JP3596147B2 - Antibacterial filter - Google Patents

Antibacterial filter Download PDF

Info

Publication number
JP3596147B2
JP3596147B2 JP5411396A JP5411396A JP3596147B2 JP 3596147 B2 JP3596147 B2 JP 3596147B2 JP 5411396 A JP5411396 A JP 5411396A JP 5411396 A JP5411396 A JP 5411396A JP 3596147 B2 JP3596147 B2 JP 3596147B2
Authority
JP
Japan
Prior art keywords
fiber
antibacterial
acid
polylysine
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5411396A
Other languages
Japanese (ja)
Other versions
JPH09220416A (en
Inventor
和幸 永柄
聡彦 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP5411396A priority Critical patent/JP3596147B2/en
Publication of JPH09220416A publication Critical patent/JPH09220416A/en
Application granted granted Critical
Publication of JP3596147B2 publication Critical patent/JP3596147B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は抗菌性フィルターに関し、詳しくは、抗菌性繊維を用いた不織繊維集合体からなる抗菌性フィルターに関するものである。さらに詳しくは、浄水器、食品原料水の濾過、飲料の濾過等に使用する抗菌性フィルターに関するものである。
【0002】
【背景技術】
近年、水に対しての関心が高まり、家庭用浄水器の普及率が増加している。また、食品原料水及び飲料の濾過についてもフィルターの使用が増加している。
しかし、浄水器やフィルターに水が滞留するとカビや細菌が繁殖し、水への臭気混入、濁り、食中毒の発生が問題となっている。そのため、カビや細菌の繁殖を抑制する、安全性の高い抗菌性フィルターの開発が望まれていた。
【0003】
これまで銀、銅、亜鉛等の化合物が抗菌性を有することは古くから知られており、銀、銅、亜鉛を高分子中に添加し、抗菌性を付与する試みが、例えば特開昭54−147220号公報など数多く提案されている。また、銀イオン、銅イオンでイオン交換したゼオライト系固体粒子を高分子重合体に添加する試みが、例えば特開昭59−133235号公報などに提案されている。
【0004】
しかしこれらの方法によって得られた高分子重合体を繊維化し、フィルターに用いた場合、人体に対して衛生上問題となる場合がある。
【0005】
また、浄水器および水の濾過に紫外線殺菌装置を組み込んだものが上市されているが、設置スペースの増大、コストアップ、紫外線ランプによる水温上昇等の問題がある。
【0006】
【発明が解決しようとする課題】
本発明は、人体に対する毒性がなく、優れた抗菌性を有した抗菌性繊維を用いた不織繊維集合体からなる抗菌性フィルターを提供しようとするものである。
【0007】
本発明者らは、上記目的を達成するために、鋭意検討を重ねた結果、ポリリジンまたはその塩を抗菌剤として繊維に練り込み、これを用いた不織繊維集合体からなるフィルターが、人体に対する毒性がなく、優れた抗菌性を有することを知り、本発明を完成するに至った。
【0008】
【課題を解決するための手段】
本発明は、前記の課題を解決するために以下の構成を有する。
(1)繊維重量に対し、純分換算で0.01〜5重量%のポリリジンまたはその塩を含有する抗菌性繊維からなる不織繊維集合体で構成された抗菌性フィルター。
(2)ポリリジンの塩が、塩酸、硫酸、リン酸および臭化水素酸から選ばれた少なくとも一種の無機酸の塩である前記第(1)項に記載の抗菌性フィルター。
(3)ポリリジンの塩が、酢酸、プロピオン酸、フマル酸、リンゴ酸およびクエン酸から選ばれた少なくとも一種の有機酸の塩である前記第(1)項に記載の抗菌性フィルター。
(4)繊維が熱可塑性繊維である前記第(1)〜(3)項のいずれかに記載の抗菌性フィルター。
(5)熱可塑性繊維が、ポリオレフィン系繊維、ポリエステル系繊維およびポリアミド系繊維から選ばれた少なくとも一種である前記第(4)項に記載の抗菌性フィルター。
(6)熱可塑性繊維が、融点の異なる少なくとも2成分からなる複合繊維である前記第(4)項または第(5)項に記載の抗菌性フィルター。
(7)抗菌性繊維と他の繊維が混綿および/または混繊され、かつ該抗菌性繊維を少なくとも20重量%含有し、該抗菌性繊維は、繊維重量に対し、純分換算で0.01〜5重量%のポリリジンまたはその塩を含有するものであり、該混綿および/または混繊された繊維集合体を不織繊維集合体に構成されてなる抗菌性フィルター。
(8)前記第(1)〜(7)項のいずれかに記載のフィルターを浄水器の部材として用いる浄水器用抗菌性フィルター。
【0009】
以下、本発明を詳細に説明する。
ポリリジンは、例えば特開昭59−20359号公報に記載のε−L−ポリリジン生産菌であるストレプトマイセス族に属するポリリジン生産菌であるストレプトマイセス・アルブラスサブスピーシーズ・リジノポリメラスを培地に培養し、得られた培養物からε−L−ポリリジンを分離・採取することによって得られる。
リジンは1分子中に2つのアミノ基を有するアミノ酸であり、これから構成されるポリリジンは一般にα位のアミノ基とカルボキシル基とが縮合したα−ポリリジンと、ε位のアミノ基とカルボキシル基とが縮合したε−ポリリジンとの2種類が存在するが、前記の製造法により得られるε−ポリリジンを用いたほうが安全性の面で望ましい。さらにε−ポリリジンは厚生省がまとめた化学的合成以外食品添加物のリストにも記載されている物質であり、食品保存剤などに利用されている。
ε−ポリリジンは、下記の一般式で表される。
【0010】
【化1】

Figure 0003596147
【0011】
本発明において、ポリリジンは遊離の形で用いることができるが、塩酸、硫酸、リン酸および臭化水素酸から選ばれた少なくとも1種の無機酸、または酢酸、プロピオン酸、フマル酸、リンゴ酸およびクエン酸から選ばれた少なくとも1種の有機酸の塩の形で用いることもできる。ポリリジンは遊離の形であれ、塩の形であれ、抗菌剤としての効果は本質的に差異はない。
ポリリジン塩は常法により製造される。例えば含水メタノール溶液に前記ポリリジンを溶解させ、これに前記酸を加える。溶液が中和点を過ぎたところで、冷アセトンを加えて塩を沈澱させ、これを乾燥させる。ポリリジンまたはその塩を繊維に練り込む場合は、これを乳鉢もしくはボールミル等で粉砕して用いる。
【0012】
本発明の抗菌性フィルターに使用する抗菌性繊維の原料繊維素材としては、キュプラ、レーヨン、アセテートなどの再生繊維、半合成繊維のほか、後述の合成繊維のいずれも使用できる。特に、ポリプロピレン、線状低密度ポリエチレン、低密度ポリエチレン、高密度ポリエチレンなどのポリオレフィン系、あるいはポリエチレンテレフタレート、ポリブチレンテレフタレート、共重合ポリエステルなどのポリエステル系、あるいはナイロン6、ナイロン66などのポリアミド系などの熱可塑性樹脂およびこれらの混合物からなる合成繊維が好ましい。
【0013】
抗菌性繊維が、2種以上の熱可塑性樹脂からなる複合繊維である場合、鞘芯型、並列型、偏芯鞘芯型、多層型あるいは海島型等の複合形式による繊維を例示できる。
複合繊維の熱可塑性樹脂の組合せの例として、高密度ポリエチレン/ポリプロピレン、直鎖状高密度ポリエチレン/ポリプロピレン、低密度ポリエチレン/ポリプロピレン、プロピレンと他のαオレフィンとの二元共重合体または三元共重合体/ポリプロピレン、直鎖状高密度ポリエチレン/高密度ポリエチレン、低密度ポリエチレン/高密度ポリエチレン、各種のポリエチレン/熱可塑性ポリエステル、ポリプロピレン/熱可塑性ポリエステル、低融点熱可塑性ポリエステル/熱可塑性ポリエステル、各種のポリエチレン/ナイロン6、ポリプロピレン/ナイロン6、プロピレンと他のαオレフィンとの二元共重合体または三元共重合体/ナイロン6、ナイロン6/ナイロン66、ナイロン6/熱可塑性ポリエステルなどを挙げることができる。
【0014】
抗菌性繊維を得る一手法として、ポリリジンまたはその塩を繊維内に練り込む方法について説明する。繊維素材は熱可塑性樹脂が好ましく、繊維重量全体に対して純分換算で0.01〜5重量%、好ましくは、0.1〜3重量%のポリリジンまたはその塩を熱可塑性樹脂に混合添加する。この含有量範囲が発明の効果が最も大きい。つまり、ポリリジンの含有量が0.01重量%未満では、十分な抗菌効果をえることは困難である。また5重量%を超えると、抗菌性がほぼ飽和状態に達し、含有量を多くする意味がなく、コスト高になりさらには紡糸安定性も不利になることから好ましくない。
【0015】
また、抗菌性繊維の素材として用いる熱可塑性樹脂としては、重合体に練り込まれた抗菌剤が表層に出やすく、抗菌効果が有効に作用されるという点からもポリプロピレンやポリエチレンなどのポリオレフィン系重合体がより好ましい。
【0016】
本発明に用いるポリリジンまたはその塩は、平均粒子径が5μm以下が好ましい。粒径が5μmを超えると溶融紡糸時にフィルター詰まりや断糸を起こし易く使用困難である。従って本発明に用いるポリリジンの平均粒径は5μm以下、さらに好ましくは2μm以下のものが望ましい。
【0017】
本発明において繊維に練り込む抗菌剤は、ポリリジンまたはその塩のどちらでも構わないが、溶融紡糸する際の熱安定性を考えると、ポリリジン塩が好ましい。またポリリジン塩を用いた場合でも、添加工程及び紡糸温度は260℃以下に設定することが望ましい。260℃を超えると抗菌効果は維持されるが、徐々に着色が起こるためである。
【0018】
さらに、ポリリジンまたはその塩を練り込む場合、繊維は鞘芯型複合繊維とし、鞘成分の熱可塑性樹脂にのみ前記ポリリジンを含有させることが、機械的特性、紡糸安定性、コストの面からさらに望ましい。芯成分と鞘成分の重合体の種類が異なる場合の複合比は、芯成分/鞘成分(重量比)が20/80〜80/20であることが好ましく、特に40/60〜60/40であることがより好ましい。80/20を超えると鞘成分の破断が発生しやすくなり、生産性が低下する。一方、20/80未満では芯成分が有する本来の繊維性能が低下する。
【0019】
また鞘、芯とも同一の重合体を用いて、鞘部分にのみポリリジンまたはその塩を練り込み添加することにより、鞘成分と芯成分の境界もなく機械的特性、紡糸安定性、コストの面から望ましい単一重合体からなる抗菌性繊維とすることができる。
【0020】
抗菌性繊維を用いた不織繊維集合体からなる本発明の抗菌性フィルターの製造方法としては、例えば、前記抗菌性繊維の短繊維を用いてカーディング法、エアーレイド法を用いて必要な目付けのウェブを作製する。またメルトブロー法、スパンボンド法などで直接ウェブを作製してもよい。前記方法で作製したウェブを、サクションドライヤー法、熱風乾燥装置あるいは熱ロール法等の公知の方法で加熱しながら芯棒に巻き付け抗菌性フィルターを得ることができる。
また、前記方法で作製したウェブを、サクションドライヤー法、熱風乾燥装置あるいは熱ロール法等の公知の方法で加工して不織布とし、この不織布を多孔支持体に巻き付け抗菌性フィルターとしてもよい。さらに、前記抗菌性繊維の短繊維で紡績糸を作り、これを多孔支持体に巻き付けた糸巻き型の抗菌性フィルターとしてもよい。
【0021】
本発明の抗菌性フィルターは、本発明の効果を損なわない範囲で、必要に応じて前記抗菌性繊維に他の繊維を混綿および/または混繊した不織繊維集合体として使用することができる。この場合、抗菌性繊維は少なくとも20重量%含有することが、本発明の効果を得る上で望ましい。この他の繊維としては、ポリアミド、ポリエステル、ポリオレフィン、アクリルなどの合成繊維、綿、羊毛、麻、などの天然繊維、レーヨン、キュプラ、アセテートなどの再生繊維、半合成繊維が挙げられる。
【0022】
【作用】
本発明の抗菌性フィルターは、練り込まれているポリリジン及びその塩により抗菌性が発現される。ポリリジンの抗菌作用についてはカビの増殖抑制作用や大腸菌(Escherichia coil)、黄色ブドウ球菌(Staphylococcus aureus )、緑膿菌(Pseudomonas aeruginosa)、枯草菌(Bacillus subtilis )などのグラム陽性菌、グラム陰性菌に対する増殖抑制作用がある。
これらの抗菌作用の詳細は不明であるが、ポリリジンのα位のカチオン性アミノ基によって菌の細胞壁中の陰イオン構成物質が吸着され、その結果、細胞壁の生合成が阻害あるいは壁の内外の物質の能動輸送が阻止されるため抗菌作用が発現されるものと推定される。本発明のフィルターは優れた抗菌効果を発現する。浄水器および工業用フィルターを用いて水の濾過を行う場合、水が滞留すると、カビや細菌が繁殖し、水への臭気混入、濁り、食中毒の発生が起こる。しかし、本発明の抗菌性フィルターを使用すると、これらのカビや細菌の増殖を抑制し、水への臭気混入、濁り、食中毒の発生を抑えることができ、安全な水を供給できる。
【0023】
【実施例】
以下、実施例、比較例により本発明をさらに詳細に説明するが、本発明はこれらにより限定されるものではない。なお、実施例中の性能評価は、下記方法に従った。
【0024】
抗菌性試験▲1▼(抗菌数増減値差測定)
滅菌した寒天培地に水道水を試験片(0.2g)上に0.2ml接種し、温度37℃で18時間培養する。培養後、試験片上の菌をリン酸緩衝液で抽出し、試験片上の生菌を標準寒天培地法により測定し、下記の計算式により菌数の増減値差を算出した。
無加工試料
[A]接種直後の生菌数
[B]18時間培養後の生菌数
抗菌加工試料
[C]18時間培養後の生菌数
菌数増減値差=log10(B/A)−log10(C/A)
上記式により得られる菌数増減値差が目安として1.6以上であれば、抗菌性能としては充分機能する。一方、菌数増減値差が1.6未満になると抗菌性能が不充分となり、微生物が繁殖する。
【0025】
抗菌性試験▲2▼(フィルター浸漬水臭気及び濁り試験)
1000ccビーカーに水道水700ccを入れ、試料を浸漬する。ビーカー上部をパラフィルムで密閉し、恒温槽に浸漬し、水温を37℃一定にする。12時間ごとに、ビーカー上部のフィルムを取り外し臭気または濁りの発生した時間を判定する。
【0026】
抗菌性試験▲3▼(浄水器通過水臭気試験)
試料フィルターを水道水の浄水用フィルターとして、水道に取り付け、1日1回流量5リットル/分で10分間通水する。通水初期の水を300cc共栓三角フラスコに200ccとり、軽く栓をして約40℃に温める。フラスコを揺り動かしながら栓をとり、直ちに臭気の有無を試験し、臭気の発生した日数を判定する。
【0027】
実施例1
高密度ポリエチレン(MFR:16g/10分、190℃)にε−ポリ−L−リジンの塩酸塩パウダーを純分換算で0.02重量%添加し、200℃で山口製作所(株)製の単軸ベント付押出機を用いて混練し、ペレットとした。
ポリプロピレン(MFR:16g/10分、230℃)を芯成分とし、前記ε−ポリ−L−リジンの塩酸塩を練り込んだポリエチレンを鞘成分として、230℃で孔径0.6mm、孔数350の鞘芯型口金を用いて、鞘芯比50/50、単糸デニール約7.5d/fの鞘芯型複合繊維を紡糸した。得られた未延伸糸を110℃で4.3倍に延伸し、機械捲縮をかけ、収縮を抑えるために100℃で熱処理を施した後、所定長に切断して短繊維とした。
これらの短繊維は、捲縮数約15個/25mm、カット長51mm、単糸繊度は約2.0デニールの短繊維であった。得られた短繊維をカード機にてウェブとし、サクションバンドドライヤーを用いて、140℃で加熱しながら金属製の芯棒に巻き取った後、冷却し芯棒を抜き取り、100mmの長さに切断し、外径60mm、内径30mm、長さ100mmの中空円筒状フィルターを得た。
【0028】
実施例2
ε−ポリ−L−リジンの塩酸塩パウダーを高密度ポリエチレンに純分換算で1.0重量%混練する以外は、実施例1と同様な工程でフィルターを得た。
【0029】
実施例3
ε−ポリ−L−リジンの塩酸塩パウダーを高密度ポリエチレンに純分換算で5.0重量%混練する以外は、実施例1と同様な工程でフィルターを得た。
【0030】
比較例1
ε−ポリ−L−リジンの塩酸塩パウダーを高密度ポリエチレンに混練せず、それ以外は、実施例1と同様な工程でフィルターを得た。
【0031】
比較例2
ε−ポリ−L−リジンの塩酸塩パウダーを高密度ポリエチレンに純分換算で0.005重量%混練する以外は、実施例1と同様な工程でフィルターを得た。
【0032】
実施例1〜3、比較例1,2で得たフィルターのフィルター重量に対するε−ポリ−L−リジンの含有量(純分換算)、菌数増減値差、フィルター浸漬水の臭気または濁り発生時間の結果を表1に示す。
【0033】
【表1】
Figure 0003596147
【0034】
表1からも明らかなように、本発明の実施例1〜3のε−ポリ−L−リジンが一定量含有されたフィルターは、抗菌性に優れていることがわかる。しかし、比較例2では、ε−ポリ−L−リジンの含有量が少ないため、抗菌性が低い。
【0035】
実施例4
高密度ポリエチレン(MFR:16g/10分、190℃)にε−ポリ−L−リジンパウダーを2.0重量%添加し、200℃で山口製作所(株)製の単軸ベント付押出機を用いて混練し、ペレットとした。
ポリプロピレン(MFR:16g/10分、230℃)を芯成分とし、前記ε−ポリ−L−リジンを練り込んだポリエチレンを鞘成分として、230℃で孔径0.6mm、孔数350の鞘芯型口金を用いて、鞘芯比50/50、単糸デニール約7.5d/fの鞘芯型複合繊維を紡糸した。得られた未延伸糸を110℃で4.3倍に延伸し、機械捲縮をかけ、収縮を抑えるために100℃で熱処理を施した後、所定長に切断して短繊維とした。
これらの短繊維は、捲縮数約15個/25mm、カット長51mm、単糸繊度は約2.0デニールの短繊維であった。得られた短繊維をカード機にてウェブとし、サクションバンドドライヤーを用いて、140℃で加熱しながら金属製の芯棒に巻き取った後、冷却し芯棒を抜き取り、100mmの長さに切断し、外径60mm、内径30mm、長さ100mmの中空円筒状フィルターを得た。
【0036】
実施例5
ε−ポリ−L−リジンの代わりにε−ポリ−L−リジン塩酸塩パウダーを高密度ポリエチレンに混練する以外は、実施例4と同様な工程でフィルターを得た。
【0037】
実施例6
ε−ポリ−L−リジンの代わりにε−ポリ−L−リジンプロピオン酸塩パウダーを高密度ポリエチレンに混練する以外は、実施例4と同様な工程でフィルターを得た。
【0038】
実施例4〜6で得たフィルターのフィルター重量に対するε−ポリ−L−リジンの含有量(純分換算)、菌数増減値差、フィルター浸漬水の臭気または濁り発生時間の結果を表2に示す。
【0039】
【表2】
Figure 0003596147
【0040】
表2からも明らかなように、本発明の実施例4〜6のε−ポリ−L−リジンまたはその塩が一定量含有されたフィルターは、抗菌性に優れている。
【0041】
実施例5で挙げたポリリジンの塩酸塩は、無機酸の代表例であって、他の硫酸塩、リン酸塩、臭化水素酸塩を用いても同様に本発明の効果が得られる。
【0042】
実施例6で挙げたポリリジンのプロピオン酸塩は、有機酸の代表例であって、他の酢酸、フマル酸、リンゴ酸、クエン酸を用いても同様に本発明の効果が得られる。
【0043】
実施例7
高密度ポリエチレン(MFR:16g/10分、190℃)にε−ポリ−L−リジン塩酸塩パウダーを10.0重量%添加し、200℃で山口製作所(株)製の単軸ベント付押出機を用いて混練し、ペレットとした。
ポリプロピレン(MFR:16g/10分、230℃)を芯成分とし、前記ε−ポリ−L−リジンを練り込んだポリエチレンを鞘成分として、230℃で孔径0.6mm、孔数350の鞘芯型口金を用いて、鞘芯比50/50、単糸デニール約7.5d/fの鞘芯型複合繊維を紡糸した。得られた未延伸糸を110℃で4.3倍に延伸し、機械捲縮をかけ、収縮を抑えるために100℃で熱処理を施した後、所定長に切断して短繊維とした。
これらの短繊維は、捲縮数約15個/25mm、カット長51mm、単糸繊度は約2.0デニールの短繊維であった。得られた短繊維をカード機にてウェブとし、サクションバンドドライヤーを用いて、140℃で加熱しながら金属製の芯棒に巻き取った後、冷却し芯棒を抜き取り、100mmの長さに切断し、外径60mm、内径30mm、長さ100mmの中空円筒状フィルターを得た。
【0044】
実施例8
高密度ポリエチレン(MFR:16g/10分、190℃)にε−ポリ−L−リジン塩酸塩パウダーを10.0重量%添加し、200℃で山口製作所(株)製の単軸ベント付押出機を用いて混練し、ペレットとした。
ポリプロピレン(MFR:16g/10分、230℃)を芯成分とし、前記ε−ポリ−L−リジンを練り込んだポリエチレンを鞘成分として、230℃で孔径0.6mm、孔数350の鞘芯型口金を用いて、鞘芯比50/50、単糸デニール約7.5d/fの鞘芯型複合繊維を紡糸した。得られた未延伸糸を110℃で4.3倍に延伸し、機械捲縮をかけ、収縮を抑えるために100℃で熱処理を施した後、所定長に切断して短繊維とした。
これらの短繊維は、捲縮数約15個/25mm、カット長51mm、単糸繊度は約2.0デニールの短繊維であった。
得られた短繊維とアクリル短繊維(単糸繊度2.0デニール、カット長51mm)を重量比50/50で混綿し、カード機にてウェブとし、サクションバンドドライヤーを用いて、140℃で加熱しながら金属製の芯棒に巻き取った後、冷却し芯棒を抜き取り、100mmの長さに切断し、外径60mm、内径30mm、長さ100mmの中空円筒状フィルターを得た。
【0045】
実施例9
高密度ポリエチレン(MFR:16g/10分、190℃)にε−ポリ−L−リジン塩酸塩パウダーを10.0重量%添加し、200℃で山口製作所(株)製の単軸ベント付押出機を用いて混練し、ペレットとした。
ポリプロピレン(MFR:16g/10分、230℃)を芯成分とし、前記ε−ポリ−L−リジンを練り込んだポリエチレンを鞘成分として、230℃で孔径0.6mm、孔数350の鞘芯型口金を用いて、鞘芯比50/50、単糸デニール約7.5d/fの鞘芯型複合繊維を紡糸した。得られた未延伸糸を110℃で4.3倍に延伸し、機械捲縮をかけ、収縮を抑えるために100℃で熱処理を施した後、所定長に切断して短繊維とした。
これらの短繊維は、捲縮数約15個/25mm、カット長51mm、単糸繊度は約2.0デニールの短繊維であった。
得られた短繊維とアクリル短繊維(単糸繊度2.0デニール、カット長51mm)を重量比20/80で混綿し、カード機にてウェブとし、サクションバンドドライヤーを用いて、140℃で加熱しながら金属製の芯棒に巻き取った後、冷却し芯棒を抜き取り、100mmの長さに切断し、外径60mm、内径30mm、長さ100mmの中空円筒状フィルターを得た。
【0046】
実施例7〜9で得たフィルターのフィルター重量に対するε−ポリ−L−リジンの含有量(純分換算)、菌数増減値差、フィルター浸漬水の臭気または濁り発生時間の結果を表3に示す。
【0047】
【表3】
Figure 0003596147
【0048】
表3からも明らかなように、他の繊維が混綿されても、本発明の実施例8,9のε−ポリ−L−リジンが一定量含有されたフィルターは、抗菌性に優れている。
【0049】
実施例8,9で挙げたアクリル短繊維は、抗菌性繊維に混綿する他の繊維の代表例であって、ポリアミド、ポリエステル、ポリオレフィンなどの合成繊維、綿、羊毛、麻、などの天然繊維、レーヨン、キュプラ、アセテートなどの再生繊維、半合成繊維を混綿しても同様に本発明の効果が得られる。
【0050】
実施例10
高密度ポリエチレン(MFR:16g/10分、190℃)にε−ポリ−L−リジン塩酸塩パウダーを2.0重量%添加し、200℃で山口製作所(株)製の単軸ベント付押出機を用いて混練し、ペレットとした。
ポリプロピレン(MFR:16g/10分、230℃)を芯成分とし、前記ε−ポリ−L−リジンを練り込んだポリエチレンを鞘成分として、230℃で孔径0.6mm、孔数350の鞘芯型口金を用いて、鞘芯比50/50、単糸デニール約7.5d/fの鞘芯型複合繊維を紡糸した。得られた未延伸糸を110℃で4.3倍に延伸し、機械捲縮をかけ、収縮を抑えるために100℃で熱処理を施した後、所定長に切断して短繊維とした。
これらの短繊維は、捲縮数約15個/25mm、カット長51mm、単糸繊度は約2.0デニールの短繊維であった。得られた短繊維をカード機にてウェブとし、サクションバンドドライヤーを用いて、140℃で加熱しながら金属製の芯棒に巻き取った後、冷却し芯棒を抜き取り、250mmの長さに切断し、外径60mm、内径30mm、長さ250mmの中空円筒状フィルターを得た。これを水道水の浄水器用フィルターとして取り付け抗菌性を評価した。
【0051】
比較例3
ε−ポリ−L−リジンの塩酸塩パウダーを高密度ポリエチレンに混練せず、それ以外は、実施例10と同様な工程でフィルターを得て、抗菌性を評価した。
【0052】
実施例10、比較例3で得たフィルターのフィルター重量に対するε−ポリ−L−リジンの含有量(純分換算)、浄水器通過水臭気発生日数の結果を表4に示す。
【0053】
【表4】
Figure 0003596147
【0054】
表4からも明らかなように、本発明の実施例10のε−ポリ−L−リジンが一定量含有されたフィルターを使用した浄水器は、抗菌性に優れていることがわかる。
【0055】
【発明の効果】
抗菌性繊維を用いた不織繊維集合体からなる本発明の抗菌性フィルターは、優れた抗菌性を有する。しかも食品用保存剤として使用されているポリリジンまたはその塩を抗菌剤として用いているので、使用に際して人体への影響もなく、非常に安全である。このため、抗菌性フィルターとして、浄水器、食品原料水の濾過、飲料の濾過等に利用できる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an antibacterial filter, and more particularly, to an antibacterial filter composed of a nonwoven fiber aggregate using antibacterial fibers. More specifically, the present invention relates to an antibacterial filter used for water purifiers, filtration of food raw material water, filtration of beverages, and the like.
[0002]
[Background Art]
In recent years, interest in water has increased, and the penetration rate of household water purifiers has increased. In addition, the use of filters is increasing for filtration of food raw water and beverages.
However, if water stays in a water purifier or a filter, molds and bacteria proliferate, and odor is mixed into the water, turbidity, and the occurrence of food poisoning has become a problem. Therefore, development of a highly safe antibacterial filter that suppresses the growth of mold and bacteria has been desired.
[0003]
It has long been known that compounds such as silver, copper, and zinc have antibacterial properties. Attempts have been made to add antibacterial properties by adding silver, copper, and zinc to polymers, for example, as disclosed in Many proposals have been made, such as Japanese Patent No. 147220. An attempt to add zeolite-based solid particles ion-exchanged with silver ions and copper ions to a polymer has been proposed in, for example, JP-A-59-133235.
[0004]
However, when the polymer obtained by these methods is converted into a fiber and used for a filter, there is a case where a human body becomes a problem in hygiene.
[0005]
In addition, there is a commercially available one in which an ultraviolet sterilizer is incorporated in a water purifier and water filtration. However, there are problems such as an increase in installation space, an increase in cost, and an increase in water temperature by an ultraviolet lamp.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide an antibacterial filter comprising a nonwoven fiber aggregate using antibacterial fibers having no antibacterial properties and having excellent antibacterial properties.
[0007]
The present inventors have conducted intensive studies to achieve the above object, and as a result, kneaded the fibers with polylysine or a salt thereof as an antibacterial agent, and a filter comprising a nonwoven fiber aggregate using the same has been applied to the human body. The inventors have found that they have no toxicity and have excellent antibacterial properties, and have completed the present invention.
[0008]
[Means for Solving the Problems]
The present invention has the following configurations in order to solve the above-mentioned problems.
(1) An antibacterial filter composed of a nonwoven fiber aggregate composed of an antibacterial fiber containing 0.01 to 5% by weight of polylysine or a salt thereof in a pure matter conversion with respect to the fiber weight.
(2) The antibacterial filter according to the above (1), wherein the polylysine salt is a salt of at least one inorganic acid selected from hydrochloric acid, sulfuric acid, phosphoric acid and hydrobromic acid.
(3) The antibacterial filter according to the above (1), wherein the salt of polylysine is a salt of at least one organic acid selected from acetic acid, propionic acid, fumaric acid, malic acid and citric acid.
(4) The antibacterial filter according to any one of the above (1) to (3), wherein the fiber is a thermoplastic fiber.
(5) The antibacterial filter according to the above (4), wherein the thermoplastic fiber is at least one selected from a polyolefin fiber, a polyester fiber and a polyamide fiber.
(6) The antibacterial filter according to the above (4) or (5), wherein the thermoplastic fiber is a composite fiber composed of at least two components having different melting points.
(7) The antibacterial fiber and other fibers are mixed and / or mixed, and contain at least 20% by weight of the antibacterial fiber. An antibacterial filter containing up to 5% by weight of polylysine or a salt thereof, wherein the mixed cotton and / or mixed fiber aggregate is formed into a nonwoven fiber aggregate.
(8) An antibacterial filter for a water purifier using the filter according to any of the above (1) to (7) as a member of the water purifier.
[0009]
Hereinafter, the present invention will be described in detail.
Polylysine is obtained by culturing, for example, Streptomyces albras subsp. Ε-L-polylysine from the resulting culture.
Lysine is an amino acid having two amino groups in one molecule. Polylysine composed of this is generally composed of α-polylysine in which an α-amino group and a carboxyl group are condensed, and an ε-amino group and a carboxyl group. Although there are two types of ε-polylysine with condensed ε-polylysine, it is more desirable to use ε-polylysine obtained by the above-mentioned production method in view of safety. Further, ε-polylysine is a substance described in a list of food additives other than chemical synthesis compiled by the Ministry of Health and Welfare, and is used as a food preservative.
ε-polylysine is represented by the following general formula.
[0010]
Embedded image
Figure 0003596147
[0011]
In the present invention, polylysine can be used in a free form, but at least one inorganic acid selected from hydrochloric acid, sulfuric acid, phosphoric acid and hydrobromic acid, or acetic acid, propionic acid, fumaric acid, malic acid and It can also be used in the form of a salt of at least one organic acid selected from citric acid. Polylysine, whether in free or salt form, has essentially no effect as an antimicrobial agent.
The polylysine salt is produced by a conventional method. For example, the polylysine is dissolved in a water-containing methanol solution, and the acid is added thereto. When the solution has passed the neutralization point, cold acetone is added to precipitate the salt and it is dried. When kneading the polylysine or its salt into the fiber, the kneaded material is pulverized with a mortar or a ball mill and used.
[0012]
As a raw material fiber material of the antibacterial fiber used in the antibacterial filter of the present invention, any of regenerated fibers such as cupra, rayon and acetate, semi-synthetic fibers, and any of the synthetic fibers described below can be used. In particular, polyolefins such as polypropylene, linear low-density polyethylene, low-density polyethylene, and high-density polyethylene; polyesters such as polyethylene terephthalate, polybutylene terephthalate, and copolyester; and polyamides such as nylon 6 and nylon 66. Synthetic fibers composed of thermoplastic resins and mixtures thereof are preferred.
[0013]
When the antibacterial fiber is a composite fiber composed of two or more kinds of thermoplastic resins, examples of the composite fiber include a sheath-core type, a side-by-side type, an eccentric sheath-core type, a multilayer type, and a sea-island type.
Examples of combinations of thermoplastic resins of composite fibers include high-density polyethylene / polypropylene, linear high-density polyethylene / polypropylene, low-density polyethylene / polypropylene, and binary or ternary copolymers of propylene with other α-olefins. Polymer / polypropylene, linear high density polyethylene / high density polyethylene, low density polyethylene / high density polyethylene, various polyethylene / thermoplastic polyester, polypropylene / thermoplastic polyester, low melting point thermoplastic polyester / thermoplastic polyester, various Polyethylene / nylon 6, polypropylene / nylon 6, binary or terpolymer of propylene and other α-olefin / nylon 6, nylon 6 / nylon 66, nylon 6 / thermoplastic polyester, etc. Can You.
[0014]
A method for kneading polylysine or a salt thereof into fibers will be described as one method for obtaining antibacterial fibers. The fiber material is preferably a thermoplastic resin, and 0.01 to 5% by weight, preferably 0.1 to 3% by weight, of polylysine or a salt thereof is mixed and added to the thermoplastic resin based on the total weight of the fiber. . This content range has the greatest effect of the invention. That is, if the content of polylysine is less than 0.01% by weight, it is difficult to obtain a sufficient antibacterial effect. On the other hand, if it exceeds 5% by weight, the antibacterial property almost reaches a saturated state, there is no point in increasing the content, the cost is increased, and the spinning stability is disadvantageous.
[0015]
In addition, as the thermoplastic resin used as the material of the antibacterial fiber, the antibacterial agent kneaded into the polymer is easily exposed to the surface layer, and polyolefin-based polyolefins such as polypropylene and polyethylene are also effective in that the antibacterial effect is effectively exerted. Coalescence is more preferred.
[0016]
The average particle diameter of the polylysine or a salt thereof used in the present invention is preferably 5 μm or less. If the particle size exceeds 5 μm, filter clogging and thread breakage tend to occur during melt spinning, making it difficult to use. Therefore, the average particle size of the polylysine used in the present invention is preferably 5 μm or less, more preferably 2 μm or less.
[0017]
In the present invention, the antibacterial agent to be kneaded into the fiber may be either polylysine or a salt thereof, but a polylysine salt is preferred in view of heat stability during melt spinning. Even when a polylysine salt is used, the addition step and the spinning temperature are desirably set to 260 ° C. or lower. If the temperature exceeds 260 ° C., the antibacterial effect is maintained, but the coloring gradually occurs.
[0018]
Further, when kneading polylysine or a salt thereof, the fiber is a sheath-core type composite fiber, and it is more desirable that the polylysine is contained only in the thermoplastic resin of the sheath component from the viewpoint of mechanical properties, spinning stability, and cost. . When the type of the polymer of the core component and the type of the sheath component are different, the core ratio / the sheath component (weight ratio) is preferably 20/80 to 80/20, and particularly preferably 40/60 to 60/40. More preferably, there is. If the ratio exceeds 80/20, the sheath component is likely to break, and the productivity is reduced. On the other hand, if it is less than 20/80, the original fiber performance of the core component is reduced.
[0019]
In addition, by using the same polymer for both the sheath and core, kneading and adding polylysine or a salt thereof only to the sheath portion, there is no boundary between the sheath component and the core component, from the viewpoint of mechanical properties, spinning stability, and cost. Antimicrobial fibers can be made of the desired homopolymer.
[0020]
Examples of the method for producing the antibacterial filter of the present invention comprising a nonwoven fiber aggregate using antibacterial fibers include, for example, carding method using short fibers of the antibacterial fibers and necessary weighting using an air laid method. To produce a web. Further, a web may be directly produced by a melt blow method, a spun bond method or the like. The antibacterial filter can be obtained by winding the web produced by the above method around a core rod while heating the web by a known method such as a suction dryer method, a hot air drying device or a hot roll method.
Further, the web produced by the above method may be processed into a nonwoven fabric by a known method such as a suction dryer method, a hot air drying device or a hot roll method, and the nonwoven fabric may be wound around a porous support to form an antibacterial filter. Furthermore, a spun yarn may be formed from short fibers of the antibacterial fiber and wound around a porous support to form a wound antibacterial filter.
[0021]
The antibacterial filter of the present invention can be used as a nonwoven fiber aggregate in which other fibers are mixed with the antibacterial fiber and / or mixed if necessary, as long as the effects of the present invention are not impaired. In this case, it is desirable to contain at least 20% by weight of the antibacterial fiber in order to obtain the effects of the present invention. Examples of other fibers include synthetic fibers such as polyamide, polyester, polyolefin, and acrylic; natural fibers such as cotton, wool, and hemp; regenerated fibers such as rayon, cupra, and acetate; and semi-synthetic fibers.
[0022]
[Action]
The antibacterial filter of the present invention exhibits antibacterial properties due to kneaded polylysine and its salt. Regarding the antibacterial action of polylysine, the growth inhibitory action of mold and gram-positive bacteria such as Escherichia coil, Staphylococcus aureus, Pseudomonas aeruginosa, and Bacillus subtilis against Bacillus subtilis are described. Has a growth inhibitory effect.
Although the details of these antibacterial effects are unknown, the cationic amino group at the α-position of polylysine adsorbs anionic constituents in the cell wall of the bacterium, and as a result, the biosynthesis of the cell wall is inhibited or substances inside and outside the wall are blocked. It is presumed that the antibacterial action is exhibited because the active transport of is inhibited. The filter of the present invention exhibits an excellent antibacterial effect. In the case where water is filtered using a water purifier and an industrial filter, if water stays, mold and bacteria propagate, and odor is mixed into the water, turbidity occurs, and food poisoning occurs. However, when the antibacterial filter of the present invention is used, the growth of these molds and bacteria can be suppressed, the odor mixture in water, turbidity, and the occurrence of food poisoning can be suppressed, and safe water can be supplied.
[0023]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto. In addition, the performance evaluation in the Example followed the following method.
[0024]
Antibacterial test (1) (Difference measurement of antibacterial number)
0.2 ml of tap water is inoculated on a test piece (0.2 g) on a sterilized agar medium, and cultured at 37 ° C. for 18 hours. After the culture, the bacteria on the test piece were extracted with a phosphate buffer, the viable bacteria on the test piece were measured by the standard agar medium method, and the difference in the number of bacteria was calculated by the following formula.
Unprocessed sample [A] Viable bacterial count immediately after inoculation [B] Viable bacterial count after 18 hours of culture Antibacterial processed sample [C] Viable bacterial count after 18 hours of culture Increase / decrease difference in bacterial count = log 10 (B / A) -Log 10 (C / A)
If the difference in the increase or decrease in the number of bacteria obtained by the above equation is 1.6 or more as a guide, it functions sufficiently as an antibacterial performance. On the other hand, if the difference in the number of bacteria increases or decreases less than 1.6, the antibacterial performance becomes insufficient, and the microorganisms propagate.
[0025]
Antibacterial test (2) (Filter immersion water odor and turbidity test)
700 cc of tap water is put into a 1000 cc beaker, and the sample is immersed. The top of the beaker is sealed with parafilm, immersed in a thermostat, and the water temperature is kept constant at 37 ° C. Every 12 hours, remove the film on top of the beaker and determine when odor or turbidity occurs.
[0026]
Antibacterial test (3) (water odor test through water purifier)
The sample filter is attached to tap water as a filter for purifying tap water, and water is passed through the filter once a day at a flow rate of 5 L / min for 10 minutes. Take 200 cc of water at the beginning of passing water into a 300 cc stoppered Erlenmeyer flask, stopper gently, and warm to about 40 ° C. The stopper is removed while shaking the flask, and the presence or absence of odor is immediately tested to determine the number of days when odor is generated.
[0027]
Example 1
To a high-density polyethylene (MFR: 16 g / 10 min, 190 ° C.) was added 0.02% by weight of ε-poly-L-lysine hydrochloride powder in terms of a pure content, and at 200 ° C., a single unit manufactured by Yamaguchi Manufacturing Co., Ltd. The mixture was kneaded using an extruder equipped with a shaft vent to form pellets.
Polypropylene (MFR: 16 g / 10 min, 230 ° C.) as a core component and polyethylene kneaded with the aforementioned ε-poly-L-lysine hydrochloride as a sheath component at 230 ° C. having a pore diameter of 0.6 mm and a pore number of 350 A sheath-core composite fiber having a sheath-core ratio of 50/50 and a single yarn denier of about 7.5 d / f was spun using a sheath-core type die. The obtained undrawn yarn was drawn 4.3 times at 110 ° C., subjected to mechanical crimping, heat-treated at 100 ° C. to suppress shrinkage, and cut into a predetermined length to obtain short fibers.
These short fibers had a crimp count of about 15/25 mm, a cut length of 51 mm, and a single fiber fineness of about 2.0 denier. The obtained short fiber is made into a web by a card machine, wound up on a metal core rod while heating at 140 ° C. using a suction band dryer, then cooled, pulled out of the core rod, and cut into a length of 100 mm. Then, a hollow cylindrical filter having an outer diameter of 60 mm, an inner diameter of 30 mm, and a length of 100 mm was obtained.
[0028]
Example 2
A filter was obtained in the same manner as in Example 1 except that the hydrochloride powder of ε-poly-L-lysine was kneaded with high-density polyethylene at 1.0% by weight in terms of pure content.
[0029]
Example 3
A filter was obtained in the same manner as in Example 1 except that the hydrochloride powder of ε-poly-L-lysine was kneaded with high-density polyethylene at 5.0% by weight in terms of pure content.
[0030]
Comparative Example 1
A filter was obtained in the same manner as in Example 1, except that the hydrochloride powder of ε-poly-L-lysine was not kneaded with high-density polyethylene.
[0031]
Comparative Example 2
A filter was obtained in the same manner as in Example 1 except that the hydrochloride powder of ε-poly-L-lysine was kneaded with high-density polyethylene at 0.005% by weight in terms of pure content.
[0032]
Content of ε-poly-L-lysine with respect to filter weight of filters obtained in Examples 1 to 3 and Comparative Examples 1 and 2 (in terms of pure components), difference in increase / decrease in number of bacteria, odor or turbidity generation time of filter immersion water Table 1 shows the results.
[0033]
[Table 1]
Figure 0003596147
[0034]
As is clear from Table 1, the filters containing a fixed amount of ε-poly-L-lysine in Examples 1 to 3 of the present invention have excellent antibacterial properties. However, in Comparative Example 2, since the content of ε-poly-L-lysine was small, the antibacterial property was low.
[0035]
Example 4
2.0% by weight of ε-poly-L-lysine powder was added to high-density polyethylene (MFR: 16 g / 10 min, 190 ° C.), and an extruder with a single-screw vent manufactured by Yamaguchi Seisakusho at 200 ° C. was used. And kneaded to form pellets.
A sheath-core type having a core component of polypropylene (MFR: 16 g / 10 min, 230 ° C) and a sheath component of polyethylene kneaded with ε-poly-L-lysine, having a pore diameter of 0.6 mm and a number of pores of 350 at 230 ° C. Using a die, a sheath-core type composite fiber having a sheath-core ratio of 50/50 and a single yarn denier of about 7.5 d / f was spun. The obtained undrawn yarn was drawn 4.3 times at 110 ° C., subjected to mechanical crimping, heat-treated at 100 ° C. to suppress shrinkage, and cut into a predetermined length to obtain short fibers.
These short fibers had a crimp count of about 15/25 mm, a cut length of 51 mm, and a single fiber fineness of about 2.0 denier. The obtained short fiber is made into a web by a card machine, wound up on a metal core rod while heating at 140 ° C. using a suction band dryer, then cooled, pulled out of the core rod, and cut into a length of 100 mm. Then, a hollow cylindrical filter having an outer diameter of 60 mm, an inner diameter of 30 mm, and a length of 100 mm was obtained.
[0036]
Example 5
A filter was obtained in the same manner as in Example 4, except that ε-poly-L-lysine hydrochloride powder was kneaded with high-density polyethylene instead of ε-poly-L-lysine.
[0037]
Example 6
A filter was obtained in the same manner as in Example 4, except that ε-poly-L-lysine propionate powder was kneaded with high-density polyethylene instead of ε-poly-L-lysine.
[0038]
Table 2 shows the results of the content of ε-poly-L-lysine (converted to the pure content), the difference in increase and decrease in the number of bacteria, and the odor or turbidity generation time of the filter immersion water with respect to the filter weight of the filters obtained in Examples 4 to 6. Show.
[0039]
[Table 2]
Figure 0003596147
[0040]
As is clear from Table 2, the filters containing a certain amount of ε-poly-L-lysine or a salt thereof of Examples 4 to 6 of the present invention have excellent antibacterial properties.
[0041]
The polylysine hydrochloride mentioned in Example 5 is a representative example of an inorganic acid, and the effect of the present invention can be similarly obtained by using another sulfate, phosphate, or hydrobromide.
[0042]
The polylysine propionate mentioned in Example 6 is a typical example of an organic acid, and the effects of the present invention can be similarly obtained by using other acetic acid, fumaric acid, malic acid, or citric acid.
[0043]
Example 7
10.0 wt% of ε-poly-L-lysine hydrochloride powder was added to high-density polyethylene (MFR: 16 g / 10 min, 190 ° C.), and an extruder with a single-screw vent manufactured by Yamaguchi Seisakusho at 200 ° C. And kneaded into pellets.
A sheath-core type having a core component of polypropylene (MFR: 16 g / 10 min, 230 ° C) and a sheath component of polyethylene kneaded with ε-poly-L-lysine, having a pore diameter of 0.6 mm and a number of pores of 350 at 230 ° C. Using a die, a sheath-core type composite fiber having a sheath-core ratio of 50/50 and a single yarn denier of about 7.5 d / f was spun. The obtained undrawn yarn was drawn 4.3 times at 110 ° C., subjected to mechanical crimping, heat-treated at 100 ° C. to suppress shrinkage, and cut into a predetermined length to obtain short fibers.
These short fibers had a crimp count of about 15/25 mm, a cut length of 51 mm, and a single fiber fineness of about 2.0 denier. The obtained short fiber is made into a web by a card machine, wound up on a metal core rod while heating at 140 ° C. using a suction band dryer, then cooled, pulled out of the core rod, and cut into a length of 100 mm. Then, a hollow cylindrical filter having an outer diameter of 60 mm, an inner diameter of 30 mm, and a length of 100 mm was obtained.
[0044]
Example 8
10.0 wt% of ε-poly-L-lysine hydrochloride powder was added to high-density polyethylene (MFR: 16 g / 10 min, 190 ° C.), and an extruder with a single-screw vent manufactured by Yamaguchi Seisakusho at 200 ° C. And kneaded into pellets.
A sheath-core type having a core component of polypropylene (MFR: 16 g / 10 min, 230 ° C) and a sheath component of polyethylene kneaded with ε-poly-L-lysine, having a pore diameter of 0.6 mm and a number of pores of 350 at 230 ° C. Using a die, a sheath-core type composite fiber having a sheath-core ratio of 50/50 and a single yarn denier of about 7.5 d / f was spun. The obtained undrawn yarn was drawn 4.3 times at 110 ° C., subjected to mechanical crimping, heat-treated at 100 ° C. to suppress shrinkage, and cut into a predetermined length to obtain short fibers.
These short fibers had a crimp count of about 15/25 mm, a cut length of 51 mm, and a single fiber fineness of about 2.0 denier.
The obtained short fibers and acrylic short fibers (single yarn fineness: 2.0 denier, cut length: 51 mm) are blended at a weight ratio of 50/50, made into a web using a card machine, and heated at 140 ° C. using a suction band dryer. After being wound around a metal core rod while cooling, the core rod was cooled, extracted and cut into a length of 100 mm to obtain a hollow cylindrical filter having an outer diameter of 60 mm, an inner diameter of 30 mm, and a length of 100 mm.
[0045]
Example 9
10.0 wt% of ε-poly-L-lysine hydrochloride powder was added to high-density polyethylene (MFR: 16 g / 10 min, 190 ° C.), and an extruder with a single-screw vent manufactured by Yamaguchi Seisakusho at 200 ° C. And kneaded into pellets.
A sheath-core type having a core component of polypropylene (MFR: 16 g / 10 min, 230 ° C) and a sheath component of polyethylene kneaded with ε-poly-L-lysine, having a pore diameter of 0.6 mm and a number of pores of 350 at 230 ° C. Using a die, a sheath-core type composite fiber having a sheath-core ratio of 50/50 and a single yarn denier of about 7.5 d / f was spun. The obtained undrawn yarn was drawn 4.3 times at 110 ° C., subjected to mechanical crimping, heat-treated at 100 ° C. to suppress shrinkage, and cut into a predetermined length to obtain short fibers.
These short fibers had a crimp count of about 15/25 mm, a cut length of 51 mm, and a single fiber fineness of about 2.0 denier.
The obtained short fibers and acrylic short fibers (single fiber fineness: 2.0 denier, cut length: 51 mm) are blended at a weight ratio of 20/80, made into a web using a card machine, and heated at 140 ° C. using a suction band dryer. After being wound around a metal core rod while cooling, the core rod was cooled, extracted and cut into a length of 100 mm to obtain a hollow cylindrical filter having an outer diameter of 60 mm, an inner diameter of 30 mm, and a length of 100 mm.
[0046]
Table 3 shows the results of the content of ε-poly-L-lysine (in terms of pure content), the difference in the number of bacteria, the odor or turbidity generation time of the filter immersion water with respect to the filter weight of the filters obtained in Examples 7 to 9. Show.
[0047]
[Table 3]
Figure 0003596147
[0048]
As is clear from Table 3, even when other fibers are mixed, the filters containing a certain amount of ε-poly-L-lysine of Examples 8 and 9 of the present invention are excellent in antibacterial properties.
[0049]
The acrylic short fibers mentioned in Examples 8 and 9 are typical examples of other fibers mixed with antibacterial fibers, and include synthetic fibers such as polyamide, polyester, and polyolefin; natural fibers such as cotton, wool, and hemp; The effect of the present invention can be similarly obtained by blending regenerated fibers such as rayon, cupra, and acetate, and semi-synthetic fibers.
[0050]
Example 10
2.0% by weight of ε-poly-L-lysine hydrochloride powder was added to high-density polyethylene (MFR: 16 g / 10 min, 190 ° C.), and an extruder with a single-screw vent manufactured by Yamaguchi Seisakusho at 200 ° C. And kneaded into pellets.
A sheath-core type having a core component of polypropylene (MFR: 16 g / 10 min, 230 ° C) and a sheath component of polyethylene kneaded with ε-poly-L-lysine, having a pore diameter of 0.6 mm and a number of pores of 350 at 230 ° C. Using a die, a sheath-core type composite fiber having a sheath-core ratio of 50/50 and a single yarn denier of about 7.5 d / f was spun. The obtained undrawn yarn was drawn 4.3 times at 110 ° C., subjected to mechanical crimping, heat-treated at 100 ° C. to suppress shrinkage, and cut into a predetermined length to obtain short fibers.
These short fibers had a crimp count of about 15/25 mm, a cut length of 51 mm, and a single fiber fineness of about 2.0 denier. The obtained short fiber is made into a web by a carding machine, wound up on a metal core rod while heating at 140 ° C. using a suction band dryer, then cooled, withdrawn, and cut into a length of 250 mm. Then, a hollow cylindrical filter having an outer diameter of 60 mm, an inner diameter of 30 mm, and a length of 250 mm was obtained. This was attached as a filter for tap water purifier, and the antibacterial property was evaluated.
[0051]
Comparative Example 3
Except that the hydrochloride powder of ε-poly-L-lysine was not kneaded with the high-density polyethylene, a filter was obtained in the same process as in Example 10, and the antibacterial property was evaluated.
[0052]
Table 4 shows the results of the content (in terms of pure content) of ε-poly-L-lysine with respect to the filter weight of the filters obtained in Example 10 and Comparative Example 3, and the number of days of occurrence of water odor passing through the water purifier.
[0053]
[Table 4]
Figure 0003596147
[0054]
As is clear from Table 4, the water purifier using the filter containing a certain amount of ε-poly-L-lysine in Example 10 of the present invention has excellent antibacterial properties.
[0055]
【The invention's effect】
The antibacterial filter of the present invention comprising a nonwoven fiber aggregate using antibacterial fibers has excellent antibacterial properties. Moreover, since polylysine or its salt used as a preservative for food is used as an antibacterial agent, it is very safe without any effect on the human body when used. Therefore, it can be used as an antibacterial filter for water purifiers, filtration of food raw water, filtration of beverages, and the like.

Claims (8)

繊維重量に対し、純分換算で0.01〜5重量%のポリリジンまたはその塩を含有する抗菌性繊維からなる不織繊維集合体で構成された抗菌性フィルター。An antibacterial filter composed of a nonwoven fiber aggregate comprising antibacterial fibers containing 0.01 to 5% by weight of polylysine or a salt thereof in a pure matter conversion with respect to the fiber weight. ポリリジンの塩が、塩酸、硫酸、リン酸および臭化水素酸から選ばれた少なくとも一種の無機酸の塩である請求項1に記載の抗菌性フィルター。The antibacterial filter according to claim 1, wherein the polylysine salt is a salt of at least one inorganic acid selected from hydrochloric acid, sulfuric acid, phosphoric acid, and hydrobromic acid. ポリリジンの塩が、酢酸、プロピオン酸、フマル酸、リンゴ酸およびクエン酸から選ばれた少なくとも一種の有機酸の塩である請求項1に記載の抗菌性フィルター。The antibacterial filter according to claim 1, wherein the polylysine salt is a salt of at least one organic acid selected from acetic acid, propionic acid, fumaric acid, malic acid, and citric acid. 繊維が熱可塑性繊維である請求項1〜3のいずれかに記載の抗菌性フィルター。The antibacterial filter according to any one of claims 1 to 3, wherein the fiber is a thermoplastic fiber. 熱可塑性繊維が、ポリオレフィン系繊維、ポリエステル系繊維およびポリアミド系繊維から選ばれた少なくとも一種である請求項4に記載の抗菌性フィルター。The antibacterial filter according to claim 4, wherein the thermoplastic fiber is at least one selected from a polyolefin fiber, a polyester fiber, and a polyamide fiber. 熱可塑性繊維が、融点の異なる少なくとも2成分からなる複合繊維である請求項4または5に記載の抗菌性フィルター。The antibacterial filter according to claim 4 or 5, wherein the thermoplastic fiber is a composite fiber composed of at least two components having different melting points. 抗菌性繊維と他の繊維が混綿および/または混繊され、かつ該抗菌性繊維を少なくとも20重量%含有し、該抗菌性繊維は、繊維重量に対し、純分換算で0.01〜5重量%のポリリジンまたはその塩を含有するものであり、該混綿および/または混繊された繊維集合体を不織繊維集合体に構成されてなる抗菌性フィルター。Antibacterial fiber and other fibers are mixed and / or mixed, and contain at least 20% by weight of the antibacterial fiber, wherein the antibacterial fiber is 0.01 to 5% by weight in terms of pure fiber based on the weight of the fiber. % Of polylysine or a salt thereof, wherein the mixed cotton and / or mixed fiber aggregate is formed into a nonwoven fiber aggregate. 請求項1〜7のいずれかに記載のフィルターを浄水器の部材として用いる浄水器用抗菌性フィルター。An antibacterial filter for a water purifier, wherein the filter according to any one of claims 1 to 7 is used as a member of the water purifier.
JP5411396A 1996-02-15 1996-02-15 Antibacterial filter Expired - Lifetime JP3596147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5411396A JP3596147B2 (en) 1996-02-15 1996-02-15 Antibacterial filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5411396A JP3596147B2 (en) 1996-02-15 1996-02-15 Antibacterial filter

Publications (2)

Publication Number Publication Date
JPH09220416A JPH09220416A (en) 1997-08-26
JP3596147B2 true JP3596147B2 (en) 2004-12-02

Family

ID=12961548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5411396A Expired - Lifetime JP3596147B2 (en) 1996-02-15 1996-02-15 Antibacterial filter

Country Status (1)

Country Link
JP (1) JP3596147B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9951467B2 (en) 2009-12-17 2018-04-24 Jnc Corporation Bacteriostatically treating method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA04003603A (en) * 2001-10-19 2005-04-11 Innovative Constr & Build Mat Anti-pathogenic air filtration media and air handling devices having protective capabilities against infectious airborne microorganisms.
JP2004026743A (en) * 2002-06-27 2004-01-29 Chisso Corp Polylysine preparation and cosmetic composition containing the same
JP4671794B2 (en) * 2005-07-25 2011-04-20 金星製紙株式会社 Nonwoven sheet with cleaning action
JP2011042603A (en) * 2009-08-20 2011-03-03 Chisso Corp Microorganism-inactivating agent
JP2014208318A (en) * 2013-04-16 2014-11-06 東洋紡株式会社 Antibacterial electret filter medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9951467B2 (en) 2009-12-17 2018-04-24 Jnc Corporation Bacteriostatically treating method

Also Published As

Publication number Publication date
JPH09220416A (en) 1997-08-26

Similar Documents

Publication Publication Date Title
TW593814B (en) Sheath-core polyester fiber including an antimicrobial agent
CN1891869B (en) Fiber containing an antimicrobial composition
KR100665980B1 (en) Composite molding and process for the production of the same
CN103882543B (en) A kind of mite-proofing and antimicrobial thermal plasticity high polymer melt spins fiber and its preparation method
CN110629401B (en) Antibacterial textile material and preparation method thereof
JP3687219B2 (en) Antibacterial fiber and fiber product using the same
US20130039968A1 (en) Materials and processes for producing antitoxic fabrics
JP3596147B2 (en) Antibacterial filter
TWI335946B (en) Use of zinc sulphide for the manufacture of yarns, fibres, filaments or articles with antibacterial and antifungal activity
JP3071594B2 (en) Core-sheath type deodorant antibacterial composite fiber
JPH0384066A (en) Resin composition having antibacterial activity and its preparation
JPH11124729A (en) Antimicrobial fiber and its production
JPH10310935A (en) Antimicrobial fiber
CN111253720A (en) Plant-derived PET master batch and preparation method and application thereof
JP5916471B2 (en) Antibacterial ethylene-vinyl alcohol fiber and fiber assembly
JPH04126820A (en) Antimicrobial polyvinyl alcohol-based synthetic fiber and formed product using the same
JPH08170217A (en) Antimicrobial fibrous material
JP2944236B2 (en) Antibacterial antifungal deodorant nonwoven fabric with hydrophilicity
JP3348043B2 (en) Catechin-containing polypropylene fiber and method for producing the same
JP2001247781A (en) Functional formed product and functional composite formed product
JPH10165809A (en) Antimicrobial adsorbent
JP2809648B2 (en) Composite fiber with deodorant performance
Struszczyk et al. New bioactive synthetic fibres developed in the institute of chemical fibres
KR100494014B1 (en) Process for preparing sea-island type composite fibers having excellent antimicrobial property
JP3560088B2 (en) Sterilizing and deodorizing filter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040830

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term