publication date
JP2000130952A (en) 2000-05-12

Similar Documents

Publication Publication Date Title
US7700376B2 (en) Edge temperature compensation in thermal processing particularly useful for SOI wafers
JP3023982B2 (en) Film formation method
JPH05166741A (en) Substrate supporting tool for heat treating apparatus
JP3596312B2 (en) Heat treatment equipment
KR20220104184A (en) Batch curing chamber with gas distribution and individual pumping
US20210082737A1 (en) Edge ring and heat treatment apparatus having the same
JP2998903B2 (en) Heat treatment equipment
JPH10107018A (en) Semiconductor wafer heat treatment apparatus
KR20220132631A (en) UV curing for localized stress modulation
JP2002222806A (en) Substrate processor
US3314393A (en) Vapor deposition device
EP0935281A1 (en) Method and device for treating semiconductor with treating gas while substrate is heated
JPH0917742A (en) Heat-treating apparatus
TWI722978B (en) Lamp heater for atomic layer deposition
US6914011B2 (en) Film deposition system and method of fabricating semiconductor device employing the film deposition system
JP2978974B2 (en) Plasma processing equipment
JPH11329991A (en) Rapid heat processing device and its method
JPH03148829A (en) Heat-treating device
JP3785650B2 (en) Single wafer heat treatment system
JPH0766139A (en) Chemical vapor deposition system
JPH11260728A (en) Thin film deposition system
JP3225872B2 (en) Silicon oxide film formation method
JP3026305B2 (en) Heat treatment method
JPH09181060A (en) Thin-film formation device
KR102084530B1 (en) Method of forming a thin film

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees