JP3593605B2 - X-ray spectroscopy element - Google Patents

X-ray spectroscopy element Download PDF

Info

Publication number
JP3593605B2
JP3593605B2 JP23087497A JP23087497A JP3593605B2 JP 3593605 B2 JP3593605 B2 JP 3593605B2 JP 23087497 A JP23087497 A JP 23087497A JP 23087497 A JP23087497 A JP 23087497A JP 3593605 B2 JP3593605 B2 JP 3593605B2
Authority
JP
Japan
Prior art keywords
ray
multilayer film
emitted
diffraction
focal point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23087497A
Other languages
Japanese (ja)
Other versions
JPH1164594A (en
Inventor
智也 新井
Original Assignee
理学電機工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 理学電機工業株式会社 filed Critical 理学電機工業株式会社
Priority to JP23087497A priority Critical patent/JP3593605B2/en
Publication of JPH1164594A publication Critical patent/JPH1164594A/en
Application granted granted Critical
Publication of JP3593605B2 publication Critical patent/JP3593605B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、発散X線を生成できるX線分光素子に関するものである。
【0002】
【従来の技術】
従来、X線回折分析においては、図2に示すように、線状のX線源(X線管のターゲット上の線状焦点)20から広がって出射されるX線を、発散スリット22を用いて発散角γを絞って、試料23の試料面23aにできるだけ広く照射するように制限している。
【0003】
【発明が解決しようとする課題】
ここで、発散角γは例えば1度程度の微小な角度であり、X線源20から出射されるX線のごく一部21しか利用しないので、試料面23aに照射されるX線21の強度が、正確な分析にはいまひとつ不十分となる場合がある。かといって、発散角γを大きくすると、試料面23aに照射されるX線21の平行性が薄れ、分析が不正確となる。
【0004】
本発明は前記従来の問題に鑑みてなされたもので、微小な発散角でかつ強度も十分な発散X線を生成できるX線分光素子を提供することを目的とする。
【0005】
【課題を解決するための手段】
前記目的を達成するために、請求項1のX線分光素子は、基板上に多層膜を堆積させたX線分光素子において、まず、直交座標xyzについて、x/a−y/b=1で表される2葉の双曲柱面の一方における焦点を囲う側の一部を回折面とする。そして、多層膜の周期長が、回折面上の任意の点において、前記2葉の双曲柱面のz方向に延びる線状の2焦点のうち前記回折面が属する双曲柱面に囲われる一方の焦点からz方向に垂直に出射した回折すべき波長のX線を、回折面で回折して、他方の焦点からz方向に垂直に出射したように発散させるよう設定されていることを特徴とする。
【0006】
請求項1のX線分光素子によれば、一方の焦点に置かれた線状のX線源から出射し例えば2度ないし5度程度の発散角に絞られたX線を受けて回折し、他方の焦点から1度程度の発散角で出射したように発散させるので、微小な発散角でかつ強度も十分な発散X線を生成できる。
【0007】
請求項2のX線分光素子は、基板上に多層膜を堆積させたX線分光素子において、まず、直交座標xyzについて、x/a−y/b−z/b=1で表される2葉の回転双曲面の一方における焦点を囲う側の一部を回折面とする。そして、多層膜の周期長が、回折面上の任意の点において、前記2葉の回転双曲面の点状の2焦点のうち前記回折面が属する回転双曲面に囲われる一方の焦点から出射した回折すべき波長のX線を、回折面で回折して、他方の焦点から出射したように発散させるよう設定されていることを特徴とする。
【0008】
請求項2のX線分光素子によれば、一方の焦点に置かれた点状のX線源から出射し例えば2度ないし5度程度の発散角に絞られたX線を受けて回折し、他方の焦点から1度程度の発散角で出射したように発散させるので、微小な発散角でかつ強度も十分な発散X線を生成できる。
【0009】
【発明の実施の形態】
以下、本発明の第1実施形態であるX線分光素子を説明する。図1に示すように、このX線分光素子1は、基板2上に多層膜3を堆積させたX線分光素子1において、まず、直交座標xyz(z軸は原点Oを通り、紙面垂直手前向き)について、x/a−y/b=1で表される紙面垂直方向に延びる2葉の双曲柱面H,Hの一方Hにおける焦点Fを囲う側の一部を回折面1aとする。そして、多層膜3の周期長dが、回折面1a上の任意の点において、前記2葉の双曲柱面H,Hのz方向に延びる線状の2焦点F,Fのうち前記回折面1aが属する双曲柱面Hに囲われる一方の焦点Fからz方向に垂直に(例えば紙面に沿って)出射した回折すべき波長のX線4A,4Bを、回折面1aで回折して、他方の焦点Fからz方向に垂直に出射したように発散させるよう設定されている。このような人工多層膜3は、たとえばタングステン層とシリコン層とを交互に蒸着することにより、形成でき、1組のタングステン層およびシリコン層の厚さの和が、多層膜3の周期長dとなる。なお、図1においては、図示の容易のため、多層膜3のうち3組の層のみ示している。
【0010】
すなわち、多層膜3は、双曲柱面Hの一部をなす回折面1a上の任意の点において、一方の焦点Fに置かれた線状のX線源から出射した波長λのX線4を、入射角θで受けて同じ角度の反射角θで回折、反射するよう設定されている。ここで、回折面1aの形状、焦点Fの位置は既知であるから、回折面1a上の任意の点それぞれにおいて入射角(反射角)θは幾何学的に一義的に決まり、また、回折すべきX線4の波長λも既知であるから、多層膜3の周期長を特徴付けるいわゆるd値は、次式(1)のブラッグの条件を満たす。
【0011】
2d sinθ=nλ (nは回折次数で正整数) …(1)
【0012】
式(1)中の sinθは、回折面1aの形状を示す前記双曲柱面の式から導出され、これを式(1)に代入してn=1とすると、d値は、回折面上の任意の点P(x,y,z)において、次式(2)で表される。
【0013】
d=λ(x +y −a+b1/2 /2b …(2)
【0014】
d値は、基板2上に多層膜3を形成する際の蒸着時間やマスキング等の条件を変えて制御することができるので、第1実施形態のX線分光素子1は、前述した焦点Fから出射した波長λのX線4を回折するという回折現象を起こすような多層膜3の形成条件を見出して調整することにより、作製することができる。
【0015】
ただし、このd値は、X線の屈折現象により、厳密には多層膜3の実際の周期長dとは一致せず、次式(3)の関係があることが知られている。
【0016】
d=d[1−(2δ−δ)/ sinθ]1/2 …(3)
【0017】
すなわち、前述したように所望の回折現象を起こすように多層膜3の形成条件を調整して、第1実施形態のX線分光素子1を作製すれば、その実際の多層膜3の周期長dは、式(3)を満たすものとなる。なお、式(3)中のδは、多層膜3の組成等から決まる屈折率である。
【0018】
第1実施形態のX線分光素子1によれば、図1に示すように、一方の焦点Fに置かれた線状のX線源から出射し例えば2度ないし5度程度の発散角ψに絞られたX線4を受けて回折し、他方の焦点Fから1度程度の発散角γで出射したように発散させることができる。すなわち、例えば1度程度の発散角γのX線を試料に照射するのに、X線源から出射したX線を絞る角度は、1度でなく例えば2度ないし5度程度でよく、X線源から出射したX線を、従来の2倍ないし5倍程度の効率で利用できる。したがって、微小な発散角γでかつ強度も十分な発散X線を生成できる。
【0019】
つぎに、本発明の第2実施形態であるX線分光素子を説明する。図1に示すように、このX線分光素子11は、基板12上に多層膜13を堆積させたX線分光素子11において、まず、直交座標xyzについて、x/a−y/b−z/b=1で表される2葉の回転双曲面H,Hの一方における焦点Fを囲う側の一部を回折面11aとする。すなわち、第2実施形態のX線分光素子11においては、図1に2点鎖線で示された双曲線を、x軸を中心として回転させた回転双曲面Hの一部を回折面11aとし、図1は断面図となる。そして、多層膜13の周期長dが、回折面上の任意の点において、前記2葉の回転双曲面H,Hの点状の2焦点F,Fのうち前記回折面11aが属する回転双曲面Hに囲われる一方の焦点Fから出射した回折すべき波長のX線14A,14Bを、回折面11aで回折して、他方の焦点Fから出射したように発散させるよう設定されている。
【0020】
すなわち、多層膜13は、回転双曲面Hの一部をなす回折面11a上の任意の点において、一方の焦点Fに置かれた点状のX線源から出射した波長λのX線14を、入射角θで受けて同じ角度の反射角θで回折、反射するよう設定されている。ここで、回折面11aの形状、焦点Fの位置は既知であるから、回折面11a上の任意の点それぞれにおいて入射角(反射角)θは幾何学的に一義的に決まり、また、回折すべきX線14の波長λも既知であるから、多層膜13の周期長を特徴付けるいわゆるd値は、第1実施形態のX線分光素子1と同様に、前式(1)のブラッグの条件を満たす。
【0021】
式(1)中の sinθは、回折面11aの形状を示す前記回転双曲面の式から導出され、これを式(1)に代入してn=1とすると、d値は、回折面上の任意の点P(x,y,z)において、次式(4)で表される。
【0022】
d=λ(x +y +z −a+b1/2 /2b …(4)
【0023】
第2実施形態のX線分光素子11も、焦点Fから出射した波長λのX線14を回折するという回折現象を起こすような多層膜13の形成条件を見出して調整することにより、作製することができる。ただし、第1実施形態のX線分光素子1と同様に、d値は、X線の屈折現象により、厳密には多層膜13の実際の周期長dとは一致せず、前式(3)の関係がある。すなわち、所望の回折現象を起こすように多層膜13の形成条件を調整して、第2実施形態のX線分光素子11を作製すれば、その実際の多層膜13の周期長dは、式(3)を満たすものとなる。
【0024】
第2実施形態のX線分光素子11によれば、一方の焦点Fに置かれた点状のX線源から出射し例えば2度ないし5度程度の発散角ψに絞られたX線14を受けて回折し、他方の焦点Fから1度程度の発散角γで出射したように発散させることができる。すなわち、例えば1度程度の発散角γのX線を試料に照射するのに、X線源から出射したX線を絞る角度は、1度でなく例えば2度ないし5度程度でよく、X線源から出射したX線を、従来の2倍ないし5倍程度の効率で利用できる。したがって、微小な発散角γでかつ強度も十分な発散X線を生成できる。
【0025】
【発明の効果】
以上に説明したように、本発明によれば、微小な発散角でかつ強度も十分な発散X線を生成できる。
【図面の簡単な説明】
【図1】本発明の第1または第2実施形態であるX線分光素子を示す正面図または断面図である。
【図2】従来のX線回折分析装置を示す斜視図である。
【符号の説明】
1,11…X線分光素子、1a,11a…回折面、2,12…基板、3,13…多層膜、4,14…一方の焦点から出射した回折すべき波長のX線、d…多層膜の周期長、F,F…線状の焦点、F,F…点状の焦点、H,H…双曲柱面、H,H…回転双曲面。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an X-ray spectroscopy device capable of generating divergent X-rays.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in X-ray diffraction analysis, as shown in FIG. 2, an X-ray emitted from a linear X-ray source (linear focus on a target of an X-ray tube) 20 is emitted using a divergence slit 22. The divergence angle γ is narrowed down so as to irradiate the sample surface 23a of the sample 23 as widely as possible.
[0003]
[Problems to be solved by the invention]
Here, the divergence angle γ is a minute angle of, for example, about 1 degree, and uses only a small part 21 of the X-rays emitted from the X-ray source 20, so that the intensity of the X-rays 21 irradiated on the sample surface 23a is However, accurate analysis is sometimes not enough. On the other hand, when the divergence angle γ is increased, the parallelism of the X-rays 21 applied to the sample surface 23a is weakened, and the analysis becomes inaccurate.
[0004]
The present invention has been made in view of the above-described conventional problems, and has as its object to provide an X-ray spectroscopic element capable of generating a divergent X-ray having a small divergence angle and sufficient intensity.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the X-ray spectroscopy element according to claim 1 is an X-ray spectroscopy element in which a multilayer film is deposited on a substrate. First, x 2 / a 2 −y 2 / b with respect to orthogonal coordinates xyz. A part on one side of the focal point on one of the two hyperbolic cylindrical surfaces represented by 2 = 1 is defined as a diffraction surface. Then, at an arbitrary point on the diffraction surface, the periodic length of the multilayer film is surrounded by the hyperboloid surface to which the diffraction surface belongs out of two linear focal points extending in the z direction of the two-lobe hyperboloid surface. It is set so that X-rays of a wavelength to be diffracted, which are emitted perpendicularly in the z direction from one focal point, are diffracted by the diffraction surface and diverged as if emitted perpendicularly in the z direction from the other focal point. And
[0006]
According to the X-ray spectroscopy element of the first aspect, the X-rays are emitted from a linear X-ray source placed at one focal point, and are diffracted by receiving X-rays narrowed to a divergence angle of about 2 to 5 degrees, for example. Since the light is diverged as if emitted from the other focal point at a divergence angle of about 1 degree, a divergent X-ray having a small divergence angle and sufficient intensity can be generated.
[0007]
The X-ray spectroscopy element according to claim 2 is an X-ray spectroscopy element in which a multilayer film is deposited on a substrate. First, x 2 / a 2 −y 2 / b 2 −z 2 / b 2 = xyz of the orthogonal coordinates xyz. A part on the side surrounding the focal point in one of the two hyperboloids of revolution represented by 1 is defined as a diffraction surface. Then, at any point on the diffraction surface, the periodic length of the multilayer film is emitted from one focal point surrounded by the rotation hyperboloid to which the diffraction surface belongs out of two point-like focal points of the two-leaf rotation hyperboloid. X-rays of a wavelength to be diffracted are set to be diffracted on a diffraction surface and diverged as if they were emitted from the other focal point.
[0008]
According to the X-ray spectroscopic element of the second aspect, the light is emitted from a point-like X-ray source placed at one focal point, and is diffracted by receiving X-rays whose divergence angle is, for example, about 2 to 5 degrees, Since the light is diverged as if emitted from the other focal point at a divergence angle of about 1 degree, a divergent X-ray having a small divergence angle and sufficient intensity can be generated.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the X-ray spectroscopy device according to the first embodiment of the present invention will be described. As shown in FIG. 1, this X-ray spectroscopy element 1 has the same structure as that of X-ray spectroscopy element 1 in which a multilayer film 3 is deposited on a substrate 2. (Forward), one of two hyperbolic cylindrical surfaces H 1 , H 2 extending in the direction perpendicular to the plane of the paper represented by x 2 / a 2 −y 2 / b 2 = 1, on the side surrounding the focal point F 1 at H 1 . A part is a diffraction surface 1a. The period length d 0 of the multilayer film 3, at any point on the diffraction surface 1a, the hyperbolic cylindrical surface H 1 of the 2 leaf, linear bifocal F 1 extending in the z direction of H 2, F 2 from the one focal point F 1 of the diffraction surface 1a is surrounded by the hyperbolic cylindrical surface H 1 belonging perpendicular to the z-direction (e.g., along the paper surface) X-ray 4A of wavelengths to be diffracted emitted, the 4B, the diffraction of and diffracted by the surface 1a, it is configured so as to diverge from the other focal point F 2 as emitted perpendicular to the z-direction. Such an artificial multilayer film 3 can be formed, for example, by alternately depositing a tungsten layer and a silicon layer, and the sum of the thicknesses of one set of the tungsten layer and the silicon layer is equal to the period length d 0 of the multilayer film 3. It becomes. In FIG. 1, only three sets of layers of the multilayer film 3 are shown for ease of illustration.
[0010]
That is, the multilayer film 3, at any point on the diffraction surface 1a forming part of the hyperbolic cylindrical surface H 1, the wavelength λ emitted from one of the linear X-ray source placed at the focal F 1 X The line 4 is set so as to be received at an incident angle θ and diffracted and reflected at a reflection angle θ of the same angle. Here, the shape of the diffraction surface 1a, since the position of the focal point F 1 is known, the incident angle (reflection angle) at each arbitrary point on the diffraction surface 1a theta geometrically unambiguously determined, The diffraction Since the wavelength λ of the X-ray 4 to be obtained is also known, the so-called d value that characterizes the period length of the multilayer film 3 satisfies the Bragg condition of the following equation (1).
[0011]
2d sin θ = nλ (n is a positive integer in the diffraction order) (1)
[0012]
Sin θ in the equation (1) is derived from the equation of the hyperbolic cylinder surface indicating the shape of the diffraction surface 1a, and when this is substituted into the expression (1) and n = 1, the d value becomes At an arbitrary point P (x 1 , y 1 , z 1 ) of the following equation (2).
[0013]
d = λ (x 1 2 + y 1 2 -a 2 + b 2) 1/2 / 2b ... (2)
[0014]
Since the d value can be controlled by changing conditions such as a deposition time and masking when the multilayer film 3 is formed on the substrate 2, the X-ray spectroscopic element 1 of the first embodiment has the focus F 1 described above. It can be manufactured by finding and adjusting the conditions for forming the multilayer film 3 that causes a diffraction phenomenon of diffracting the X-rays 4 having a wavelength λ emitted from the multilayer film 3.
[0015]
However, it is known that this d value does not strictly coincide with the actual period length d 0 of the multilayer film 3 due to the refraction phenomenon of X-rays, and has a relationship of the following equation (3).
[0016]
d = d 0 [1- (2δ−δ 2 ) / sin 2 θ] 1/2 (3)
[0017]
That is, as described above, if the X-ray spectroscopy device 1 of the first embodiment is manufactured by adjusting the formation conditions of the multilayer film 3 so as to cause a desired diffraction phenomenon, the actual period length d of the multilayer film 3 can be obtained. 0 satisfies Expression (3). In the expression (3), δ is a refractive index determined by the composition of the multilayer film 3 and the like.
[0018]
According to the X-ray spectroscopy device 1 of the first embodiment, as shown in FIG. 1, the light is emitted from a linear X-ray source placed at one focal point F1 and has a divergence angle の of, for example, about 2 to 5 degrees. diffracted by receiving X-rays 4 that focused on, it is possible to diverge as emitted from the other focal point F 2 by 1 degrees of divergence angle gamma. That is, for example, when irradiating the sample with X-rays having a divergence angle γ of about 1 degree, the angle at which the X-rays emitted from the X-ray source are narrowed may be about 2 to 5 degrees instead of 1 degree. X-rays emitted from the source can be used with an efficiency of about 2 to 5 times that of the related art. Therefore, a divergent X-ray with a small divergence angle γ and sufficient intensity can be generated.
[0019]
Next, an X-ray spectroscopy device according to a second embodiment of the present invention will be described. As shown in FIG. 1, this X-ray spectroscopy element 11 has a structure in which a multilayer film 13 is deposited on a substrate 12, first, x 2 / a 2 −y 2 / b with respect to the orthogonal coordinates xyz. the part of the side surrounding the focal point F 3 in one of 2 -z 2 / b 2 = 1 rotation of the 2 leaf represented by hyperboloid H 3, H 4 and the diffractive surface 11a. That is, in the X-ray monochromator 11 of the second embodiment, a hyperbola indicated by a two-dot chain line in FIG. 1, a portion of the hyperboloid of revolution H 3 is rotated about the x-axis and the diffraction surface 11a, FIG. 1 is a sectional view. Then, at an arbitrary point on the diffraction plane, the periodic length d 0 of the multilayer film 13 is the diffraction plane 11a among the point-like bifocals F 3 , F 4 of the two-leaf rotation hyperboloids H 3 , H 4. X-ray 14A of wavelengths to be diffracted emitted from the focal point F 3 of the one that is surrounded by the rotating hyperboloid H 3 which belongs to 14B, and diffracted by the diffraction surface 11a, to diverge as emitted from the other focal point F 4 It is set as follows.
[0020]
That is, the multilayer film 13, the rotation at any point on the diffraction surface 11a forming a part of the hyperboloid H 3, X-rays of a wavelength λ emitted from one point-like X-ray source placed at the focal F 3 14 is set to be received at an incident angle θ and diffracted and reflected at a reflection angle θ of the same angle. Here, the shape of the diffraction surface 11a, since the position of the focal point F 3 is known, the incident angle (reflection angle) at each arbitrary point on the diffraction surface 11a theta geometrically unambiguously determined, The diffraction Since the wavelength λ of the X-rays 14 to be obtained is also known, the so-called d value characterizing the period length of the multilayer film 13 is the same as the X-ray spectroscopic element 1 of the first embodiment, and the Bragg condition of the above equation (1) is used. Meet.
[0021]
Sin θ in the expression (1) is derived from the expression of the hyperboloid of revolution showing the shape of the diffraction surface 11a, and when this is substituted into the expression (1) and n = 1, the d value on the diffraction surface is At an arbitrary point P (x 1 , y 1 , z 1 ), it is represented by the following equation (4).
[0022]
d = λ (x 1 2 + y 1 2 + z 1 2 -a 2 + b 2) 1/2 / 2b ... (4)
[0023]
X-ray monochromator 11 of the second embodiment also, by adjusting found a forming condition of the multilayer film 13 that causes a diffraction phenomenon that diffracts X-rays 14 of a wavelength λ that has been emitted from the focal point F 3, to prepare be able to. However, similarly to the X-ray spectroscopy device 1 of the first embodiment, the d value does not exactly match the actual period length d 0 of the multilayer film 13 due to the refraction phenomenon of X-rays, and the d-value is given by the formula (3) ) Have a relationship. That is, if the X-ray spectroscopy element 11 of the second embodiment is manufactured by adjusting the forming conditions of the multilayer film 13 so as to cause a desired diffraction phenomenon, the actual period length d 0 of the multilayer film 13 is expressed by the following equation. (3) is satisfied.
[0024]
According to the X-ray monochromator 11 of the second embodiment, one emitted from a point-like X-ray source placed at the focal F 3 for example twice to X-ray was focused on ψ divergence angle of about 5 degrees 14 receiving diffracted, it is possible to dissipate as emitted from the other focal point F 4 in 1 degrees of divergence angle gamma. That is, for example, when irradiating the sample with X-rays having a divergence angle γ of about 1 degree, the angle at which the X-rays emitted from the X-ray source are narrowed may be about 2 to 5 degrees instead of 1 degree. X-rays emitted from the source can be used with an efficiency of about 2 to 5 times that of the related art. Therefore, a divergent X-ray with a small divergence angle γ and sufficient intensity can be generated.
[0025]
【The invention's effect】
As described above, according to the present invention, a divergent X-ray having a small divergence angle and sufficient intensity can be generated.
[Brief description of the drawings]
FIG. 1 is a front view or a sectional view showing an X-ray spectroscopy element according to a first or second embodiment of the present invention.
FIG. 2 is a perspective view showing a conventional X-ray diffraction analyzer.
[Explanation of symbols]
1, 11 ... X-ray monochromator, 1a, 11a ... diffraction surface, 2, 12 ... substrate, 3,13 ... multilayer, 4, 14 ... X-ray wavelength to be diffracted emitted from one focal point, d 0 ... Period length of the multilayer film, F 1 , F 2 … linear focus, F 3 , F 4 … point focus, H 1 , H 2 … hyperboloid, H 3 , H 4 … rotation hyperboloid

Claims (2)

基板上に多層膜を堆積させたX線分光素子において、
直交座標xyzについて、x/a−y/b=1で表される2葉の双曲柱面の一方における焦点を囲う側の一部を回折面とし、
多層膜の周期長が、回折面上の任意の点において、前記2葉の双曲柱面のz方向に延びる線状の2焦点のうち前記回折面が属する双曲柱面に囲われる一方の焦点からz方向に垂直に出射した回折すべき波長のX線を、回折面で回折して、他方の焦点からz方向に垂直に出射したように発散させるよう設定されていることを特徴とするX線分光素子。
In an X-ray spectroscopy device having a multilayer film deposited on a substrate,
With respect to the rectangular coordinates xyz, a part of one of the two hyperboloidal surfaces of the two leaves represented by x 2 / a 2 −y 2 / b 2 = 1 on the side surrounding the focal point is defined as a diffraction surface,
At any point on the diffraction surface, the periodic length of the multilayer film is one of two linear focal points extending in the z direction of the two-lobe hyperbolic cylinder surface and surrounded by the hyperbolic cylinder surface to which the diffraction surface belongs. X-rays of a wavelength to be diffracted, which are emitted perpendicularly in the z direction from the focal point, are diffracted by the diffraction surface, and are set to diverge as if emitted perpendicularly in the z direction from the other focal point. X-ray spectroscopy element.
基板上に多層膜を堆積させたX線分光素子において、
直交座標xyzについて、x/a−y/b−z/b=1で表される2葉の回転双曲面の一方における焦点を囲う側の一部を回折面とし、
多層膜の周期長が、回折面上の任意の点において、前記2葉の回転双曲面の点状の2焦点のうち前記回折面が属する回転双曲面に囲われる一方の焦点から出射した回折すべき波長のX線を、回折面で回折して、他方の焦点から出射したように発散させるよう設定されていることを特徴とするX線分光素子。
In an X-ray spectroscopy device having a multilayer film deposited on a substrate,
For rectangular coordinates xyz, and x 2 / a 2 -y 2 / b 2 -z 2 / b 2 = some diffractive surface on the side surrounding the focus in one of the hyperboloid of revolution of 2 leaf represented by 1,
At an arbitrary point on the diffraction surface, the periodic length of the multilayer film is different from the diffraction intensity emitted from one focal point surrounded by the rotation hyperboloid to which the diffraction surface belongs among the two point-like focal points of the two-lobe rotation hyperboloid. An X-ray spectroscopy element characterized in that X-ray spectroscopy elements are set to diffract an X-ray of a power wavelength by a diffraction surface and diverge as if emitted from the other focal point.
JP23087497A 1997-08-27 1997-08-27 X-ray spectroscopy element Expired - Fee Related JP3593605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23087497A JP3593605B2 (en) 1997-08-27 1997-08-27 X-ray spectroscopy element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23087497A JP3593605B2 (en) 1997-08-27 1997-08-27 X-ray spectroscopy element

Publications (2)

Publication Number Publication Date
JPH1164594A JPH1164594A (en) 1999-03-05
JP3593605B2 true JP3593605B2 (en) 2004-11-24

Family

ID=16914669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23087497A Expired - Fee Related JP3593605B2 (en) 1997-08-27 1997-08-27 X-ray spectroscopy element

Country Status (1)

Country Link
JP (1) JP3593605B2 (en)

Also Published As

Publication number Publication date
JPH1164594A (en) 1999-03-05

Similar Documents

Publication Publication Date Title
US6421417B1 (en) Multilayer optics with adjustable working wavelength
US4915463A (en) Multilayer diffraction grating
Henke et al. Pulsed plasma source spectrometry in the 80–8000‐eV x‐ray region
US5127028A (en) Diffractord with doubly curved surface steps
JP2013210377A (en) Beam adjustment system
JPH05509171A (en) Dispersion compensation grating
WO2015146287A1 (en) Beam generation unit and small-angle x-ray scattering device
JP2005534183A (en) Optical device
JP3593605B2 (en) X-ray spectroscopy element
Pen Energy efficiency of photovoltaic panels when using holographic gratings as passive solar trackers
JP4421683B2 (en) Method for optimizing holographic optics and monochromator configurations
JP2940757B2 (en) X-ray diffraction analyzer
JP2004219393A (en) Generator for parallel beams of high luminous intensity
JP2007515689A (en) Two-dimensional grating network with alternating multi-layer stacks, its production and spectroscope equipped with these networks
JP2004529388A (en) Hybrid optics for x-ray applications and related methods
JP6232210B2 (en) Mirror device, extreme ultraviolet light generation device, and extreme ultraviolet light generation system
US7233444B2 (en) Light diffraction optical method, with corresponding optical system and device
JPH1164595A (en) X-ray spectral element
JPH0772298A (en) X-ray spectroscope and x-ray spectroscopic element
Jiang et al. A general approach in multilayer optical system design for SAXS
Firsov et al. Novel wavelength-dispersive X-ray fluorescence spectrometer
JP2731501B2 (en) X-ray focusing element
Underwood et al. Experimental comparison of mechanically ruled and holographically recorded plane varied-line-spacing gratings
JP2841441B2 (en) Diffraction grating and manufacturing method thereof
JPH11133191A (en) X-ray converging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040817

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees