JP3592753B2 - Brine direct electrolysis type sub-liquid generator - Google Patents

Brine direct electrolysis type sub-liquid generator Download PDF

Info

Publication number
JP3592753B2
JP3592753B2 JP19093394A JP19093394A JP3592753B2 JP 3592753 B2 JP3592753 B2 JP 3592753B2 JP 19093394 A JP19093394 A JP 19093394A JP 19093394 A JP19093394 A JP 19093394A JP 3592753 B2 JP3592753 B2 JP 3592753B2
Authority
JP
Japan
Prior art keywords
electrolytic
hypochlorite
electrolysis
salt
brine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19093394A
Other languages
Japanese (ja)
Other versions
JPH0835087A (en
Inventor
善胤 田村
Original Assignee
有限会社徳島商科
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社徳島商科 filed Critical 有限会社徳島商科
Priority to JP19093394A priority Critical patent/JP3592753B2/en
Publication of JPH0835087A publication Critical patent/JPH0835087A/en
Application granted granted Critical
Publication of JP3592753B2 publication Critical patent/JP3592753B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は塩水直接電解式次亜液生成装置に関し、電解槽で電解後の次亜液に塩分を補充して再度電解するようにしたものである。
【0002】
【従来の技術】
従来、水道水等の消毒用の次亜液を生成する場合、塩水直接電解式の次亜液生成装置を用い、濃度3%程度の塩水を電解槽で電解して、濃度1%程度の次亜塩素酸ソーダを生成する方法を採っている。
【0003】
【発明が解決しようとする課題】
従来の次亜液生成装置で次亜液を生成した場合、約1%の食塩が次亜塩素酸ソーダに等価変換し、残りの約2%の塩水が未利用のままで次亜液に含有する。そして、この約2%の塩水を含有する次亜液を水道水等に注入しているため、約2%の塩分が全て無駄になり、次亜液の生成に使用する食塩の消費量が増大してコストアップを招くと共に、水道水等の塩分の濃度が高くなる欠点がある。
【0004】
また従来の次亜液は、次亜塩素酸ソーダの濃度が約1%の低濃度であり、その含有率が低いため、水道水等を消毒する場合に多量の次亜液を必要とする。従って、生成次亜液を貯留する次亜液槽が大型化し、設備全体のコストが大幅にアップする問題がある。
【0005】
本発明は、かかる従来の課題に鑑み、次亜液の含有塩水を有効に利用できると共に、次亜塩素酸ソーダの含有率を高めることができ、しかも低食塩次亜液を生成できる塩水直接電解式次亜液生成装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
発明は、塩水を電解する電解槽4,5 を備え、該電解槽 4,5 塩水を電解して次亜液を生成するようにした塩水直接電解式次亜液生成装置において、前記電解槽 4,5 を直列状に複数個備え、該電解槽 4,5 間に、電解槽 4 で電解後の次亜液に塩分を補充する塩分補充手段 6 を介装し、該塩分補充手段 6 で塩分を補充した後の次亜液を再度電解するようにしたものである。
【0007】
【作用】
発明では、電解槽4,5 で電解後の次亜液に塩分補充手段 6 により塩分を補充し、その 後、次亜液を電解槽 4,5 で再度電解する。このため、含有塩水を有効に利用して、次亜塩素酸ソーダの含有率の高い低食塩次亜液を容易に生成できる。また電解後の次亜液に塩分を補充して再度電解するので、電解槽 4,5 での電解効率が向上する。更に電解槽 4,5 を直列状に複数個備え、その各電解槽 4,5 間に塩分補充手段 6 を介装しているため、各電解槽 4,5 に付属する機器類が少なくなる。
【0008】
【実施例】
以下、本発明の実施例を図面に基づいて詳細に説明する。図1は本発明に係る塩水直接電解式次亜液生成装置の第1実施例を例示し、1 は水源、2 は飽和塩水槽で、この飽和塩水槽2 には濃度30〜35%程度の飽和塩水が貯留されている。3 は供給手段で、この供給手段3 は飽和塩水槽2 の飽和塩水を定量ずつ供給する定量ポンプ等により構成されており、飽和塩水槽2 の飽和塩水を水源1 からの水に調合して電解に適した約3%の濃度の塩水を作るようになっている。
【0009】
4 は第1電解槽、5 は第2電解槽で、これらの各電解槽4,5 は槽内に多数の電極を備え、その電極間に流れる直流電流により塩水を直接電解して無隔膜法によって次亜液を生成するようになっている。6 は塩分補充手段で、前記供給手段3 と、第1電解槽4 と第2電解槽5 との間に介装されたミキシングポンプ等の調合手段7 とを備え、第1電解槽4 で電解して生成された次亜液と飽和塩水とを調合して次亜液に塩分を補充し、電解に適した約3%の濃度の塩水にするようになっている。
【0010】
給手段3 の出側は第1電解槽4 の入側と調合手段7 の入側とに接続されており、その供給手段3 と調合手段7 との間には調節弁8 が介在され、この調節弁8 により飽和塩水の供給量を調節するようになっている。9 は冷却手段で、第1電解槽4 と調合手段7 との間に介装され、且つ第1電解槽4 で電解後の次亜液の温度を第2電解槽5 での電解に適した温度まで強制的に冷却するようになっている。10は次亜液槽で、第2電解槽5 を通過して生成さた次亜液を貯留するようになっている。
【0011】
上記構成の塩水直接電解式次亜液生成装置で次亜液を生成する場合には、次のように行う。まず水源1 からの水に飽和塩水槽2 からの飽和塩水を調合して濃度約3%の塩水を作り、この塩水を第1電解槽4 で直接電解式により電解して濃度約1%の次亜液を生成する。次に、この第1電解槽4 での電解後の次亜液を冷却手段9 により第2電解槽5 での電解に適した温度まで冷却し、第2電解槽5 における電解に適した温度に制御する。これは、第1電解槽4 での電解時に温度が上昇し、そのままで再度電解すれば、第2電解槽5 での電解効率が低下するためである。
【0012】
一方、塩分補充手段6 の供給手段3 により飽和塩水槽2 内の飽和塩水を定量ずつ調合手段7 に供給し、この調合手段7 において、第1電解槽4 で生成した次亜液に飽和塩水を調合して、濃度が約3%となるように次亜液に塩分を補充する。即ち、第1電解槽4 で生成した次亜液の塩水濃度は約2%程度になっているので、この次亜液に濃度30%の飽和塩水を所定量だけ調合して、その塩水濃度を第2電解槽5 での電解に適した約3%程度まで上げる。
【0013】
そして、約3%の塩水濃度になった次亜液を第2電解槽5 に送り込み、この第2電解槽5 で再度電解して次亜液を生成する。すると、この第2電解槽5 でも約1%の塩水が次亜塩素酸ソーダに等価変換するので、この第2電解槽5 を通過した次亜液は約2%程度まで濃度がアップする。
【0014】
このように第1電解槽4 で生成した次亜液に塩分を補充して、その塩分濃度を3%程度に上げた後、第2電解槽5 で再度電解して次亜液を生成することにより、第2電解槽5 を通過した次亜液は、約2%の次亜塩素酸ソーダを含有したものになる。従って、これによって次亜塩素酸ソーダの含有率をアップせることができると共に、含有塩水を次亜液の生成に有効に利用することができ、食塩の消費量を大幅に削減することができる。また第2電解槽5 を通過した次亜液の塩水濃度は約2%であるが、次亜液中の次亜塩素酸ソーダの含有率がアップするため、相対的に塩水含有率が低下することになり、低食塩次亜液を生成することができる。
【0015】
しかも、次亜液中の次亜塩素酸ソーダの含有率がアップするため、生成後の次亜液を次亜液槽10に貯留する場合にも、その次亜液槽10 容積を小さくすることができ、設備全体のコストを低減することが可能である。更に、第1電解槽4 で生成した次亜液をそのまま第2電解槽5 に送り込んで再度電解するのではなく、第2電解槽5 に送る前に塩分補充手段6 により次亜液に塩分を補充して約3%濃度の塩水にしているので、第2電解槽5 での電解時にも効率的に電解することができる。
【0016】
しかも、第1電解槽4 で電解後の次亜液を冷却手段9 で冷却しているため、温度的な点からも、第2電解槽5 での電解効率を向上させることができる。このため、食塩の消費量を削減できることと相まって、ランニングコストを大幅に低減することが可能である。
【0017】
図2は本発明に係る塩水直接電解式次亜液生成装置の第2次亜液を例示し、調合手段7 の調合部7aの出側と第1電解槽4 の入側との間、及び第2電解槽5 の出側と調合手段7 の飽和塩水の入側との間に循環路11,12 が夫々設けられている。各循環路11,12 は循環ポンプ13,14 及び開閉弁15,16 等が介装され、各電解槽4,5 を通過した次亜液の一部を循環路11,12 を介して各電解槽4,5 の出側から入側に戻して循環させながら、次亜液に塩分を補充して各電解槽4,5 で繰り返し電解するようになっている。
【0018】
なお、各循環ポンプ13,14 、開閉弁15,16 は、生成すべき次亜液中の次亜塩素酸ソーダの含有率を適宜調節できるように、必要に応じて選択的に運転又は開閉できるようになっている。
【0019】
この実施例では、各電解槽4,5 で電解し生成した後の次亜液を循環路11,12 を介して再度各電解槽4,5 の入側に戻して循環させながら、各電解槽4,5 で電解するので、最終の次亜液中の次亜塩素酸ソーダの含有率を高くする場合にも、多数の電解槽4,5 を直列状に多段に設置するものに比較して、その設備全体を小型化することができる。従って、小スペースでの設置が可能である。
【0020】
以上、本発明の各実施例を説明したが、本発明は実施例に限定されるものではない。例えば、第1実施例において、その冷却手段9 は調合手段7 と電解槽4,5 の間に設けても良い。塩分補充手段6 の調合手段7 には調合槽を採用し、その調合槽内で次亜液と飽和塩水とを調合するようにしても良い。第2実施例の場合、第2電解槽5 省略して、第1電解槽4 のみで循環させるようにしても良い。
【0021】
また各実施例とも、複数個の電解槽4,5 を直列状に多段階に設けても良く、電解槽4,5 をN個設けて、塩分を補充しながらN回電解を繰り返すようにすれば、その電解の回数に略比例した濃度の次亜液を生成することができる。更に、実施例では、飽和塩水槽2 からの飽和塩水を塩分の補充用に兼用し、全体の設備を簡単にしているが、これは別個に設けても良い。
【0022】
【発明の効果】
発明によれば、塩水を電解する電解槽4,5 を備え、該電解槽 4,5 塩水を電解して次亜液を生成するようにした塩水直接電解式次亜液生成装置において、前記電解槽 4,5 を直 列状に複数個備え、該電解槽 4,5 間に、電解槽 4 で電解後の次亜液に塩分を補充する塩分補充手段 6 を介装し、該塩分補充手段 6 で塩分を補充した後の次亜液を再度電解するようにしているので、次亜液の含有塩水を有効に利用できると共に、次亜塩素酸ソーダの含有率を高めることができ、しかも低食塩次亜液を生成できる。
【図面の簡単な説明】
【図1】本発明の第1実施例を例示する構成図である。
【図2】本発明の第2実施例を例示する構成図である。
【符号の説明】
1 水源
2 飽和塩水槽
3 供給手段
4 第1電解槽
5 第2電解槽
6 塩分補充手段
7 調合手段
9 冷却手段
11,12 循環路
[0001]
[Industrial applications]
The present invention has as relates salt water directly electrolytic following gasping generator, again electrolysis supplemented with salt to sodium hypochlorite solution after electrolysis in the electrolytic cell.
[0002]
[Prior art]
Conventionally, in the case of producing hypochlorite for disinfection of tap water or the like, a saline solution having a concentration of about 3% is electrolyzed in an electrolyzer using a saltwater direct electrolysis-type hypochlorite generator, and a hypochlorite solution having a concentration of about 1% is produced. The method of producing sodium chlorite is adopted.
[0003]
[Problems to be solved by the invention]
When hypochlorite is generated by a conventional hypochlorite generator, about 1% of sodium chloride is equivalently converted to sodium hypochlorite, and the remaining about 2% of salt water is contained in the hypochlorite without being used. I do. Then, since the hypochlorite containing about 2% salt water is injected into tap water or the like, about 2% of the salt is wasted, and the consumption of salt used for the production of hypochlorite increases. In addition to this, there is a disadvantage that the cost is increased and the concentration of the salt such as tap water is increased.
[0004]
In addition, the conventional hypochlorite has a low concentration of sodium hypochlorite of about 1% and a low content thereof, so that a large amount of hypochlorite is required when disinfecting tap water or the like. Therefore, there is a problem that the size of the hypo-subsidiary tank for storing the generated hypo-subsidiary liquid is increased, and the cost of the entire equipment is significantly increased.
[0005]
The present invention, according view of the conventional problems, it is possible to effectively utilize the content brine TsugiAeki, it is possible to increase the content of sodium hypochlorite, yet salt water that can generate a low common salt following gasping It is an object of the present invention to provide a direct electrolysis type hypochlorite generator.
[0006]
[Means for Solving the Problems]
The present invention comprises an electrolytic bath 4,5 electrolyzing brine in brine direct electrolytic following gasping generating apparatus by electrolyzing the brine in the electrolytic bath 4 and 5 so as to generate the next gasping, the electrolyte A plurality of tanks 4 , 5 are provided in series, and between the electrolysis tanks 4 , 5 , a salt replenishment means 6 for replenishing the hypochlorite after electrolysis in the electrolysis tank 4 with salt is interposed, and the salt replenishment means 6 is provided. in is obtained so as to electrolyze the following gasping after supplemented with salt again.
[0007]
[Action]
In the present invention, salt supplemented by salt supplement means 6 to the next sub-solution after electrolysis in the electrolytic bath 4 and 5, the following again electrolyzed following gasping in an electrolytic cell 4,5. For this reason, it is possible to easily produce a low sodium hypochlorite solution having a high sodium hypochlorite content content by effectively utilizing the salt water contained. In addition, since the sub-solution after electrolysis is supplemented with the salt content and electrolyzed again , the electrolysis efficiency in the electrolysis tanks 4 and 5 is improved. Further comprising a plurality of electrolytic cells 4 and 5 in a serial manner, since the interposed salt supplement means 6 between the respective electrolytic cells 4 and 5, equipment that comes with the electrolytic bath 4, 5 is reduced.
[0008]
【Example】
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 illustrates a first embodiment of a brine direct electrolysis type hypochlorite generator according to the present invention, wherein 1 is a water source, 2 is a saturated brine tank, and the saturated brine 2 has a concentration of about 30 to 35%. Saturated salt water is stored. Reference numeral 3 denotes a supply means. The supply means 3 is constituted by a metering pump or the like for supplying the saturated salt water in the saturated salt water tank 2 at a constant rate, and mixes the saturated salt water in the saturated salt water tank 2 with water from the water source 1 to perform electrolysis. About 3% salt water, suitable for
[0009]
Reference numeral 4 denotes a first electrolytic cell, and 5 denotes a second electrolytic cell. Each of these electrolytic cells 4, 5 has a large number of electrodes in the cell. This produces a hypo-sub liquid. Numeral 6 is a salt replenishing means, which comprises the supply means 3 and a mixing means 7 such as a mixing pump interposed between the first electrolytic cell 4 and the second electrolytic cell 5. The resulting hypochlorite is mixed with saturated saline to replenish the hypochlorite with salt, so as to obtain a saltwater having a concentration of about 3% suitable for electrolysis.
[0010]
Exit side of the supply means 3 is connected to the input side of the compounding unit 7 and the entry side of the first electrolytic bath 4, regulating valve 8 is interposed between the supply means 3 and the compounding unit 7, The control valve 8 controls the supply amount of the saturated salt water. Reference numeral 9 denotes a cooling means which is interposed between the first electrolytic cell 4 and the preparation means 7 and which adjusts the temperature of the hypochlorite after electrolysis in the first electrolytic cell 4 for electrolysis in the second electrolytic cell 5. It is forcibly cooled to the temperature. 10 is a hypophosphite solution tank, so as to store the next gasping generated through the second electrolytic bath 5.
[0011]
When a hypochlorite is generated by the brine direct electrolysis type hypochlorite generator having the above-described configuration, the process is performed as follows. First, the salt water from the water source 1 is mixed with the saturated salt water from the saturated salt water tank 2 to make a salt water having a concentration of about 3%, and the salt water is directly electrolyzed in the first electrolytic tank 4 by the electrolytic method to obtain a salt water having a concentration of about 1%. Generate a sub-liquor. Next, the hypochlorite after electrolysis in the first electrolyzer 4 is cooled by a cooling means 9 to a temperature suitable for electrolysis in the second electrolyzer 5 to a temperature suitable for electrolysis in the second electrolyzer 5. Control. This is because the temperature rises during electrolysis in the first electrolytic cell 4 and if the electrolysis is performed again as it is, the electrolytic efficiency in the second electrolytic cell 5 decreases.
[0012]
On the other hand, the saturated salt water in the saturated salt water tank 2 is supplied to the mixing means 7 by a fixed amount by the supply means 3 of the salt content replenishing means 6 to the mixing means 7, and the saturated salt water is added to the hypochlorite generated in the first electrolytic tank 4 by the mixing means 7. Mix and replenish the hypochlorite with salt to a concentration of about 3%. That is, since the concentration of the salt solution in the hypochlorite generated in the first electrolytic cell 4 is about 2%, a predetermined amount of saturated salt solution having a concentration of 30% is mixed with the solution, and the concentration of the salt solution is reduced. Raise it to about 3% suitable for electrolysis in the second electrolytic cell 5.
[0013]
Then, the hypochlorite having a salt water concentration of about 3% is sent to the second electrolysis tank 5 and electrolyzed again in the second electrolysis tank 5 to generate a hypochlorite. Then, in the second electrolytic cell 5, about 1% of salt water is equivalently converted into sodium hypochlorite, and the concentration of the hypochlorite passing through the second electrolytic cell 5 is increased to about 2%.
[0014]
In this manner, the hypochlorite generated in the first electrolytic cell 4 is replenished with salt, the salt concentration is increased to about 3%, and then electrolysis is performed again in the second electrolytic tank 5 to generate the hypochlorite. Thus, the hypochlorite passed through the second electrolytic cell 5 contains about 2% sodium hypochlorite. Accordingly, whereby it is possible to up the content ratio of sodium hypochlorite, it is possible to effectively utilize the content saline to generate the next gasping, it is possible to significantly reduce the consumption of salt . Further, the concentration of the salt water in the hypochlorite passed through the second electrolytic cell 5 is about 2%, but the content of sodium hypochlorite in the hypochlorite increases, so that the salt water content relatively decreases. In other words, a low-saline hypochlorite can be generated.
[0015]
Moreover, since the content of sodium hypochlorite in TsugiAeki comes up, when storing the next sub liquid after generating the hypochlorite solution tank 10 is also to reduce the volume of the next sub-tank 10 It is possible to reduce the cost of the entire equipment. The first next gasping generated in the electrolytic bath 4 construed as re conductive by feeding to the second electrolytic bath 5 Runode not, salinity by salinity supplement means 6 before being sent to the second electrolytic bath 5 to the next sub-liquid Is replenished into salt water having a concentration of about 3%, so that the electrolysis can be efficiently performed even in the second electrolyzer 5.
[0016]
In addition, since the hypochlorite after electrolysis in the first electrolyzer 4 is cooled by the cooling means 9, the electrolysis efficiency in the second electrolyzer 5 can be improved from the viewpoint of temperature. For this reason, the running cost can be significantly reduced in combination with the reduction in the consumption of salt.
[0017]
FIG. 2 illustrates a secondary sub-solution of the salt water direct electrolysis type hypo-sub-liquid producing apparatus according to the present invention, which is provided between the outlet side of the blending section 7a of the blending means 7 and the inlet side of the first electrolytic cell 4. Circulation paths 11 and 12 are provided between the outlet side of the second electrolytic cell 5 and the inlet side of the saturated salt water of the mixing means 7, respectively. Each of the circulation paths 11 and 12 is provided with circulation pumps 13 and 14 and on-off valves 15 and 16, etc., and a part of the hypochlorite passed through each of the electrolysis tanks 4 and 5 is passed through the circulation paths 11 and 12 to each of the electrolysis paths. While being returned from the outlet side of the tanks 4 and 5 to the inlet side and circulated, the hypochlorite is supplemented with salt, and the electrolysis is repeated in each of the electrolytic tanks 4 and 5.
[0018]
Each of the circulation pumps 13 and 14 and the on-off valves 15 and 16 can be selectively operated or opened and closed as necessary so that the content of sodium hypochlorite in the hypochlorite to be produced can be appropriately adjusted. It has become.
[0019]
In this embodiment, the hypochlorite after being electrolyzed and generated in each of the electrolytic cells 4 and 5 is returned to the inlet side of each of the electrolytic cells 4 and 5 via the circulation paths 11 and 12 and circulated, while Since the electrolysis is carried out in 4,5, even when the content of sodium hypochlorite in the final hypochlorite is to be increased, compared to the case where a large number of electrolysis tanks 4,5 are installed in multiple stages in series. Thus, the entire equipment can be reduced in size. Therefore, installation in a small space is possible.
[0020]
The embodiments of the present invention have been described above, but the present invention is not limited to the embodiments. For example, in the first embodiment, the cooling means 9 may be provided between the compounding unit 7 Doo electrolytic bath 4, 5. A mixing tank may be used as the mixing means 7 of the salt replenishing means 6, and the hypochlorite and the saturated salt water may be mixed in the mixing tank. In the case of the second embodiment, the second electrolytic cell 5 may be omitted, and circulation may be performed only in the first electrolytic cell 4.
[0021]
Further, in each embodiment, a plurality of electrolytic cells 4, 5 may be provided in multiple stages in series, and N electrolytic cells 4, 5 are provided, and electrolysis is repeated N times while replenishing salt. If this is the case, it is possible to generate a hypochlorite having a concentration substantially proportional to the number of times of the electrolysis. Further, in the embodiment, the saturated salt water from the saturated salt water tank 2 is also used for replenishing the salt, thereby simplifying the entire equipment. However, this may be provided separately.
[0022]
【The invention's effect】
According to the present invention, including the electrolytic bath 4, 5 electrolyzing brine in brine direct electrolytic following gasping generating apparatus by electrolyzing the brine in the electrolytic bath 4 and 5 so as to generate the next gasping, wherein comprising a plurality of electrolytic cells 4 and 5 in series form, between the electrolytic bath 4 and 5, interposed salinity supplement means 6 for replenishing the salt into sodium hypochlorite solution after electrolysis in the electrolytic bath 4, the salt content Since the hypochlorite after replenishing the salt with the replenishing means 6 is electrolyzed again , the salt water contained in the hypochlorite can be effectively used, and the sodium hypochlorite content can be increased, In addition, low salt hypochlorite can be generated.
[Brief description of the drawings]
FIG. 1 is a configuration diagram illustrating a first embodiment of the present invention.
FIG. 2 is a configuration diagram illustrating a second embodiment of the present invention;
[Explanation of symbols]
1 water source
2 Saturated salt water tank
3 Supply means
4 First electrolytic cell
5 Second electrolytic cell
6 Salt replenishment means
7 Mixing means
9 Cooling means
11,12 circuit

Claims (3)

塩水を電解する電解槽(4)(5)を備え、該電解槽 (4)(5) 塩水を電解して次亜液を生成するようにした塩水直接電解式次亜液生成装置において、前記電解槽 (4)(5) を直列状に複数個備え、該電解槽 (4)(5) 間に、電解槽 (4) で電解後の次亜液に塩分を補充する塩分補充手段 (6) を介装し、該塩分補充手段 (6) で塩分を補充した後の次亜液を再度電解するようにしたことを特徴とする塩水直接電解式次亜液生成装置。 Comprising electrolytic cell electrolyzing brine (4) (5), the electrolytic bath (4) (5) brine direct electrolytic following gasping generating apparatus adapted to generate the next gasping by electrolyzing the brine in, wherein comprising a plurality electrolytic cell (4) (5) in a serial manner, electrolytic tank (4) between (5), salt replenishing means for replenishing the salt into sodium hypochlorite solution after electrolysis in an electrolytic cell (4) ( 6) interposed, brine direct electrolytic following gasping generating device is characterized in that so as to electrolyze the following gasping after supplemented with salt again salt content supplement means (6). 電解槽 (4)(5) 電解後の次亜液に塩分補充手段 (6) で塩分を補充して再度該電解槽 (4)(5) で電解するように、該電解槽 (4)(5) の出側から入側に次亜液を循環させる循環路 (11)(12) を設けたことを特徴とする請求項1に記載の塩水直接電解式次亜液生成装置。 The electrolytic cell (4) so that the hypochlorite after electrolysis in the electrolytic cells (4) and (5) is replenished with salt by the salt replenishing means (6 ) and electrolyzed again in the electrolytic cells (4) and (5 ). (5) circulating path (11) for circulating the hypochlorite solution from the outlet side to the inlet side of (12) brine direct electrolytic hypochlorite solution producing formation apparatus according to claim 1, characterized in that a. 電解後の次亜液を再度電解する前に、電解に適した温度に冷却する冷却手段 (9) を設けたことを特徴とする請求項1又は2に記載の塩水直接電解式次亜液生成装置。 3. A brine direct electrolysis type hypochlorite generation according to claim 1 or 2, wherein a cooling means (9) for cooling to a temperature suitable for electrolysis is provided before the electrolysis of the hypochlorite after electrolysis again. apparatus.
JP19093394A 1994-07-20 1994-07-20 Brine direct electrolysis type sub-liquid generator Expired - Fee Related JP3592753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19093394A JP3592753B2 (en) 1994-07-20 1994-07-20 Brine direct electrolysis type sub-liquid generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19093394A JP3592753B2 (en) 1994-07-20 1994-07-20 Brine direct electrolysis type sub-liquid generator

Publications (2)

Publication Number Publication Date
JPH0835087A JPH0835087A (en) 1996-02-06
JP3592753B2 true JP3592753B2 (en) 2004-11-24

Family

ID=16266106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19093394A Expired - Fee Related JP3592753B2 (en) 1994-07-20 1994-07-20 Brine direct electrolysis type sub-liquid generator

Country Status (1)

Country Link
JP (1) JP3592753B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4197893B2 (en) 2001-12-28 2008-12-17 株式会社オメガ Method and apparatus for producing washing / cleaning sterilizing water
KR101077199B1 (en) * 2011-03-14 2011-10-27 김경수 Open cell apparatus for manufacturing naocl
RU2503615C1 (en) * 2012-05-29 2014-01-10 Общество с ограниченной ответственностью научно-производственное предприятие "ЭКОФЕС" Method of concentrating weak solution of sodium hypochloride

Also Published As

Publication number Publication date
JPH0835087A (en) 1996-02-06

Similar Documents

Publication Publication Date Title
US6814858B2 (en) Water treatment system
JPH0293088A (en) Method and device for water electrolysis
KR19990072981A (en) Apparatus for producing electrolytic solution
KR950027988A (en) Electrolytic water generation method and apparatus
US5935393A (en) Apparatus for producing hypochlorite
JP2012246553A (en) Seawater electrolysis system and seawater electrolysis method
CN106029581A (en) Method and apparatus for controlling concentration of free chlorine, and sterilization method and sterilization apparatus each utilizing said method and said apparatus
JPH07155760A (en) Device for producing electrolyzed water
KR101969585B1 (en) Sodium hypochlorite generator
US7695606B2 (en) Electrolytic device and method for disinfecting water in a water supply system by means of the generation of active chlorine
JP3592753B2 (en) Brine direct electrolysis type sub-liquid generator
KR100706118B1 (en) Device for supplementing water of salt water-reservoir for device for generating sodium hypochlorite
KR101840234B1 (en) Chlorine water electrolysis apparatus capable of regulating chloride dosage and temperature
KR20030009158A (en) Hypochlorous Acid Generating Method and Device
KR101510455B1 (en) System For Generating On-Site Un-Divided Type High-Efficiency Sodium Hypochlorite
JP3409996B2 (en) Ozone water production apparatus and method for producing ozone water using the apparatus
KR102250773B1 (en) System for generating oxidizers
JPH07299457A (en) Electrolyzed water producing device
CN113637973B (en) Online recycling system and method for acid etching waste liquid
JPH06312185A (en) Electrolytic water forming apparatus
JPH05179475A (en) Production of hypochlorite
JP6300252B1 (en) Water treatment system, electrode corrosion inhibiting method and electrode corrosion inhibiting device for water treatment system
SU833177A3 (en) Device for chlorine feeding to accumulator
JP3230735U (en) Special water generator
JP3790362B2 (en) Electrolytic sodium hypochlorite generator

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040826

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070903

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees