JP3592920B2 - Method for producing organic-inorganic oriented composite material - Google Patents

Method for producing organic-inorganic oriented composite material Download PDF

Info

Publication number
JP3592920B2
JP3592920B2 JP00790498A JP790498A JP3592920B2 JP 3592920 B2 JP3592920 B2 JP 3592920B2 JP 00790498 A JP00790498 A JP 00790498A JP 790498 A JP790498 A JP 790498A JP 3592920 B2 JP3592920 B2 JP 3592920B2
Authority
JP
Japan
Prior art keywords
collagen
composite material
organic
oriented composite
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP00790498A
Other languages
Japanese (ja)
Other versions
JPH11199209A (en
Inventor
順三 田中
寧 末次
正紀 菊池
晟佰 趙
正博 森村
伸一 中谷
佳宣 萬代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitta Gelatin Inc
National Institute for Materials Science
Original Assignee
Nitta Gelatin Inc
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitta Gelatin Inc, National Institute for Materials Science filed Critical Nitta Gelatin Inc
Priority to JP00790498A priority Critical patent/JP3592920B2/en
Publication of JPH11199209A publication Critical patent/JPH11199209A/en
Application granted granted Critical
Publication of JP3592920B2 publication Critical patent/JP3592920B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Materials For Medical Uses (AREA)
  • Dental Preparations (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、コラーゲンとリン酸カルシウムからなる有機無機配向性複合材料の製造方法に関する。このような有機無機配向性複合材料は生体と類似組成を持ち、生体と融和する硬組織材料の成形体であり、人工骨等として用いられる。
【0002】
【従来の技術】
従来の無機素材からなる生体内に植入する生体材料は、無機素材の骨伝導誘導能ないしは細胞活性が不十分であるため、骨置換、組織再建能が低く十分な医療効果を得ることが困難であった。また有機材料のみを用いた場合は、強度が弱いうえに周辺組織との癒着が起こり、組織誘導再生法において骨組織などの生体組織の再建が遅れることなっていた。
【0003】
これを解決するものとして、特開平7−101708号公報では、コラーゲン溶液にリン酸を加えた混合溶液を、水酸化カルシウムの懸濁液中へ徐々に加え、生じた沈澱を濾過、乾燥して加圧成形することによって、ヤング率が2GPa〜100MPaと生物の骨に近似した物性の成形体(無機物であるアパタイトと有機物であるコラーゲンの複合体)を得る技術が開示されている。また、12th J.−K.Seminar Ceram.485(1995)にも、同様の技術によってヤング率5.5Paの水酸アパタイト/コラーゲンの複合体が得られることが開示されている。
【0004】
これらの技術は、リン酸カルシウム(アパタイト)をコラーゲンと複合化することによって、生体骨に近似したレベルまでヤング率を低減したものであるが、生体骨のヤング率は部位によって異なり4GPa〜30GPaの範囲で分布している。そのため従来の技術では、軟らかい生体骨と同程度のヤング率の複合体は得られるが、硬い生体骨と同程度のヤング率の複合体は得られない。
【0005】
【発明が解決しようとする課題】
従来の技術によって得られた複合体が、生体骨と組成的には近似しているにもかかわらず、軟らかい生体骨と同程度の低いヤング率しか示さないのは、該複合体の配向が生体骨よりも悪いためと考えられる。
したがって、本発明では、コラーゲンとリン酸カルシウムの配向の優れた複合体を得ることのできる有機無機配向性複合材料の製造方法を提供することを課題とする。
【0006】
【課題を解決するための手段】
本発明者らが鋭意検討を行った結果、従来の技術においては、コラーゲン溶液にリン酸を加えた混合溶液(pH3程度)を水酸化カルシウムの懸濁液(pH12程度)中へ徐々に加えるものであるため、反応系のpHがアルカリ側から酸性側へ大きく変化することが、複合体の配向を妨げる原因であるとの知見を得た。そこで、一方の溶液に他方の溶液を加えるのではなく、両溶液を同時に滴下する方法を採用すれば、pHの制御が可能となり配向の優れた複合体を得ることができるのではないかと考え、本発明を完成するに至った。
【0007】
すなわち、本発明は、以下の構成を提供する。
(1) コラーゲンとリン酸カルシウムからなる有機無機配向性複合材料の製造方法であって、コラーゲンを含有するリン酸水溶液と、カルシウム塩を含有する水溶液とを、反応容器に同時に滴下してリン酸カルシウムとコラーゲンの共沈を行った後、得られた沈澱物を加圧成形することを特徴とする有機無機配向性複合材料の製造方法。
(2) 反応容器中の反応液のpHを7〜11の範囲内であって、かつ変化の幅を1以内とする、前記(1)記載の有機無機配向性複合材料の製造方法。
(3) 超音波を印加しながら加圧成型を行う、前記(1)または(2)記載の有機無機配向性複合材料の製造方法。
(4) コラーゲンとしてペプシン処理したコラーゲンを用いる、前記(1)から(3)のいずれかに記載の有機無機配向性複合材料の製造方法。
(5) 加圧成形を0℃以上110℃以下の温度範囲で行う、前記(1)から(4)のいずれかに記載の有機無機配向性複合材料の製造方法。
【0008】
【発明の実施の形態】
本発明において用いられるコラーゲンとしては、特に限定されるものではないが、コラーゲンの分子サイズが大きいと立体障害のために複合体の強度が出ないため、モノメリックなコラーゲンを用いることが好ましく、例えば、ペプシン処理したコラーゲンを用いることが好ましい。ペプシン処理したコラーゲンは、抗原性が低いという利点も有する。
【0009】
本発明において用いられるコラーゲンを含有するリン酸水溶液としては、リン酸の重量に対するコラーゲンの重量が0.001〜10000の範囲のものが好ましく、より好ましくは0.1〜5の範囲のものである。リン酸が少なすぎる場合には、得られた複合体のヤング率が下がり、強度が低下する。一方、コラーゲンが少なすぎる場合には、複合体の強度が低下してもろくなる。
【0010】
本発明に用いられるカルシウム塩としては、水酸化カルシウム、炭酸カルシウム等を挙げることができる。本発明のカルシウム塩を含有する水溶液としては、懸濁液であってもよい。例えば、炭酸カルシウムを焼成後乳鉢等で粉砕して水酸化カルシウムとし、これに水を加えて水酸化カルシウムの懸濁液を得ることができる。水溶液あるいは懸濁液中のカルシウム塩の濃度としては、1〜20重量%の範囲とすることが好ましく、より好ましくは6〜12重量%の範囲である。カルシウム塩の濃度が低すぎる場合には、ヤング率が低下する。一方、カルシウム塩の濃度が高すぎる場合には、強度が低下する。
【0011】
本発明において、コラーゲンを含有するリン酸水溶液と、カルシウム塩を含有する水溶液との比率は、3:1〜1:3の範囲とすることが好ましい。コラーゲンを含有するリン酸水溶液の使用量が少ない場合には、カルシウム過剰組成になり強度が低下する。カルシウム塩を含有する水溶液の使用量が少ない場合には、カルシウム欠損が発生して、ヤング率が低下し、併せて強度の低下をまねくこともある。
【0012】
本発明において、コラーゲンを含有するリン酸水溶液と、カルシウム塩を含有する水溶液とを、反応容器に同時に滴下するとは、厳密に同時に滴下する形態のみをさすものではなく、少量(0.01〜5ml程度)づつ交互に滴下する形態をも含む。両溶液は、連続的に滴下してもよいし、間欠的に滴下してもよい。このとき、反応液のpHを7〜11の範囲で、かつ変化の幅を1以内となるように滴下することが望ましい。pHを7〜9の範囲で、かつ変化の幅を0.5以内の範囲とすることがより好ましい。ネイティブなコラーゲンはpH7〜11の範囲で等電点による沈澱を起こし線維が再生するものであり、またリン酸カルシウムもこのpH範囲において沈澱を起こしやすいため、このpH範囲において共沈を行うと、リン酸カルシウムとコラーゲンの配向が優れたものとなる。pHが11を越えると、コラーゲンが溶解状態となってコラーゲン分子周辺に水分子が水和し、後の加圧成形工程においても水分子が離れにくくなるため、複合体中に水が残り配向が妨げられ強度が低下するおそれがある。一方、pHが7未満になると、リン酸カルシウム、コラーゲンともに沈澱しにくくなる。また、変化の幅が1を越えると、コラーゲン上へのリン酸カルシウムの核形成に乱れが生じ、配向が悪くなる。このようなpH制御を行うには、pHコントローラーを用いることが簡便である。pHコントローラーは、反応液のpHを測定する手段と、滴下する両溶液の滴下量を調節する手段とを備えたものであり、所期値として設定されたpH(例えば10)に対して一定範囲(例えば±0.3)を保つように、両溶液のpH値に基づいて両溶液の滴下量を調節するものである。本発明の場合であれば、pHが所期値よりも小さくなったときは、コラーゲンを含有するリン酸水溶液の滴下を一旦停止してカルシウム塩を含有する水溶液の滴下のみを行う。逆にpHが所期値よりも大きくなったときは、カルシウム塩を含有する水溶液の滴下を一旦停止してコラーゲンを含有するリン酸水溶液の滴下のみを行う。このとき、反応液のpHが偏ることのないように、両溶液および反応液をたえず攪拌しながら反応を行うことが好ましい。
【0013】
反応液から生じた沈澱物を濾過、乾燥後、加圧成形することにより、リン酸カルシウム微結晶とコラーゲン高分子が自己組織化的に配向結合した複合体である本発明の有機無機配向性複合材料を得る。
加圧成形は、0℃以上110℃以下の温度範囲で、かつ10MPa〜5GPaの圧力範囲で行うことが好ましい。この温度範囲で加圧成形を行うと、沈澱物に含まれる水のほとんどが急激に放出されるからである。温度は、水の放出量の多い25℃以上60℃以下の範囲とすることが好ましく、35℃以上45℃以下の範囲とすることが特に好ましい。図2に、加圧成形の温度と水の放出量の関係を示す。また、超音波を印加しながら行うことにより、配向をさらに優れたものとすることができる。図1に、本発明で加圧成形に用いることのできる圧力処理装置の一例を示す。試料1を取り付ける水和水搾出部2、試料加熱部3、試料1に超音波を印加する超音波発生部4を備えたものである。
【0014】
本発明により得られる有機無機配向性複合材料は、生体骨に近い強度と組成をもち、構成成分であるコラーゲンおよびリン酸カルシウムがともに生体溶解性であるため薬剤徐放効果、あるいは骨誘導能ないしは骨伝導能を有する。骨組織に埋入した場合は速やかに骨組織と結合し、12週前後でドナー側の硬組織と本発明により得られる複合材料との界面は完全に一体化しうる。さらに例えば生理活性の高いサイトカインを含有させた基板を用いて力学・電気などを加えた生体類似環境下あるいは生体内で組織培養することにより、骨髄、肝臓などの組織再建の効果も期待される。骨肉腫などの切除骨の再建にも、本発明により得られる複合材料に抗癌剤を含浸させたものを用いることにより、癌再発の防止とともに生体硬組織の誘導を行うことができる。したがって、本発明によって得られる複合体の用途としては、骨誘導および骨伝導能を有する生体骨置換型骨再建材としての利用法、アミノ酸、糖質、サイトカインを含有する組織工学に用いられる生体活性基材、および抗癌剤等の生体融和型薬剤徐放性基材としての利用法を挙げることができ、具体的には、人工骨、人工関節、腱と骨との接合材、歯科用インプラント材、カテーテル用経皮端子、薬剤徐放性基材、骨髄誘導チャンバー、組織再建用チャンバー・基材等を挙げることができる。
【0015】
【実施例】
以下に実施例によりさらに詳細に本発明を説明するが、本発明はこれに限定されるものではない。
実施例1
ペプシン処理したコラーゲン(濃度0.72%、5mMリン酸水溶液)1389mlに純水1.5L、リン酸15gを加え混合溶液とした。別に炭酸カルシウムを900℃で10時間焼成後乳鉢で微粉砕した水酸化カルシウム48gに2Lの純水を加えて懸濁液を得た。
【0016】
pHコントローラーでpHを10±0.3に保つように、両液をポンプで送りながら、両方の液を激しく攪拌しながら混合した。生じた沈澱を濾過、乾燥した。これを圧力装置のカプセルに封入し、30℃、300MPaで超音波処理しながら15時間保持し、加圧成形を行った。
得られた複合体を風乾後、物性を測定したところ、曲げ強度90MPa、ヤング率8GPa、圧縮強度150MPaであった。
実施例2
分子量30万のコラーゲン(濃度0.72%、5mMリン酸水溶液)1389mlに純水1.5L、リン酸15gを加え混合溶液とした。別に炭酸カルシウムを900℃で10時間焼成後乳鉢で微粉砕した水酸化カルシウム48gに2Lの純水を加えて懸濁液を得た。
【0017】
pHコントローラーでpHを8.5±0.3に保つように、両液をポンプで送りながら、両方の液を激しく攪拌しながら混合した。生じた沈澱を濾過、乾燥した。これを圧力装置のカプセルに封入し、コラーゲンがゼラチン化する直下の温度37℃で、500MPaの圧力と超音波をかけながら15時間保持し、加圧成形を行った。
【0018】
得られた複合体を風乾後、物性を測定したところ、曲げ強度120MPa、ヤング率26GPa、圧縮強度180MPaであった。
比較例
ペプシン処理したコラーゲン(濃度0.72%、5mMリン酸水溶液)1389mlに純水1.5L、リン酸15gを加え混合溶液とした。別に炭酸カルシウムを900℃で10時間焼成後乳鉢で微粉砕した水酸化カルシウム48gに2Lの純水を加えて懸濁液を得た。
【0019】
水酸化カルシウム懸濁液を激しく攪拌しながら、その中にリン酸・コラーゲン混合溶液を徐々に滴下して、沈澱物を得た。
得られた複合体を風乾後、物性を測定したところ、曲げ強度50MPa、ヤング率5.5GPa、圧縮強度 75MPaであった。
【0020】
【発明の効果】
本発明によると、pHの制御が可能となるので、コラーゲンとリン酸カルシウムの配向の優れた有機無機配向性複合材料を得ることができる。したがって、硬い生体骨と同程度のヤング率の複合体を得ることができる。
【図面の簡単な説明】
【図1】本発明で加圧成形に用いることのできる圧力処理装置の一例を示す図である。
【図2】加圧成形の温度と水の放出量の関係を示すグラフである。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing an organic-inorganic oriented composite material comprising collagen and calcium phosphate. Such an organic-inorganic oriented composite material has a similar composition to a living body, is a molded product of a hard tissue material compatible with the living body, and is used as an artificial bone or the like.
[0002]
[Prior art]
Conventional biomaterials to be implanted into living bodies made of inorganic materials have low bone replacement and tissue reconstruction ability due to insufficient osteoconductivity or cell activity of inorganic materials, making it difficult to obtain sufficient medical effects. Met. In addition, when only an organic material is used, the strength is low and adhesion to surrounding tissues occurs, and reconstruction of a living tissue such as a bone tissue is delayed in the tissue-guided regeneration method.
[0003]
As a solution to this problem, Japanese Patent Application Laid-Open No. Hei 7-101708 discloses that a mixed solution obtained by adding phosphoric acid to a collagen solution is gradually added to a suspension of calcium hydroxide, and the resulting precipitate is filtered and dried. There is disclosed a technique for obtaining a molded article having a Young's modulus of 2 GPa to 100 MPa and a physical property similar to that of a biological bone (composite of apatite which is an inorganic substance and collagen which is an organic substance) by pressure molding. Also, 12th J.M. -K. Seminar Ceram. 485 (1995) discloses that a hydroxyapatite / collagen complex having a Young's modulus of 5.5 Pa can be obtained by a similar technique.
[0004]
These techniques reduce the Young's modulus to a level close to that of living bone by complexing calcium phosphate (apatite) with collagen, but the Young's modulus of living bone varies from site to site and ranges from 4 GPa to 30 GPa. Are distributed. Therefore, according to the conventional technique, a composite having a Young's modulus similar to that of soft living bone can be obtained, but a composite having a Young's modulus similar to that of hard living bone cannot be obtained.
[0005]
[Problems to be solved by the invention]
The fact that the composite obtained by the conventional technique has a Young's modulus as low as that of soft living bone, although it is compositionally similar to that of living bone, is because the orientation of this composite is Probably because it is worse than bone.
Accordingly, an object of the present invention is to provide a method for producing an organic-inorganic oriented composite material that can obtain a composite having excellent orientation of collagen and calcium phosphate.
[0006]
[Means for Solving the Problems]
As a result of the inventor's intensive studies, in the prior art, a mixed solution obtained by adding phosphoric acid to a collagen solution (about pH 3) is gradually added to a suspension of calcium hydroxide (about pH 12). Therefore, it has been found that a large change in the pH of the reaction system from an alkali side to an acidic side is a cause of hindering the orientation of the complex. Therefore, instead of adding the other solution to one solution, if a method of simultaneously dropping both solutions is adopted, it is thought that the pH can be controlled and a composite with excellent orientation can be obtained, The present invention has been completed.
[0007]
That is, the present invention provides the following configurations.
(1) A method for producing an organic-inorganic oriented composite material comprising collagen and calcium phosphate, wherein an aqueous solution of phosphoric acid containing collagen and an aqueous solution of calcium salt are simultaneously dropped in a reaction vessel to form a mixture of calcium phosphate and collagen. A method for producing an organic-inorganic oriented composite material, which comprises subjecting the obtained precipitate to pressure molding after coprecipitation.
(2) The method for producing an organic-inorganic oriented composite material according to (1), wherein the pH of the reaction solution in the reaction vessel is in the range of 7 to 11, and the range of change is within 1 or less.
(3) The method for producing an organic-inorganic oriented composite material according to (1) or (2), wherein pressure molding is performed while applying ultrasonic waves.
(4) The method for producing an organic-inorganic oriented composite material according to any one of (1) to (3), wherein pepsin-treated collagen is used as the collagen.
(5) The method for producing an organic-inorganic oriented composite material according to any one of (1) to (4), wherein the pressure molding is performed in a temperature range of 0 ° C to 110 ° C.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The collagen used in the present invention is not particularly limited, but if the molecular size of the collagen is large, the strength of the complex does not appear due to steric hindrance. It is preferable to use collagen treated with pepsin. Pepsin-treated collagen also has the advantage of low antigenicity.
[0009]
As the aqueous phosphoric acid solution containing collagen used in the present invention, the weight of collagen relative to the weight of phosphoric acid is preferably in the range of 0.001 to 10,000, more preferably in the range of 0.1 to 5. . If the amount of phosphoric acid is too small, the Young's modulus of the obtained composite decreases and the strength decreases. On the other hand, when the amount of collagen is too small, the strength of the composite is reduced and the composite becomes brittle.
[0010]
Examples of the calcium salt used in the present invention include calcium hydroxide and calcium carbonate. The aqueous solution containing the calcium salt of the present invention may be a suspension. For example, after calcining calcium carbonate, it is ground in a mortar or the like to obtain calcium hydroxide, and water is added thereto to obtain a suspension of calcium hydroxide. The concentration of the calcium salt in the aqueous solution or suspension is preferably in the range of 1 to 20% by weight, more preferably in the range of 6 to 12% by weight. If the calcium salt concentration is too low, the Young's modulus will decrease. On the other hand, if the calcium salt concentration is too high, the strength will decrease.
[0011]
In the present invention, the ratio of the aqueous solution of phosphoric acid containing collagen to the aqueous solution containing calcium salt is preferably in the range of 3: 1 to 1: 3. When the amount of the aqueous phosphoric acid solution containing collagen is small, the composition becomes excessive in calcium and the strength decreases. When the amount of the aqueous solution containing the calcium salt is small, calcium deficiency occurs, the Young's modulus is reduced, and the strength is sometimes reduced.
[0012]
In the present invention, simultaneous dropping of an aqueous solution of phosphoric acid containing collagen and an aqueous solution containing calcium salt into a reaction vessel does not only mean a form of dropping exactly at the same time, but a small amount (0.01 to 5 ml). This also includes a form in which the solution is alternately dropped one by one. Both solutions may be dropped continuously or intermittently. At this time, it is desirable to drop the reaction solution so that the pH of the reaction solution is in the range of 7 to 11 and the change width is within 1 or less. More preferably, the pH is in the range of 7 to 9 and the range of change is in the range of 0.5 or less. Native collagen precipitates at the isoelectric point in the pH range of 7 to 11 and regenerates fibers.In addition, calcium phosphate easily precipitates in this pH range. The collagen orientation is excellent. If the pH exceeds 11, the collagen will be in a dissolved state and water molecules will be hydrated around the collagen molecules, and it will be difficult for the water molecules to separate even in the subsequent pressure molding step. There is a possibility that it will be hindered and the strength will decrease. On the other hand, when the pH is less than 7, both calcium phosphate and collagen are less likely to precipitate. On the other hand, if the width of the change exceeds 1, the nucleation of calcium phosphate on collagen will be disturbed, and the orientation will be poor. In order to perform such pH control, it is convenient to use a pH controller. The pH controller is provided with a means for measuring the pH of the reaction solution and a means for adjusting the amount of the solution to be dropped, and a certain range with respect to the pH (eg, 10) set as an expected value. (For example, ± 0.3), the dropping amounts of both solutions are adjusted based on the pH values of both solutions. In the case of the present invention, when the pH becomes lower than the expected value, the dropping of the aqueous solution of phosphoric acid containing collagen is temporarily stopped, and only the dropping of the aqueous solution containing calcium salt is performed. Conversely, when the pH becomes higher than the expected value, the dropping of the aqueous solution containing the calcium salt is temporarily stopped, and only the dropping of the phosphoric acid aqueous solution containing the collagen is performed. At this time, it is preferable to carry out the reaction while constantly stirring both the solution and the reaction solution so that the pH of the reaction solution is not biased.
[0013]
The precipitate generated from the reaction solution is filtered, dried, and then press-molded, whereby the organic-inorganic oriented composite material of the present invention, which is a complex in which calcium phosphate microcrystals and a collagen polymer are oriented and bonded in a self-assembled manner, obtain.
The pressure molding is preferably performed in a temperature range of 0 ° C. or more and 110 ° C. or less and a pressure range of 10 MPa to 5 GPa. This is because, when pressure molding is performed in this temperature range, most of the water contained in the precipitate is rapidly released. The temperature is preferably in the range of 25 ° C. or more and 60 ° C. or less where the amount of released water is large, and particularly preferably in the range of 35 ° C. or more and 45 ° C. or less. FIG. 2 shows the relationship between the pressure molding temperature and the amount of released water. In addition, by performing the treatment while applying ultrasonic waves, the orientation can be further improved. FIG. 1 shows an example of a pressure processing apparatus that can be used for pressure molding in the present invention. The apparatus includes a hydration water squeezing unit 2 for attaching a sample 1, a sample heating unit 3, and an ultrasonic generator 4 for applying ultrasonic waves to the sample 1.
[0014]
The organic-inorganic oriented composite material obtained according to the present invention has a strength and a composition close to that of a living bone, and since the constituents collagen and calcium phosphate are both biosoluble, a drug sustained release effect, or an osteoinductive or osteoconductive property. Has ability. When implanted in bone tissue, it quickly bonds to bone tissue, and after about 12 weeks, the interface between the donor-side hard tissue and the composite material obtained by the present invention can be completely integrated. Furthermore, for example, the effect of tissue reconstruction of bone marrow, liver, and the like is expected by culturing tissue in a living body-like environment or in a living body to which dynamics, electricity, etc. are added using a substrate containing a cytokine having high physiological activity. For the reconstruction of resected bone such as osteosarcoma, the use of a composite material obtained by the present invention impregnated with an anticancer agent can prevent cancer recurrence and induce living hard tissue. Therefore, the use of the complex obtained by the present invention includes the use as a living bone replacement type bone reconstruction material having osteoinductive and osteoconductive ability, bioactivity used in tissue engineering containing amino acids, carbohydrates, and cytokines. Substrates, and their use as biocompatible drug sustained-release substrates such as anticancer agents can be mentioned. Specifically, artificial bones, artificial joints, bonding materials between tendons and bones, dental implant materials, Percutaneous terminals for catheters, sustained drug release substrates, bone marrow induction chambers, tissue reconstruction chambers / substrates, and the like can be mentioned.
[0015]
【Example】
Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited thereto.
Example 1
1.5 L of pure water and 15 g of phosphoric acid were added to 1389 ml of pepsin-treated collagen (concentration 0.72%, 5 mM phosphoric acid aqueous solution) to form a mixed solution. Separately, 2 L of pure water was added to 48 g of calcium hydroxide finely ground in a mortar after calcining calcium carbonate at 900 ° C. for 10 hours to obtain a suspension.
[0016]
Both liquids were mixed with vigorous stirring while pumping both liquids so that the pH was maintained at 10 ± 0.3 with a pH controller. The resulting precipitate was filtered and dried. This was sealed in a capsule of a pressure device, and was held for 15 hours while being subjected to ultrasonic treatment at 30 ° C. and 300 MPa to perform pressure molding.
After the obtained composite was air-dried, the physical properties were measured, whereby the flexural strength was 90 MPa, the Young's modulus was 8 GPa, and the compressive strength was 150 MPa.
Example 2
1.5 L of pure water and 15 g of phosphoric acid were added to 1389 ml of collagen having a molecular weight of 300,000 (concentration 0.72%, 5 mM phosphoric acid aqueous solution) to prepare a mixed solution. Separately, 2 L of pure water was added to 48 g of calcium hydroxide finely ground in a mortar after calcining calcium carbonate at 900 ° C. for 10 hours to obtain a suspension.
[0017]
Both liquids were pumped and mixed with vigorous stirring so that the pH was maintained at 8.5 ± 0.3 with a pH controller. The resulting precipitate was filtered and dried. This was sealed in a capsule of a pressure device, and held at a temperature of 37 ° C. immediately below collagen gelatinization at a pressure of 500 MPa and ultrasonic waves for 15 hours to perform pressure molding.
[0018]
After the obtained composite was air-dried, the physical properties were measured, whereby the flexural strength was 120 MPa, the Young's modulus was 26 GPa, and the compressive strength was 180 MPa.
Comparative Example 1.5 L of pure water and 15 g of phosphoric acid were added to 1389 ml of pepsin-treated collagen (0.72% concentration, 5 mM aqueous phosphoric acid solution) to form a mixed solution. Separately, 2 L of pure water was added to 48 g of calcium hydroxide finely ground in a mortar after calcining calcium carbonate at 900 ° C. for 10 hours to obtain a suspension.
[0019]
While vigorously stirring the calcium hydroxide suspension, a phosphoric acid / collagen mixed solution was gradually dropped into the suspension to obtain a precipitate.
After the obtained composite was air-dried, the physical properties were measured, whereby the flexural strength was 50 MPa, the Young's modulus was 5.5 GPa, and the compressive strength was 75 MPa.
[0020]
【The invention's effect】
According to the present invention, since the pH can be controlled, an organic-inorganic oriented composite material having an excellent orientation between collagen and calcium phosphate can be obtained. Therefore, a composite having a Young's modulus comparable to that of hard living bone can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of a pressure processing device that can be used for pressure molding in the present invention.
FIG. 2 is a graph showing the relationship between the pressure molding temperature and the amount of released water.

Claims (5)

コラーゲンとリン酸カルシウムからなる有機無機配向性複合材料の製造方法であって、コラーゲンを含有するリン酸水溶液と、カルシウム塩を含有する水溶液とを、反応容器に同時に滴下してリン酸カルシウムとコラーゲンの共沈を行った後、得られた沈澱物を加圧成形することを特徴とする有機無機配向性複合材料の製造方法。A method for producing an organic-inorganic oriented composite material comprising collagen and calcium phosphate, wherein a phosphoric acid aqueous solution containing collagen and an aqueous solution containing calcium salt are simultaneously dropped into a reaction vessel to co-precipitate calcium phosphate and collagen. A method for producing an organic-inorganic oriented composite material, wherein the obtained precipitate is subjected to pressure molding after performing. 反応容器中の反応液のpHを7〜11の範囲内であって、かつ変化の幅を1以内とする、請求項1記載の有機無機配向性複合材料の製造方法。The method for producing an organic-inorganic oriented composite material according to claim 1, wherein the pH of the reaction solution in the reaction vessel is within the range of 7 to 11, and the range of change is within one. 超音波を印加しながら加圧成型を行う、請求項1または2記載の有機無機配向性複合材料の製造方法。3. The method for producing an organic-inorganic oriented composite material according to claim 1, wherein pressure molding is performed while applying ultrasonic waves. コラーゲンとしてペプシン処理したコラーゲンを用いる、請求項1から3のいずれかに記載の有機無機配向性複合材料の製造方法。The method for producing an organic-inorganic oriented composite material according to any one of claims 1 to 3, wherein pepsin-treated collagen is used as the collagen. 加圧成形を0℃以上110℃以下の温度範囲で行う、請求項1から4のいずれかに記載の有機無機配向性複合材料の製造方法。The method for producing an organic-inorganic oriented composite material according to any one of claims 1 to 4, wherein the pressure molding is performed in a temperature range of 0C to 110C.
JP00790498A 1998-01-19 1998-01-19 Method for producing organic-inorganic oriented composite material Expired - Lifetime JP3592920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00790498A JP3592920B2 (en) 1998-01-19 1998-01-19 Method for producing organic-inorganic oriented composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00790498A JP3592920B2 (en) 1998-01-19 1998-01-19 Method for producing organic-inorganic oriented composite material

Publications (2)

Publication Number Publication Date
JPH11199209A JPH11199209A (en) 1999-07-27
JP3592920B2 true JP3592920B2 (en) 2004-11-24

Family

ID=11678561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00790498A Expired - Lifetime JP3592920B2 (en) 1998-01-19 1998-01-19 Method for producing organic-inorganic oriented composite material

Country Status (1)

Country Link
JP (1) JP3592920B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2319969A1 (en) * 1999-09-24 2001-03-24 Isotis B.V. Composites
JP4790917B2 (en) 2001-02-23 2011-10-12 独立行政法人科学技術振興機構 Artificial vertebral body
JP4408603B2 (en) 2001-10-19 2010-02-03 独立行政法人科学技術振興機構 Organic-inorganic composite biomaterial and method for producing the same
WO2003035128A1 (en) * 2001-10-25 2003-05-01 Japan Science And Technology Agency Composite biological material
JP4226830B2 (en) * 2002-03-11 2009-02-18 独立行政法人科学技術振興機構 Control of biodegradability of composite biomaterials
JP4814477B2 (en) * 2002-05-14 2011-11-16 独立行政法人科学技術振興機構 Bone augmentation and osteoporosis treatment
US7229971B2 (en) 2002-03-11 2007-06-12 Japan Science And Technology Agency Regulation of biodegradability of composite biomaterials
WO2003092759A1 (en) 2002-05-01 2003-11-13 Japan Science And Technology Agency Method for preparing porous composite material
WO2004041320A1 (en) * 2002-11-06 2004-05-21 National Institute For Materials Science Apatite/collagen crosslinked porous material containing self-organized apatite/collagen composite and process for producing the same
JP2007050084A (en) * 2005-08-17 2007-03-01 National Institute For Materials Science Method for producing bone reconstructing material, bone reconstructing material, and method for inducing bone tissue
JP4968639B2 (en) * 2005-12-15 2012-07-04 独立行政法人物質・材料研究機構 Composite made of calcium phosphate and apatite / collagen composite
JP2009268685A (en) * 2008-05-07 2009-11-19 Hoya Corp Artificial bone formed by covering it with apatite/collagen complex and its production method
JP2009095650A (en) * 2008-07-31 2009-05-07 National Institute For Materials Science Artificial vertebral body
JP5647432B2 (en) * 2010-05-06 2014-12-24 ニプロ株式会社 Bone regeneration material
JPWO2013157638A1 (en) 2012-04-19 2015-12-21 国立研究開発法人物質・材料研究機構 Biomaterials coated with HAp / Col composite
EP3263064B1 (en) 2015-02-25 2022-12-07 National University Corporation Tokyo Medical and Dental University Medical orthodontic device and device structure for dental use
EP3175869A1 (en) * 2015-12-04 2017-06-07 Geistlich Pharma AG Resorbable crosslinked formstable membrane
JP7467509B2 (en) * 2019-06-14 2024-04-15 ガイストリッヒ ファーマ アーゲー Injectable aqueous implant formulations containing ascorbic acid

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3247899B2 (en) * 1991-12-25 2002-01-21 三井化学株式会社 Method for producing hydroxyapatite
JP2775386B2 (en) * 1993-10-04 1998-07-16 科学技術庁無機材質研究所長 Apatite-organic compound composite and its manufacturing method
JP2990335B2 (en) * 1995-07-06 1999-12-13 富田製薬株式会社 Hydroxyapatite for toothpaste formulation and method for producing the same

Also Published As

Publication number Publication date
JPH11199209A (en) 1999-07-27

Similar Documents

Publication Publication Date Title
JP3592920B2 (en) Method for producing organic-inorganic oriented composite material
US7163965B2 (en) Process for producing porous composite materials
Zakaria et al. Nanophase hydroxyapatite as a biomaterial in advanced hard tissue engineering: a review
Lin et al. Structure and properties of hydroxyapatite for biomedical applications
ES2321411T3 (en) OXIAPATITA REPLACED WITH SILICON.
US5149368A (en) Resorbable bioactive calcium phosphate cement
JPH11506659A (en) Biocompatible hydroxyapatite formulations and uses thereof
US20120207839A1 (en) Mineralized Collagen/Bioceramic Composite and Manufacturing Method Thereof
JP2003190271A (en) Organic-inorganic composite biological material and manufacturing method for the same
JPH062154B2 (en) Powder for coating calcium phosphate-based substance, coating method and composite bioceramics
CN100540073C (en) The composite biological material that is used for bone implant
WO2020206799A1 (en) Method for preparing three-dimensional bioprinting ink and application thereof
JP2020508721A (en) A method for engineering instant nanoporous bioartificial bone tissue composites
KR20150126669A (en) Bone substitutes grafted by mimetic peptides of human bmp-2 protein
KR101678956B1 (en) biodegradable composites for bone fixation using polylactide and hydroxyapatite, manufacturing method thereof
JP3048289B2 (en) Collagen-calcium phosphate composite material and use thereof
Lagopati et al. Hydroxyapatite scaffolds produced from cuttlefish bone via hydrothermal transformation for application in tissue engineering and drug delivery systems
EP3468632B1 (en) Settable bone void filler
KR20150112349A (en) biodegradable composites for bone fixation using polylactic acid and calcium phosphate, manufacturing method thereof
JP2003169845A (en) Sponge-like porous apatite-collagen composite, sponge-like superporous apatite-collagen composite and method of manufacturing the same
Andronescu et al. Nano-hydroxyapatite: novel approaches in biomedical applications
Wei et al. Design of injectable poly (γ-glutamic acid)/chondroitin sulfate hydrogels with mineralization ability
WO2003049780A1 (en) Biocompatible composite material with an osteotropic action
WO2003075971A1 (en) Control of biodegradability of composite biomaterial
CN105536059A (en) Self-repairing injectable bone cement and preparation method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040826

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140903

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term