JP3593889B2 - Water level adjustment device between two communicating reservoirs - Google Patents

Water level adjustment device between two communicating reservoirs Download PDF

Info

Publication number
JP3593889B2
JP3593889B2 JP20500598A JP20500598A JP3593889B2 JP 3593889 B2 JP3593889 B2 JP 3593889B2 JP 20500598 A JP20500598 A JP 20500598A JP 20500598 A JP20500598 A JP 20500598A JP 3593889 B2 JP3593889 B2 JP 3593889B2
Authority
JP
Japan
Prior art keywords
water
reservoir
water level
pipe
reservoirs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20500598A
Other languages
Japanese (ja)
Other versions
JP2000038748A (en
Inventor
耕三 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP20500598A priority Critical patent/JP3593889B2/en
Publication of JP2000038748A publication Critical patent/JP2000038748A/en
Application granted granted Critical
Publication of JP3593889B2 publication Critical patent/JP3593889B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Non-Electrical Variables (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、棚田方式の貯水池における連通する二つの貯水池間の水位調整装置に関するものである。
【0002】
【従来の技術】
勾配のある箇所における貯水方式として、何段かに堰堤を築造し湛水した棚田方式の貯水池がある。
【0003】
この棚田方式の貯水池は、従来、図2に示すように、傾斜面1に立設した堰2により、高水位側貯水池3と低水位側貯水池4とに仕切ることにより階段状に形成される。そして、各貯水池における水位調整は、堰2の上部からの越流の量を規制する越流型か、又は、堰2を貫くトンネルからの流出量を規制するトンネル型か、いずれかの洪水吐け方式によっていた。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の洪水吐け方式では、下流からの取水による各貯水池の水位の微調節ができず、全ての棚田の貯水池から均等に排水したり、または、全ての棚田の貯水池に均等に貯水することができない欠点があった。
【0005】
そこで、本発明の目的は、上記課題を解決し、下流からの取水に対する各貯水池の水位の調節が可能であり、全ての棚田の貯水池から均等に排水し、または、全ての棚田の貯水池に均等に貯水することができる、連通する二つの貯水池間の水位調整装置を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するため本発明に係る連通する二つの貯水池間の水位調整装置あっては、高水位側貯水池と低水位側貯水池とを相互に連通管により底部近傍同士で連通させ、該低水位側貯水池内に、該連通管に下端部が接続されるとともに上端部がフロートに支持されて水位に応動して昇降可能な水位調整管を設け、該水位調整管の上端開口部は水面より所定高さ上方に突出させて位置させた構成とする。
【0007】
低水位側貯水池内の水が放水されたり、あるいは高水位側貯水池内に給水されるなどして、両貯水池の水面位高さの相対差が大きくなり、低水位側貯水池内に設けた水位調整管の上端開口部の高さが高水位側貯水池の水面位より低くなると、高水位側貯水池から低水位側貯水池に向けて連通管と水位調整管とを通じて水が流通する。そして、高水位側貯水池の水位が下がると共に低水位側貯水池の水位が上がり、当該水位調整管の上端開口部と高水位側貯水池の水面位との高さが等しくなると、その時点で水の流通は止まる。即ち、高水位側貯水池の水面位と低水位側貯水池の水面位とは常に一定の相対高さの差を保つように昇降する。従って、全ての棚田の貯水池から均等に排水し、または、全ての棚田の貯水池に均等に貯水することができる。
【0008】
フロートにより水面上に突出させる管の開口部は、管の先端部に設けてもよく、或いは管の水面上に出ている部分の中途に設けてもよい。
【0009】
【発明の実施の形態】
以下、本発明を図示の実施形態に基づいて説明する。
【0010】
図1に示す上下の貯水池は、傾斜面1に立設した堰2により、高水位側貯水池3と低水位側貯水池4とに仕切ることにより形成されている。
【0011】
この高水位側貯水池3と低水位側貯水池4を仕切る堰2の下部には、堰2を貫通して両貯水池3,4の底部近傍同士を連通させるように連通管5が設けられている。そして、低水位側貯水池4内には、これに臨む連通管5に下端部が連通接続されて水位調整管6が設けられている。この水位調整管6には可撓性に富んだ合成樹脂製等のホース材、あるいは上端部側が上下方向に伸縮可能なテレスコピック管等が用いられており、その上端部側にはフロート7が取付けられて、低水位側貯水池4の水面より所定高さ(一定差)hだけ水位調整管6の上端開口部6aが常に上方に突出して位置されるようになっている。なお、連通管5の最下端は閉塞されているか又は開閉バルブ8で開放可能に閉鎖されている。
【0012】
このように構成された二つの貯水池間の水位調整装置にあっては、低水位側貯水池4に設けた水位調整管6の上端開口部6aの高さが高水位側貯水池3の水面位よりも高くなっている場合には、連通管5と水位調整管6とを通じて水が流通することはないが、低水位側貯水池4からの放水や高水位側貯留池3内への給水等により、両貯水池3,4の水面位の相対差が大きくなり、低水位側貯水池4に設けた水位調整管6の上端開口部6aの高さが高水位側貯水池3の水面位よりも下がると、連通管5と水位調整管6とを通じて高水位側貯水池3から低水位側貯水池4に水が流入する。そして、高水位側貯水池3の水位が低下すると共に低水位側貯水池4の水位が上がり、水位調整管6の上端開口部6aの高さが高水位側貯水池3の水面位と同じ高さになると、その時点で水の流通は止まり、それ以上は流れなくなる。即ち、高水位側貯水池3の水面位は低水位側貯水池4の水面位よりも常に一定高さhだけ高い位置を保つように両水面位が昇降することになる。
【0013】
このように低水位側貯水池4と高水位側貯水池3との水面レベル差は予め定めた一定値(一定差h)になろうとするので、下流からの取水により全ての貯水池の水位の調節が同時に、かつ自動的に行なわれる。なお、水面レベル差(一定差h)自体の設定は、フロート7部分における管6の立ち上がり高さhを調整することだけで行うことができる。なお、連通管5に設けた開閉バルブ8を操作することで、両貯水池3,4の水面位を同水位に均一化させることもできる。
【0014】
上記のサイホン式液面制御装置は棚田状の各段の貯水池ごとに設置される。従って、最下段の棚田の貯水池から取水すると、全ての棚田の貯水池の水位が同時に変化する。また最上段の棚田の貯水池に給水すると、全ての棚田の貯水池の水位が同時に上がる。従って、全ての棚田の貯水池から均等に排水し、または、全ての棚田の貯水池に均等に貯水することができる。
【0015】
また、本発明の水位調整装置は構成が簡単であるため、急勾配の場所でも軽装備で貯水することが可能である。さらに、本発明の水位調整装置は、棚田方式の通常の貯水池に適用できるほか、千枚田(棚田)を模した里山の演出(環境優先)をする場合に利用したり、棚田方式の貯水池を地中タンク式にして地中に展開したり、棚田方式の貯水池を都市の防災機能公園の地下に築造する場合等に利用することができる。また、本発明の水位調整装置は、全ての棚田の蒸散の面積が常に最大となるように作用するという特質があり、かかる性質をヒートアイランド対策に利用することもできる。
【0016】
【発明の効果】
以上説明したように本発明によれば、高水位側貯水池と低水位側貯水池との底部近傍同士を連通させる連通管を設けるとともに、低水位側貯水池内に当該連通管に下端部を接続させて水位調整管を設け、当該水位調整管には可撓性に富んで上端部が昇降可能な、あるいは上端部が上下に伸縮可能な管を用いて、その水位調整管の上端部にフロートを取付けてその上端開口部を常に水面上に所定高さ分だけ突出させるようにしているので、低水位側貯水池からの放水や高水位側貯水池への給水を行っても、高水位側貯水池と低水位側貯水池との水面位の相対差が所定の高さになるように連通管と水位調整管とを通じて高水位側貯水池から低水位側貯水池に向けて水が流通して、低水位側貯水池と高水位側貯水池との水面位の相対差を自動的に常に一定に保つことができる。よって、全ての棚田の貯水池から均等に排水することができ、また、全ての棚田の貯水池に均等に貯水することができる。
【図面の簡単な説明】
【図1】本発明による連通する二つの貯水池間の水位調整装置を示す概略図である。
【図2】従来の棚田方式の貯水池における越流型の水位調整装置を示す概略図である。
【符号の説明】
1 傾斜面
2 堰
3 高水位側貯水池
4 低水位側貯水池
5 連通管
6 水位調整管
6a 上端開口部
7 フロート
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a water level adjusting device between two communicating reservoirs in a terraced reservoir.
[0002]
[Prior art]
As a water storage method in a location with a slope, there is a terraced-type reservoir in which several levels of dams are built and flooded.
[0003]
Conventionally, as shown in FIG. 2, this terraced-type reservoir is formed stepwise by partitioning into a high-water reservoir 3 and a low-water reservoir 4 by a weir 2 erected on an inclined surface 1. The water level in each reservoir is adjusted by an overflow type that regulates the amount of overflow from the upper part of the weir 2 or a tunnel type that regulates the amount of outflow from a tunnel passing through the weir 2. It depends on the method.
[0004]
[Problems to be solved by the invention]
However, with the conventional spillway system, it is not possible to finely adjust the water level of each reservoir by taking water from downstream, and it is necessary to drain water evenly from all the rice terraces or to store water evenly in all the rice terraces. There was a drawback that could not be done.
[0005]
Therefore, an object of the present invention is to solve the above-mentioned problems, to adjust the water level of each reservoir with respect to water intake from downstream, to drain water evenly from all the rice terraces, or to all the rice terraces. It is an object of the present invention to provide a water level adjusting device between two communicating reservoirs, which can store water in the reservoir.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, in the water level adjusting device between the two communicating reservoirs according to the present invention, the high water reservoir and the low water reservoir are connected to each other in the vicinity of the bottom by a communication pipe, and the low water level is reduced. In the side reservoir, a lower end is connected to the communication pipe, and an upper end is supported by the float, and a water level adjusting pipe is provided which can move up and down in response to the water level, and the upper end opening of the water level adjusting pipe is predetermined from the water surface. It is configured to protrude above the height and positioned.
[0007]
The water in the low-water reservoir is discharged or supplied to the high-water reservoir, so the relative height difference between the two reservoirs increases, and the water level in the low-water reservoir is adjusted. When the height of the upper opening of the pipe is lower than the water level of the high water reservoir, water flows from the high water reservoir to the low water reservoir through the communication pipe and the water level adjustment pipe. Then, when the water level of the high-water-side reservoir falls and the water level of the low-water-side reservoir rises, and the height of the upper-end opening of the water-level adjustment pipe and the water level of the high-water-side reservoir become equal, the flow of water at that point in time Stops. That is, the water level of the high water reservoir and the water surface of the low water reservoir are raised and lowered so as to always maintain a constant difference in relative height. Therefore, it is possible to uniformly drain water from the reservoirs of all the rice terraces, or to evenly store the water in the reservoirs of all the rice terraces.
[0008]
The opening of the pipe, which is made to protrude above the water surface by the float, may be provided at the tip of the pipe, or may be provided in the middle of the part of the pipe which is exposed on the water surface.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described based on the illustrated embodiments.
[0010]
The upper and lower reservoirs shown in FIG. 1 are formed by partitioning a high-water reservoir 3 and a low-water reservoir 4 by a weir 2 erected on an inclined surface 1.
[0011]
A communication pipe 5 is provided below the weir 2 partitioning the high water reservoir 3 and the low water reservoir 4 so as to penetrate the weir 2 and communicate near the bottoms of the two reservoirs 3, 4. In the low-water-side reservoir 4, a lower-end portion is connected to a communicating pipe 5 facing the lower-reservoir 4, and a water-level adjusting pipe 6 is provided. The water level adjusting pipe 6 is made of a flexible hose made of synthetic resin or the like, or a telescopic pipe whose upper end is vertically expandable and contractable. A float 7 is attached to the upper end. Then, the upper end opening 6a of the water level adjusting pipe 6 is always protruded upward by a predetermined height (constant difference) h from the water surface of the low water level reservoir 4. The lowermost end of the communication pipe 5 is closed or opened and closed by an on-off valve 8.
[0012]
In the water level adjusting device between the two reservoirs configured as described above, the height of the upper end opening 6a of the water level adjusting pipe 6 provided in the low water level reservoir 4 is higher than the water level of the high water level reservoir 3. When the water level is high, water does not flow through the communication pipe 5 and the water level adjustment pipe 6, but water is discharged from the low water level reservoir 4 or water is supplied to the high water level reservoir 3 and so on. When the relative difference between the water levels of the reservoirs 3 and 4 becomes large, and the height of the upper end opening 6a of the water level adjusting pipe 6 provided in the low water level reservoir 4 becomes lower than the water level of the high water level reservoir 3, the communication pipe is connected. Water flows from the high water reservoir 3 to the low water reservoir 4 through the water level adjustment pipe 5 and the water level adjusting pipe 6. Then, when the water level of the high-water-side reservoir 3 decreases and the water level of the low-water-side reservoir 4 rises, the height of the upper end opening 6a of the water-level adjusting pipe 6 becomes the same as the water level of the high-water-side reservoir 3. At that point, the water stops flowing and no longer flows. That is, both water levels rise and fall so that the water level of the high water reservoir 3 is always higher than the water level of the low water reservoir 4 by a constant height h.
[0013]
As described above, since the water level difference between the low water reservoir 4 and the high water reservoir 3 tends to become a predetermined constant value (constant difference h), the water levels of all the reservoirs are simultaneously adjusted by taking water from downstream. And automatically. The water level difference (constant difference h) itself can be set only by adjusting the rising height h of the pipe 6 in the float 7. By operating the open / close valve 8 provided in the communication pipe 5, the water levels of the two reservoirs 3 and 4 can be made uniform.
[0014]
The above-mentioned siphon type liquid level control device is installed in each of the reservoirs in each of the terraced rice fields. Therefore, when water is taken from the lowermost reservoir, the water levels of all the reservoirs change simultaneously. Also, when water is supplied to the reservoirs in the uppermost terraces, the water levels in all the reservoirs in the terraces rise simultaneously. Therefore, it is possible to uniformly drain water from the reservoirs of all the rice terraces, or to evenly store the water in the reservoirs of all the rice terraces.
[0015]
Further, since the water level adjusting device of the present invention has a simple configuration, water can be stored with light equipment even in a steep place. Further, the water level adjusting device of the present invention can be applied to a normal rice terrace-type reservoir, and can also be used when performing a satoyama production (environmental priority) imitating a Senmaida (Tanada) or using a rice terrace-type reservoir as a ground. It can be used in a medium tank type and deployed underground, or when a terraced reservoir is built underground in a disaster prevention function park in a city. Further, the water level adjusting device of the present invention has a characteristic that it operates so that the transpiration area of all the rice terraces is always maximized, and such a characteristic can be used for heat island measures.
[0016]
【The invention's effect】
As described above, according to the present invention, while providing a communication pipe that communicates near the bottom of the high-water reservoir and the low-water reservoir, the lower end is connected to the communication pipe in the low-water reservoir. A water level adjusting pipe is provided, and a flexible upper end is used for the water level adjusting pipe or a pipe whose upper end is vertically expandable and contractable, and a float is attached to the upper end of the water level adjusting pipe. The upper opening is always projected above the water surface by a predetermined height, so even if water is discharged from the low-water reservoir or supplied to the high-water reservoir, the high-water reservoir and the low Water flows from the high water reservoir to the low water reservoir through the communication pipe and the water level adjustment pipe so that the relative difference in water level with the water reservoir is at a predetermined height. Automatically calculates the relative difference in water level from the water level reservoir. It can be kept constant. Therefore, the water can be uniformly drained from the reservoirs of all the rice terraces, and the water can be evenly stored in the reservoirs of all the rice terraces.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a water level adjusting device between two communicating reservoirs according to the present invention.
FIG. 2 is a schematic diagram showing an overflow type water level adjusting device in a conventional rice terrace type reservoir.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Slope 2 Weir 3 High water reservoir 4 Low water reservoir 5 Communication pipe 6 Water level adjustment pipe 6a Upper end opening 7 Float

Claims (1)

高水位側貯水池と低水位側貯水池とを相互に連通管により底部近傍同士で連通させ、該低水位側貯水池内に、該連通管に下端部が接続されるとともに上端部がフロートに支持されて水位に応動して昇降可能な水位調整管を設け、該水位調整管の上端開口部は水面より所定高さ上方に突出させて位置させたことを特徴とする連通する二つの貯水池間の水位調整装置。The high water reservoir and the low water reservoir are connected to each other in the vicinity of the bottom by a communication pipe, and the lower end is connected to the communication pipe and the upper end is supported by the float in the low water reservoir. A water level adjusting pipe capable of ascending and descending in response to a water level is provided, and an upper end opening of the water level adjusting pipe is located so as to protrude above a water surface by a predetermined height, and is adjusted between two communicating reservoirs. apparatus.
JP20500598A 1998-07-21 1998-07-21 Water level adjustment device between two communicating reservoirs Expired - Fee Related JP3593889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20500598A JP3593889B2 (en) 1998-07-21 1998-07-21 Water level adjustment device between two communicating reservoirs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20500598A JP3593889B2 (en) 1998-07-21 1998-07-21 Water level adjustment device between two communicating reservoirs

Publications (2)

Publication Number Publication Date
JP2000038748A JP2000038748A (en) 2000-02-08
JP3593889B2 true JP3593889B2 (en) 2004-11-24

Family

ID=16499885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20500598A Expired - Fee Related JP3593889B2 (en) 1998-07-21 1998-07-21 Water level adjustment device between two communicating reservoirs

Country Status (1)

Country Link
JP (1) JP3593889B2 (en)

Also Published As

Publication number Publication date
JP2000038748A (en) 2000-02-08

Similar Documents

Publication Publication Date Title
US4919568A (en) System for draining land areas through siphoning from a permeable catch basin
KR0172451B1 (en) Automatic swing fishway apparatus
US7857546B2 (en) Method and apparatus for controlling drainage and irrigation of fields
KR101591985B1 (en) Floating type water intake system that selectively controls water depth by buoyancy device
US5655232A (en) Fluid level control device and method
US4173799A (en) Water level controller for swimming pool gutter
JP3593889B2 (en) Water level adjustment device between two communicating reservoirs
KR20190054583A (en) MultI-step water level controlled siphon spillway
KR200380460Y1 (en) siphon spillway
JP2687225B2 (en) Automatic irrigation method for paddy field irrigation water
KR102405914B1 (en) Siphon spillway capable water level control
JP7496220B2 (en) Water storage device
KR100644356B1 (en) siphon spillway
KR101573034B1 (en) Floating Dam and Controlling Method of Water Level using such Floating Dam
KR200225139Y1 (en) flow controller for reservoir of sewage treatments
JPH04136332A (en) Rainwater storage and infiltration device
JP4596869B2 (en) Water level control system in cultivated area
JPH0613870Y2 (en) Rainwater infiltration
RU2032318C1 (en) Device for the automatic water supply to the irrigating system
KR20020057669A (en) flow controller for reservoir of sewage treatments
JPH1136423A (en) Flood control device
JPH04136331A (en) Rainwater storage and infiltration device
JPH0797809A (en) Fishway
JP3086915U (en) Underground irrigation water level control system in arable land
SU1226421A1 (en) Regulator of water level in pools of water-development works

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040823

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees