JP3596120B2 - Method for producing lower alkyl ester of α-cyano-tert-butylacetic acid - Google Patents

Method for producing lower alkyl ester of α-cyano-tert-butylacetic acid Download PDF

Info

Publication number
JP3596120B2
JP3596120B2 JP27755295A JP27755295A JP3596120B2 JP 3596120 B2 JP3596120 B2 JP 3596120B2 JP 27755295 A JP27755295 A JP 27755295A JP 27755295 A JP27755295 A JP 27755295A JP 3596120 B2 JP3596120 B2 JP 3596120B2
Authority
JP
Japan
Prior art keywords
cyano
copper
lower alkyl
alkyl ester
methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27755295A
Other languages
Japanese (ja)
Other versions
JPH08208585A (en
Inventor
好美 山田
雅行 榎本
治 真柄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP27755295A priority Critical patent/JP3596120B2/en
Publication of JPH08208585A publication Critical patent/JPH08208585A/en
Application granted granted Critical
Publication of JP3596120B2 publication Critical patent/JP3596120B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は植物病害防除剤の製造中間体等として有用なαーシアノ−tert−ブチル酢酸の低級アルキルエステルの製造法に関するものである。
【従来の技術および発明が解決しようとする課題】
N−〔1−(2,4−ジクロロフェニル)エチル〕−2−シアノ−3,3−ジメチルブタンアミド等が優れた植物病害防除効力を有することは、特開平2−76846号公報に記載されており、該化合物の工業的にも有利な製造法が望まれていた。
【0002】
【課題を解決するための手段】
本発明者らは上記状況に鑑み、N−〔1−(2,4−ジクロロフェニル)エチル〕−2−シアノ−3,3−ジメチルブタンアミド等に導くことのできるαーシアノ−tert−ブチル酢酸(2−シアノ−3,3−ジメチルブタン酸)の低級アルキルエステルを工業的にも有利に製造する方法について鋭意検討した結果、2−シアノ−3−メチル−2−ブテン酸の低級アルキルエステルとメチルマグネシウムハライドとを銅触媒の存在下に反応させることにより、αーシアノ−tert−ブチル酢酸の低級アルキルエステルが高収率で得られることを見い出し、本発明を完成した。
すなわち、本発明は、2−シアノ−3−メチル−2−ブテン酸の低級アルキルエステルとメチルマグネシウムハライドとを銅触媒の存在下に反応させることを特徴とする、αーシアノ−tert−ブチル酢酸の低級アルキルエステルの製造法(以下、本発明の製造法と記す。)を提供する。
【0003】
【発明の実施の形態】
以下、本発明の製造法を詳細に説明する。
本発明の製造法で用いられる2−シアノ−3−メチル−2−ブテン酸の低級(例えばC〜C)アルキルエステルとしては、例えば2−シアノ−3−メチル−2−ブテン酸メチル、2−シアノ−3−メチル−2−ブテン酸エチル、2−シアノ−3−メチル−2−ブテン酸n−プロピル、2−シアノ−3−メチル−2−ブテン酸イソプロピル、2−シアノ−3−メチル−2−ブテン酸n−ブチル、2−シアノ−3−メチル−2−ブテン酸イソブチル等があげられる。
本発明の製造法で用いられるメチルマグネシウムハライドとしては、メチルマグネシウムクロライド(CHMgCl)、メチルマグネシウムブロマイド(
CHMgBr)、メチルマグネシウムアイオダイド(CHMgI)があげられ、これらは市販のものを用いるか、または、マグネシウムと対応するメチルハライドとを常法により反応させて調製することができる。
本発明の製造法において、銅触媒としては、通常、一価の銅塩または二価の銅塩が用いられ、それらの例として例えば塩化銅(I)(CuCl)、臭化銅(I)(CuBr)、沃化銅(I)(CuI)、塩化銅(II)(CuCl)、臭化銅(II)(CuBr)、沃化銅(II)(CuI)があげられる。
反応は通常有機溶媒中で行い、用いられる有機溶媒としては、例えば、テトラヒドロフラン(以下、THFと記す。)、ジエチルエーテル、ジブチルエーテル等のエーテル溶媒、トルエン、キシレン、ベンゼン等の芳香族炭化水素溶媒、エーテル溶媒と芳香族炭化水素溶媒の混合溶媒等があげられる。
反応温度は通常10〜60℃、反応時間は通常0.5〜10時間であり、反応に用いられる反応剤の量は、2−シアノ−3−メチル−2−ブテン酸の低級アルキルエステル1モルに対しメチルマグネシウムハライドは通常1〜2モルの割合、2−シアノ−3−メチル−2−ブテン酸の低級アルキルエステル1重量部に対し銅触媒は通常0.0005〜0.1重量部の割合である。
反応後の反応液は通常、例えば、水、塩化アンモニウム水、希硫酸水等で処理したのち有機層を濃縮し、必要ならばさらに蒸留等の精製操作を行うことにより、目的とするαーシアノ−tert−ブチル酢酸の低級アルキルエステルを単離することが出来る。
【0004】
本発明の製造法において原料化合物として用いられる2−シアノ−3−メチル−2−ブテン酸の低級アルキルエステルは、例えば、アセトンとシアノ酢酸の低級アルキルエステルとを、触媒の存在下、n−ヘキサンを主溶媒として反応(以下、原料の製造法と記す。)させることにより効率的に製造することができる。
以下、原料の製造法について詳しく説明する。
用いられるシアノ酢酸の低級(例えばC〜C)アルキルエステルとしては、例えばシアノ酢酸メチル、シアノ酢酸エチル、シアノ酢酸n−プロピル、シアノ酢酸イソプロピル、シアノ酢酸n−ブチル、シアノ酢酸イソブチル等があげられ、これらは市販されているものを用いるか、または、常法により製造することができる。
触媒としては、通常、置換されていてもよいアニリンおよびカルボン酸が用いられる。
置換されていてもよいアニリンにおける置換基としては、例えば、水酸基、メチル基、メトキシ基等があげられ、置換されていてもよいアニリンの例としては、アミノフェノール(p−アミノフェノール、o−アミノフェノール、m−アミノフェノール等)、トルイジン(p−トルイジン、o−トルイジン、m−トルイジン)があげられる。
カルボン酸の例としては、例えば、低級(例えばC〜C)脂肪酸(例えば、酢酸、蟻酸、プロピオン酸等)や安息香酸があげられる。
反応溶媒としてはn−ヘキサンを主溶媒として用い、より具体的にはn−ヘキサンの全溶媒に対する使用割合は通常50〜100重量%であり、n−ヘキサンと混合して用いることのできる反応溶媒としては、例えば、トルエン、キシレンなどの芳香族炭化水素溶媒等があげられる。
反応温度は通常50〜100℃、反応時間は通常5〜20時間であり、反応は通常反応中に生成する水を除きながら行う。
反応に用いられる反応剤の量は、シアノ酢酸の低級アルキルエステル1モルに対し、アセトンは通常1から4モルの割合、触媒は通常0.001 〜0.2モルの割合(置換されていてもよいアニリンは通常0.001 から0.1モルの割合;カルボン酸は通常0.01から0.2モルの割合)である。
反応後の反応液は通常、減圧または常圧下で濃縮し、そのまま蒸留するか、酢酸エチル、トルエン、キシレン等の溶媒に溶かして水洗し、その溶液を減圧濃縮して溶媒を除き、必要ならばさらに蒸留等の精製操作を行うことにより、目的とする2−シアノ−3−メチル−2−ブテン酸の低級アルキルエステルを単離することが出来る。
【0005】
本発明の製造法により得られるαーシアノ−tert−ブチル酢酸の低級アルキルエステルは、例えば、特開平2−76846号公報に記載の方法等により、該公報等に記載される、優れた植物病害防除効力を有するN−〔1−(2,4−ジクロロフェニル)エチル〕−2−シアノ−3,3−ジメチルブタンアミド等に導くことができる。
【0006】
【実施例】
以下、本発明の製造法を実施例等にてさらに詳細に説明するが、本発明はこれらの例のみに限定されるものではない。
実施例1
メチルクロライド119g、マグネシウム49.6gおよびTHF509gから調製したメチルマグネシウムクロライドの溶液中へ、35〜40℃で沃化銅(I)6.0gを添加した後、2−シアノ−3−メチル−2−ブテン酸エチル
240gをトルエン480gに溶かした溶液を同温度で約1時間かけて滴下した。滴下完了後、さらに同温度で1時間反応させた。反応混合液を20〜30℃まで冷却したのち、20%塩化アンモニウム水1742gの中へ10〜20℃で注加した。室温で静置、分液の後、水層を酢酸エチル480mlで2回抽出し、有機層を合わせて飽和食塩水480gで2回洗浄した。有機層を無水硫酸マグネシウムで乾燥したのち、減圧濃縮し、残渣をそのまま蒸留(主留分の沸点:80〜86℃/12〜15mmHg)して目的物を得た。蒸留後のαーシアノ−tert−ブチル酢酸エチルの収量は249g、収率は94%であった。
実施例1において、反応溶媒の種類、触媒の種類もしくは量、または原料の種類(2−シアノ−3−メチル−2−ブテン酸の低級アルキルエステルのアルキル)を替える以外は実施例1と同様にして反応を行った結果(実施例2〜8)を実施例1と共にまとめて表1に示す。尚、表中の収率は原料の2−シアノ−3−メチル−2−ブテン酸の低級アルキルエステルに対する比率を表す。
【表1】

Figure 0003596120
【0007】
実施例9
メチルクロライド24.2g、マグネシウム11.7gおよびTHF121gから調製したメチルマグネシウムクロライドの溶液中へ、15〜25℃で塩化銅(II)0.6gを添加した後、2−シアノ−3−メチル−2−ブテン酸エチル61.3gをトルエン61gに溶かした溶液を同温度で約3時間かけて滴下した。滴下完了後、さらに同温度で2時間反応させた。反応混合液を冷却したのち、15%硫酸水溶液173gの中へ5〜15℃で注加した。該混合物を50〜60℃に加温した後、同温度で静置し、分液した。水層をトルエン31gで1回抽出し、有機層を合わせて5%炭酸水素ナトリウム水溶液67gおよび水31gで順次洗浄した。有機層を合わせてフタル酸ジ−n−プロピルを内部標準としてガスクロマトグラフィー分析に付した。その結果、αーシアノ−tert−ブチル酢酸エチルの収量は65g、収率は96%であった。
実施例10
塩化銅(II)0.6gにかえて塩化銅(II)3.0gを用いる以外は実施例9と同様の操作を繰り返した。その結果、αーシアノ−tert−ブチル酢酸エチルの収量は64g、収率は95%であった。
【0008】
次に原料の製造法の製造例を示す。
尚、反応率は次式により求めた値である。
【数1】
Figure 0003596120
原料の製造例1
シアノ酢酸エチル50.0g、アセトン51.34g、酢酸1.99g、p−アミノフェノール0.24gおよびn−ヘキサン41mlを仕込み、反応中生成する水を共沸で除きながら9時間加熱還流した。ガスクロマトグラフィーで分析したところ、シアノ酢酸エチルの反応率は99%であった。反応終了後の反応液を減圧濃縮してヘキサン、酢酸および未反応のアセトンを除いた後、残渣をそのまま20mmHgの減圧下にヘリコイルを充填した30cmの精留塔を用いて精留し、110〜113℃のフラクションを分取した。蒸留後の2−シアノ−3−メチル−2−ブテン酸エチルの収量は63.6g、収率は94%であった。
【0009】
原料の製造例1において、反応溶媒の種類、触媒の種類、シアノ酢酸の低級アルキルエステルのアルキルの種類、または反応時間を替える以外は原料の製造例1と同様にして反応を行った結果をまとめて表2に示す。尚、表中の収率はシアノ酢酸の低級アルキルエステルに対する比率を表す。
【表2】
Figure 0003596120
【0010】
【発明の効果】
本発明により、αーシアノ−tert−ブチル酢酸の低級アルキルエステルを収率よく製造することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a lower alkyl ester of α-cyano-tert-butylacetic acid, which is useful as an intermediate for producing a plant disease controlling agent and the like.
2. Description of the Related Art
The fact that N- [1- (2,4-dichlorophenyl) ethyl] -2-cyano-3,3-dimethylbutanamide and the like have excellent plant disease control effects is described in JP-A-2-76846. Therefore, an industrially advantageous production method of the compound has been desired.
[0002]
[Means for Solving the Problems]
In view of the above situation, the present inventors have found that α-cyano-tert-butyl acetic acid (which can lead to N- [1- (2,4-dichlorophenyl) ethyl] -2-cyano-3,3-dimethylbutanamide and the like) As a result of intensive studies on a method of industrially and advantageously producing a lower alkyl ester of 2-cyano-3,3-dimethylbutanoic acid), the lower alkyl ester of 2-cyano-3-methyl-2-butenoic acid and methyl The present inventors have found that a lower alkyl ester of α-cyano-tert-butylacetic acid can be obtained in a high yield by reacting magnesium halide with a copper catalyst, thereby completing the present invention.
That is, the present invention comprises reacting a lower alkyl ester of 2-cyano-3-methyl-2-butenoic acid with methyl magnesium halide in the presence of a copper catalyst, wherein α-cyano-tert-butyl acetic acid is used. Provided is a method for producing a lower alkyl ester (hereinafter, referred to as the production method of the present invention).
[0003]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the production method of the present invention will be described in detail.
Examples of the lower (e.g. C 1 -C 4) alkyl esters of 2-cyano-3-methyl-2-butenoic acid to be used in the production method of the present invention, for example 2-cyano-3-methyl-2-butenoate, Ethyl 2-cyano-3-methyl-2-butenoate, n-propyl 2-cyano-3-methyl-2-butenoate, isopropyl 2-cyano-3-methyl-2-butenoate, 2-cyano-3- N-butyl methyl-2-butenoate, isobutyl 2-cyano-3-methyl-2-butenoate and the like.
As the methyl magnesium halide used in the production method of the present invention, methyl magnesium chloride (CH 3 MgCl), methyl magnesium bromide (
CH 3 MgBr) and methylmagnesium iodide (CH 3 MgI) can be used, and these can be prepared using commercially available products or by reacting magnesium and the corresponding methyl halide by a conventional method.
In the production method of the present invention, a monovalent copper salt or a divalent copper salt is usually used as a copper catalyst, and examples thereof include copper chloride (I) (CuCl), copper bromide (I) ( CuBr), copper (I) (CuI), copper (II) chloride (CuCl 2 ), copper (II) bromide (CuBr 2 ), and copper (II) iodide (CuI 2 ).
The reaction is usually performed in an organic solvent. Examples of the organic solvent used include ether solvents such as tetrahydrofuran (hereinafter referred to as THF), diethyl ether and dibutyl ether, and aromatic hydrocarbon solvents such as toluene, xylene and benzene. And a mixed solvent of an ether solvent and an aromatic hydrocarbon solvent.
The reaction temperature is usually 10 to 60 ° C., the reaction time is usually 0.5 to 10 hours, and the amount of the reactant used for the reaction is 1 mol of lower alkyl ester of 2-cyano-3-methyl-2-butenoic acid. The methyl catalyst is usually in a proportion of 1 to 2 mol, and the copper catalyst is usually in a proportion of 0.0005 to 0.1 part by weight based on 1 part by weight of the lower alkyl ester of 2-cyano-3-methyl-2-butenoic acid. It is.
The reaction solution after the reaction is usually treated with, for example, water, aqueous ammonium chloride, dilute sulfuric acid, and the like, and then the organic layer is concentrated. If necessary, a purification operation such as distillation is performed to obtain the desired α-cyano- The lower alkyl ester of tert-butyl acetic acid can be isolated.
[0004]
The lower alkyl ester of 2-cyano-3-methyl-2-butenoic acid used as a starting compound in the production method of the present invention may be, for example, a mixture of acetone and a lower alkyl ester of cyanoacetic acid in the presence of a catalyst in n-hexane. Is used as a main solvent for the reaction (hereinafter, referred to as a raw material production method) to efficiently produce the compound.
Hereinafter, a method for producing a raw material will be described in detail.
Examples of the lower (e.g. C 1 -C 4) alkyl esters of cyanoacetic acid used, for example like methyl cyanoacetate, ethyl cyanoacetate, cyanoacetic acid n- propyl, isopropyl cyanoacetate, cyanoacetate n- butyl, isobutyl cyanoacetate etc. These are commercially available or can be produced by a conventional method.
As the catalyst, an optionally substituted aniline and a carboxylic acid are usually used.
Examples of the substituent in the optionally substituted aniline include a hydroxyl group, a methyl group, and a methoxy group. Examples of the optionally substituted aniline include aminophenol (p-aminophenol, o-amino Phenol, m-aminophenol, etc.) and toluidine (p-toluidine, o-toluidine, m-toluidine).
Examples of carboxylic acids include, for example, lower (eg, C 1 -C 4 ) fatty acids (eg, acetic acid, formic acid, propionic acid, etc.) and benzoic acid.
As a reaction solvent, n-hexane is used as a main solvent. More specifically, the use ratio of n-hexane to the total solvent is usually 50 to 100% by weight, and a reaction solvent which can be used by mixing with n-hexane. Examples thereof include aromatic hydrocarbon solvents such as toluene and xylene.
The reaction temperature is usually 50 to 100 ° C., the reaction time is usually 5 to 20 hours, and the reaction is usually performed while removing water generated during the reaction.
The amount of the reactant used in the reaction is usually 1 to 4 mol of acetone and 1 mol of catalyst is usually 0.001 to 0.2 mol (1 mol of lower alkyl ester of cyanoacetic acid). Good anilines are usually in a proportion of 0.001 to 0.1 mol; carboxylic acids are usually in a proportion of 0.01 to 0.2 mol).
The reaction solution after the reaction is usually concentrated under reduced pressure or normal pressure and distilled as it is, or dissolved in a solvent such as ethyl acetate, toluene or xylene and washed with water, and the solution is concentrated under reduced pressure to remove the solvent, if necessary. Further, by performing a purification operation such as distillation, the intended lower alkyl ester of 2-cyano-3-methyl-2-butenoic acid can be isolated.
[0005]
The lower alkyl ester of α-cyano-tert-butylacetic acid obtained by the production method of the present invention can be used, for example, by the method described in JP-A-2-76846, etc., for the excellent control of plant diseases described in the same. It can be led to N- [1- (2,4-dichlorophenyl) ethyl] -2-cyano-3,3-dimethylbutanamide and the like having an effect.
[0006]
【Example】
Hereinafter, the production method of the present invention will be described in more detail with reference to examples and the like, but the present invention is not limited to only these examples.
Example 1
To a solution of methyl magnesium chloride prepared from 119 g of methyl chloride, 49.6 g of magnesium and 509 g of THF was added 6.0 g of copper (I) iodide at 35 to 40 ° C., and then 2-cyano-3-methyl-2-methyl-2-chloride was added. A solution of 240 g of ethyl butenoate dissolved in 480 g of toluene was added dropwise at the same temperature over about 1 hour. After the completion of the dropwise addition, the reaction was further performed at the same temperature for 1 hour. After the reaction mixture was cooled to 20 to 30 ° C, it was poured into 1742 g of 20% aqueous ammonium chloride at 10 to 20 ° C. After standing at room temperature and liquid separation, the aqueous layer was extracted twice with 480 ml of ethyl acetate, and the organic layers were combined and washed twice with 480 g of saturated saline. The organic layer was dried over anhydrous magnesium sulfate, concentrated under reduced pressure, and the residue was distilled as it was (the boiling point of the main fraction: 80 to 86 ° C / 12 to 15 mmHg) to obtain the desired product. The yield of ethyl α-cyano-tert-butyl acetate after distillation was 249 g, and the yield was 94%.
In the same manner as in Example 1, except that the type of the reaction solvent, the type or amount of the catalyst, or the type of the raw material (the alkyl of the lower alkyl ester of 2-cyano-3-methyl-2-butenoic acid) was changed. Table 1 shows the results of the reaction (Examples 2 to 8) together with Example 1. In addition, the yield in a table | surface shows the ratio with respect to the lower alkyl ester of the raw material 2-cyano-3-methyl-2-butenoic acid.
[Table 1]
Figure 0003596120
[0007]
Example 9
To a solution of methyl magnesium chloride prepared from 24.2 g of methyl chloride, 11.7 g of magnesium and 121 g of THF was added 0.6 g of copper (II) chloride at 15 to 25 ° C., and then 2-cyano-3-methyl-2 was added. A solution of 61.3 g of ethyl butenoate in 61 g of toluene was added dropwise at the same temperature over about 3 hours. After completion of the dropwise addition, the reaction was further performed at the same temperature for 2 hours. After cooling the reaction mixture, the mixture was poured into 173 g of a 15% aqueous sulfuric acid solution at 5 to 15 ° C. After heating the mixture to 50 to 60 ° C., the mixture was allowed to stand at the same temperature and separated. The aqueous layer was extracted once with 31 g of toluene, and the combined organic layers were sequentially washed with 67 g of a 5% aqueous sodium hydrogen carbonate solution and 31 g of water. The organic layers were combined and subjected to gas chromatography analysis using di-n-propyl phthalate as an internal standard. As a result, the yield of ethyl α-cyano-tert-butyl acetate was 65 g, and the yield was 96%.
Example 10
The same operation as in Example 9 was repeated except that 3.0 g of copper (II) chloride was used instead of 0.6 g of copper (II) chloride. As a result, the yield of ethyl α-cyano-tert-butyl acetate was 64 g, and the yield was 95%.
[0008]
Next, a production example of a method for producing a raw material will be described.
The reaction rate is a value determined by the following equation.
(Equation 1)
Figure 0003596120
Raw material production example 1
50.0 g of ethyl cyanoacetate, 51.34 g of acetone, 1.99 g of acetic acid, 0.24 g of p-aminophenol and 41 ml of n-hexane were charged, and the mixture was heated and refluxed for 9 hours while azeotropically removing water produced during the reaction. When analyzed by gas chromatography, the conversion of ethyl cyanoacetate was 99%. After completion of the reaction, the reaction solution was concentrated under reduced pressure to remove hexane, acetic acid and unreacted acetone, and the residue was rectified as it was under a reduced pressure of 20 mmHg using a 30 cm rectification column filled with a helicoil to obtain 110 to 110. A fraction at 113 ° C. was collected. The yield of ethyl 2-cyano-3-methyl-2-butenoate after distillation was 63.6 g, and the yield was 94%.
[0009]
The results obtained by conducting the reaction in the same manner as in Production Example 1 of the raw material except that the type of the reaction solvent, the type of the catalyst, the type of the alkyl of the lower alkyl ester of cyanoacetic acid, or the reaction time were changed in Production Example 1 of the raw material are summarized. The results are shown in Table 2. The yields in the table represent the ratio of cyanoacetic acid to lower alkyl ester.
[Table 2]
Figure 0003596120
[0010]
【The invention's effect】
According to the present invention, a lower alkyl ester of α-cyano-tert-butylacetic acid can be produced with a high yield.

Claims (4)

2−シアノ−3−メチル−2−ブテン酸の低級アルキルエステルとメチルマグネシウムハライドとを銅触媒の存在下に反応させることを特徴とする、αーシアノ−tert−ブチル酢酸の低級アルキルエステルの製造法。A method for producing a lower alkyl ester of α-cyano-tert-butyl acetic acid, comprising reacting a lower alkyl ester of 2-cyano-3-methyl-2-butenoic acid with methyl magnesium halide in the presence of a copper catalyst. . 銅触媒が一価の銅塩または二価の銅塩である請求項1記載の製造法。The method according to claim 1, wherein the copper catalyst is a monovalent copper salt or a divalent copper salt. 銅触媒が塩化銅(I)、臭化銅(I)、沃化銅(I)、塩化銅(II)、臭化銅(II)または沃化銅(II)である請求項1記載の製造法。2. The process according to claim 1, wherein the copper catalyst is copper (I) chloride, copper (I) bromide, copper (I) iodide, copper (II) chloride, copper (II) bromide or copper (II) iodide. Law. アセトンとシアノ酢酸の低級アルキルエステルとを、触媒の存在下、n−ヘキサンを主溶媒として反応させて得た2−シアノ−3−メチル−2−ブテン酸の低級アルキルエステルを用いる、請求項1記載の製造法。2. A lower alkyl ester of 2-cyano-3-methyl-2-butenoic acid obtained by reacting acetone and a lower alkyl ester of cyanoacetic acid with n-hexane as a main solvent in the presence of a catalyst, is used. Production method as described.
JP27755295A 1994-11-14 1995-10-25 Method for producing lower alkyl ester of α-cyano-tert-butylacetic acid Expired - Fee Related JP3596120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27755295A JP3596120B2 (en) 1994-11-14 1995-10-25 Method for producing lower alkyl ester of α-cyano-tert-butylacetic acid

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27953594 1994-11-14
JP6-279535 1994-11-14
JP27755295A JP3596120B2 (en) 1994-11-14 1995-10-25 Method for producing lower alkyl ester of α-cyano-tert-butylacetic acid

Publications (2)

Publication Number Publication Date
JPH08208585A JPH08208585A (en) 1996-08-13
JP3596120B2 true JP3596120B2 (en) 2004-12-02

Family

ID=26552448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27755295A Expired - Fee Related JP3596120B2 (en) 1994-11-14 1995-10-25 Method for producing lower alkyl ester of α-cyano-tert-butylacetic acid

Country Status (1)

Country Link
JP (1) JP3596120B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018138519A (en) * 2015-07-17 2018-09-06 株式会社カネカ Method for producing 2-hydroxyester

Also Published As

Publication number Publication date
JPH08208585A (en) 1996-08-13

Similar Documents

Publication Publication Date Title
JP2930827B2 (en) Method for producing biphenyl derivative
JPH0717595B2 (en) PHENOL DERIVATIVE, PROCESS FOR PRODUCING THE SAME, AND PHARMACEUTICAL COMPOSITION HAVING ANTIESTROGEN EFFECT CONTAINING THE COMPOUND
JP2887419B2 (en) Antiepileptic drugs similar to valproic acid
JP3596120B2 (en) Method for producing lower alkyl ester of α-cyano-tert-butylacetic acid
JPH0466216B2 (en)
JP3009374B2 (en) Method for producing trans-4-alkylcyclohexanecarboxylic acid esters
JP3229408B2 (en) Process for producing novel 4-amino-5-hexenoic acid
JP3500735B2 (en) Method for producing lower alkyl ester of 2-cyano-3-methyl-2-butenoic acid
US4155929A (en) Process for the preparation of an acetonitrile derivative
JP3386596B2 (en) Method for producing 5 (E), 8 (Z), 11 (Z) -tetradecatrien-2-one
JP3845884B2 (en) Process for producing N- [1- (2,4-dichlorophenyl) ethyl] -2-cyano-3,3-dimethylbutanamide
JP2769058B2 (en) Preparation of cyclopropane derivatives
JPH0537140B2 (en)
JP3396097B2 (en) Method for producing 4-isopropylcyclohexanecarboxylic acid ester derivative
JP4221782B2 (en) Method for purifying dihalotrifluoroacetone
JPH0662489B2 (en) Valproic acid manufacturing method
JP2853929B2 (en) Method for producing 2-chloro-4,5-difluoro-3-methoxybenzoic acid
JPH0522711B2 (en)
JP3144921B2 (en) Benzyl ester derivative and method for producing the same
JP3700876B2 (en) Process for producing N- (1,1-dimethyl-3-oxobutyl) acrylamide
JP3596262B2 (en) 2,3,4-trifluoro-5-trifluoromethylbenzoic acid, esters thereof and process for producing the same
JP3144920B2 (en) α-Acylaminoketone derivatives, production method thereof and use thereof
JP2820333B2 (en) Method for producing tridecadienyl acetate
JP4366854B2 (en) 12-amino-4,8-dodecadienenitrile and process for producing the same
JP3071621B2 (en) Process for producing (-)-8α, 13-epoxy-14,15,16-trinorrabuda-12-ene and a novel intermediate thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040830

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees