JP3592744B2 - Gas turbine air-cooled blade - Google Patents

Gas turbine air-cooled blade Download PDF

Info

Publication number
JP3592744B2
JP3592744B2 JP08448694A JP8448694A JP3592744B2 JP 3592744 B2 JP3592744 B2 JP 3592744B2 JP 08448694 A JP08448694 A JP 08448694A JP 8448694 A JP8448694 A JP 8448694A JP 3592744 B2 JP3592744 B2 JP 3592744B2
Authority
JP
Japan
Prior art keywords
cooling
fins
passage
air
same
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08448694A
Other languages
Japanese (ja)
Other versions
JPH07293203A (en
Inventor
賢一郎 武石
陽一郎 入谷
正昭 松浦
満 稲田
康意 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Tohoku Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP08448694A priority Critical patent/JP3592744B2/en
Publication of JPH07293203A publication Critical patent/JPH07293203A/en
Application granted granted Critical
Publication of JP3592744B2 publication Critical patent/JP3592744B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Description

【0001】
【産業上の利用分野】
本発明は翼内部に対流冷却を適用したガスタービン空冷翼に関する。
【0002】
【従来の技術】
従来のガスタービン空冷翼について図5乃至図8により説明する。図5は空冷翼の断面図、図6はそのB−B断面図、図7は翼内面局所熱伝達率分布図、図8は他の形式の翼内面の局所熱伝達分布の説明図である。図5、図6において、ガスタービンの空冷翼1の内部は第1冷却通路6、第2冷却通路7、第3冷却通路8が設けられ、これらは連通し、冷却空気20はこれら通路を通り、空冷翼1の後方へ出るようになっている。これら通路内には、斜めフィン2が複数本、空冷翼1の腹側21に取付けられ、斜めフィン3はフィン2の傾斜とは逆方向の傾斜を有して空冷翼1の背側22に取付けられている。4、5は内部のリブで、内部を区分し、それぞれ、第1〜第3冷却通路を形成するものである。このような構成により翼は冷却空気がこれら第1〜第3通路6、7、8を通ることにより、冷却される。
【0003】
斜めフィン2、3は空冷翼1の内部の空気流れに乱れを生じさせて、フィンに沿った旋回流が発生し、冷却通路の熱伝達率を向上させて、冷却性能を向上させるものである。また、フィン2、3を流れに斜めにすることによって直交の場合より平均熱伝達率が向上することは従来周知のことである。
【0004】
しかし、従来の冷却翼1では図5に示すように斜めフィン2、3の傾斜の向きは、腹側21では斜めフィン2が第1、第2、第3冷却通路6、7、8と共に同じ向きに傾斜しており、背側22も斜めフィン3が第1、第2、第3冷却通路6、7、8共フィン2とは逆方向の同じ向きに傾斜している。このフィン2、3を共に同じ方向に傾斜させてもよいが、この場合には、図8に示すように局所熱伝達率の高い領域10、11が図示のようにリブ4に集中するようになり、全体を一様に冷却する観点からは好ましくない。
【0005】
【発明が解決しようとする課題】
図4は斜めフィンを互に逆方向に傾斜させた翼の局所熱伝達率の分布の説明図であり、図に示すように、片寄った分布となり、背側22の内面では局所熱伝達率の高い領域11が、腹側21の内面では同じく高い領域10が片寄って発生する。この理由は、斜めフィンを用いた場合にはフィンに沿った2次流れが生じ、この2次流れは伝熱面に向う流れでは局所熱伝達率が大きくなり、伝熱面から離れる流れでは局所熱伝達率が小さくなるため片寄った分布となる。
【0006】
このため、空冷翼1の内面の局所熱伝達率の高い領域は図7に10、11で示すように分布する。この図において、特に、リブ4の背側22には、内面冷却不足領域12aが、又、リブ5の腹側21には、同じく不足領域12bが生じ、この部分は冷却不足となる。従って、このような冷却不足の領域が片寄って発生しないような斜めフィンの配置が必要となる。
【0007】
【課題を解決するための手段】
本発明はこのような課題を解決するために、空冷翼内の冷却通路の内面の腹側、背側に設けられた斜めフィンを各通路の同じ側の斜めフィンの傾きは同じとし、隣接する通路の同じ側のフィンとは交互に逆の傾きとして、かつ同一通路内では腹側と背側とでは互に逆の傾斜とするような構成とする。
【0008】
即ち、本発明は、ガスタービン空冷翼の内部をリブにより区切り、通路を複数列設け、かつ同複数列の通路は連通して冷却空気を流す冷却通路とし、同冷却通路の腹側と背側の両内面には熱伝達率を向上させるための前記冷却空気の流れ方向に対して腹側及び背側は同一通路内では各々同一方向に傾斜している斜めフィンを複数段設けたガスタービン空冷翼において、前記冷却通路内面の同じ側の各斜めフィンの傾斜方向は同一通路内では同じ方向にすると共に隣接する通路の同じ側の斜めフィンとは交互に逆の傾斜として、かつ、各冷却通路の前記背側、腹側の各斜めフィンとは互に逆方向の傾斜としたことを特徴とするガスタービン空冷翼を提供する。
【0009】
【作用】
本発明は前述の手段により、冷却空気は連通する冷却通路内を流れ、腹側及び背側は同一通路内では各々同一方向に傾斜すると共に同一通路内では腹側と背側とでは斜めフィンは互に逆方向に交差するように配置されているので、斜めフィンに沿った2次流れが生じ、この2次流れは伝熱面に向う流れでは局所熱伝達率が大きく、伝熱面から離れる流れでは小さくなる。従って、腹側と背側にそれぞれ局所熱伝達率の高い領域が片寄って生じ、各通路にも同様な高い領域が生じ、斜めフィンによる局所熱伝達率の高い領域が翼の腹側と背側の全面では一様な分布となるので従来の例に比べて均一になっており、従来発生した前縁側のリブの背側及び後縁側リブの腹側の冷却不足が解決される。
【0010】
【実施例】
以下、本発明の実施例を図面に基づいて具体的に説明する。図1は本発明の一実施例に係るガスタービン空冷翼の断面図、図2はそのA−A断面図、図3は本発明に係る翼内面の局所熱伝達率分布の説明図である。図1において、空冷翼1には従来と同じく、リブ4、5で第1、第2、第3冷却通路6、7、8が設けられ、冷却空気20は翼の下部より連通する第1、第2、第3冷却通路6、7、8を通り、後縁フィン9より流出する構成である。
【0011】
23(1)は第1冷却通路6の腹側21に設けられた斜めフィン(1)、23(2)は第2冷却通路7の同じく腹側21に設けられ、フィン23(1)とは逆向きの傾斜を有した斜めフィン(2)、23(3)は第3冷却通路8の腹側21に設けられ、先のフィン23(2)とは逆向きでフィン23(1)と同じ傾斜となる斜めフィン(3)である。同様に24(1)は、第1冷却室6の背後22に設けられ、腹側21のフィン23(1)とは互に逆方向に傾斜した斜めフィン(1)、24(2)は、第2冷却室7の背側22に設けられ、同様にフィン24(1)及び同じ通路7内のフィン23(2)とも逆向きの斜めフィン(2)、24(3)は第3冷却室8の背側22に設けられ、フィン24(2)及び同じ通路8内のフィン23(3)とも互に逆向きの傾斜を有する斜めフィン(3)で、これらは複数配置されている。
【0012】
このように斜めフィン23(1)、23(2)、23(3)を腹側21において第1、第2、第3冷却通路6、7、8で交互に傾きを変えて各冷却通路に複数段配置し、又、斜めフィン24(1)、24(2)、24(3)を背側22において同じく第1、第2、第3冷却通路6、7、8で交互に傾きを逆にして各冷却通路で複数段配置し、かつ、腹側21と背側22のフィン23、24は互に傾きを逆にする配置としている。
【0013】
このような斜めフィンの配置とすることにより、図3に示すように、第1冷却通路6においては、局所熱伝達率の高い領域10は腹側21のリブ4側に、11は背側22のリブ4から離れた所に生ずる。同じく、第2冷却通路7では冷却空気20は第1冷却通路6とは逆向きの流入となり、かつ斜めフィン(2)も通路7とは逆の傾斜となっており、図示の如く腹側21では10はリブ5の近くに、背側22では高い領域11がリブ5より離れ、リブ4の近くに生ずる。同様に第3冷却通路8では図示のように腹側21の10はリブ5より離れ、背側22では11がリブ5の近くに生ずることになる。
【0014】
従って、本実施例での局所熱伝達率の高い領域の分布は図7の従来の例と比較すると、一様な分布となっており、図7の従来の分布で内面冷却不足領域が背側22では12a、腹側21では12bのように生じているが、このような片寄りがなく均一な分布となり、腹側21、背側22共一様に冷却されるようになるものである。
【0015】
【発明の効果】
以上、具体的に説明したように、本発明によれば、ガスタービン空冷翼の冷却通路内の斜めフィンの傾きを従来のものと異なり、ガスタービン空冷翼の内部をリブにより区切り、通路を複数列設け、かつ同複数列の通路は連通して冷却空気を流す冷却通路とし、同冷却通路の腹側と背側の両内面には熱伝達率を向上させるための前記冷却空気の流れ方向に対して腹側及び背側は同一通路内では各々同一方向に傾斜している斜めフィンを複数段設けたガスタービン空冷翼において、前記冷却通路内面の同じ側の各斜めフィンの傾斜方向は同一通路内では同じ方向にすると共に隣接する通路の同じ側の斜めフィンとは交互に逆の傾斜として、かつ、各冷却通路の前記背側、腹側の各斜めフィンとは互に方向のとしたため、ガスタービン空冷翼の冷却空気による内部の局所熱伝達率分布が一様になり、結果として翼のメタル温度分布が従来より一様になり、熱応力が低減し、翼寿命が増加するものである。
【図面の簡単な説明】
【図1】本発明の一実施例に係るガスタービン空冷翼の断面図である。
【図2】図1におけるA−A断面図である。
【図3】本発明の一実施例に係る翼内面の局所熱伝達率分布の説明図である。
【図4】従来の斜めフィンによる局所熱伝達率分布の説明図である。
【図5】従来のガスタービン空冷翼の断面図である。
【図6】図5におけるB−B断面図である。
【図7】従来の翼内面の局所熱伝達率分布の説明図である。
【図8】従来の他の形式の空冷翼内面の局所熱伝達率分布の説明図である。
【符号の説明】
1 空冷翼
4 リブ
5 リブ
6 第1冷却通路
7 第2冷却通路
8 第3冷却通路
20 冷却空気
21 腹側
22 背側
23 斜めフィン
24 斜めフィン
[0001]
[Industrial applications]
The present invention relates to a gas turbine air-cooled blade to which convection cooling is applied inside the blade.
[0002]
[Prior art]
A conventional gas turbine air-cooling blade will be described with reference to FIGS. 5 is a cross-sectional view of the air-cooled blade, FIG. 6 is a cross-sectional view taken along line BB, FIG. 7 is a distribution diagram of local heat transfer coefficient on the blade inner surface, and FIG. . 5 and 6, a first cooling passage 6, a second cooling passage 7, and a third cooling passage 8 are provided inside the air cooling blade 1 of the gas turbine, and these are communicated with each other, and the cooling air 20 passes through these passages. , And comes out behind the air-cooled wing 1. In these passages, a plurality of oblique fins 2 are attached to the ventral side 21 of the air-cooling wing 1, and the oblique fins 3 have an inclination in a direction opposite to the inclination of the fin 2 and are provided on the back side 22 of the air-cooling wing 1. Installed. Reference numerals 4 and 5 denote internal ribs, which partition the inside and form first to third cooling passages, respectively. With such a configuration, the blades are cooled by the cooling air passing through the first to third passages 6, 7, and 8.
[0003]
The oblique fins 2 and 3 cause turbulence in the air flow inside the air-cooling wing 1 to generate a swirling flow along the fins, thereby improving the heat transfer coefficient of the cooling passage and improving the cooling performance. . Also, it is well known that the average heat transfer coefficient is improved by making the fins 2 and 3 oblique to the flow as compared with the case where the flow is orthogonal.
[0004]
However, in the conventional cooling blade 1, as shown in FIG. 5, the oblique fins 2 and 3 have the same inclination direction on the ventral side 21 together with the first, second and third cooling passages 6, 7 and 8. The oblique fins 3 also incline in the same direction in the opposite direction to the first, second, and third cooling passages 6, 7, and 8 on the back side 22 as well. The fins 2 and 3 may be both inclined in the same direction. In this case, as shown in FIG. 8, the regions 10 and 11 having a high local heat conductivity are concentrated on the ribs 4 as shown. This is not preferable from the viewpoint of uniformly cooling the whole.
[0005]
[Problems to be solved by the invention]
FIG. 4 is an explanatory diagram of the distribution of the local heat transfer coefficient of the wings in which the oblique fins are inclined in the opposite directions. As shown in the figure, the distribution is biased, and the local heat transfer coefficient The high region 11 is also offset on the inner surface of the ventral side 21. The reason for this is that when oblique fins are used, a secondary flow occurs along the fins, and the secondary flow has a large local heat transfer coefficient when flowing toward the heat transfer surface, and a local heat transfer coefficient when flowing away from the heat transfer surface. Since the heat transfer coefficient is small, the distribution is offset.
[0006]
For this reason, regions with a high local heat transfer coefficient on the inner surface of the air-cooling blade 1 are distributed as shown by 10 and 11 in FIG. In this figure, in particular, an undercooled area 12a is formed on the back side 22 of the rib 4, and an undercooled area 12b is similarly formed on the ventral side 21 of the rib 5, and this part is undercooled. Therefore, it is necessary to dispose the oblique fins so that such a region of insufficient cooling is not offset.
[0007]
[Means for Solving the Problems]
In order to solve such a problem, the present invention sets the oblique fins provided on the ventral side and the back side of the inner surface of the cooling passage in the air-cooling blade to have the same inclination of the oblique fins on the same side of each passage, and to adjoin each other. The configuration is such that the fins on the same side of the passage have alternately opposite inclinations, and the abdominal side and the back side have opposite inclinations in the same passage.
[0008]
That is, according to the present invention, the inside of the gas turbine air cooling blade is separated by a rib, a plurality of passages are provided, and the passages of the plurality of passages are formed as cooling passages through which cooling air flows, and the ventral side and the back side of the cooling passage. Gas turbine air cooling provided with a plurality of oblique fins on both inner surfaces of which are inclined in the same direction in the same passage on the ventral side and the rear side with respect to the flow direction of the cooling air for improving the heat transfer coefficient. In the blade, the inclined directions of the oblique fins on the same side of the inner surface of the cooling passage are made to have the same direction in the same passage, and are alternately opposite in inclination to the oblique fins on the same side of the adjacent passage. The gas turbine air-cooling blade is characterized in that it is inclined in the opposite direction to the oblique fins on the back side and the ventral side.
[0009]
[Action]
According to the present invention, by the above-described means, the cooling air flows in the cooling passages communicating with each other, and the ventral side and the dorsal side are inclined in the same direction in the same passage, and the oblique fins on the ventral side and the dorsal side in the same passage. Since they are arranged so as to cross each other in the opposite direction, a secondary flow along the oblique fins occurs, and this secondary flow has a large local heat transfer coefficient in the flow toward the heat transfer surface, and moves away from the heat transfer surface. It becomes smaller in the flow. Therefore, regions with high local heat transfer rates are offset on the ventral and dorsal sides, respectively, and similar high regions occur on each passage, and regions with high local heat transfer rates due to oblique fins are on the ventral and dorsal sides of the wing. Since the distribution is uniform over the entire surface, the distribution is more uniform than in the conventional example, and the insufficient cooling on the back side of the front edge side rib and the ventral side of the rear edge side rib, which has conventionally occurred, is solved.
[0010]
【Example】
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. FIG. 1 is a cross-sectional view of a gas turbine air-cooling blade according to one embodiment of the present invention, FIG. 2 is a cross-sectional view taken along line AA, and FIG. 3 is an explanatory diagram of a local heat transfer coefficient distribution on the blade inner surface according to the present invention. In FIG. 1, the air-cooling blade 1 is provided with first, second, and third cooling passages 6, 7, and 8 by ribs 4, 5 as in the conventional case, and the cooling air 20 communicates with the first and second cooling passages from the lower part of the blade. It is configured to pass through the second and third cooling passages 6, 7, 8 and flow out of the trailing edge fin 9.
[0011]
23 (1) is an oblique fin (1) provided on the ventral side 21 of the first cooling passage 6, and 23 (2) is provided on the ventral side 21 of the second cooling passage 7 as well. The oblique fins (2) and 23 (3) having the opposite inclination are provided on the ventral side 21 of the third cooling passage 8, and are opposite to the fins 23 (2) and are the same as the fins 23 (1). The inclined fins (3) are inclined. Similarly, the oblique fins (1) and 24 (2) are provided on the back 22 of the first cooling chamber 6 and are inclined in opposite directions to the fins 23 (1) on the ventral side 21. The oblique fins (2) and 24 (3) which are provided on the back side 22 of the second cooling chamber 7 and which are also opposite to the fins 24 (1) and the fins 23 (2) in the same passage 7 are also provided in the third cooling chamber. The diagonal fins (3) provided on the back side 22 of the fin 8 and having the fins 24 (2) and the fins 23 (3) in the same passage 8 having mutually opposite inclinations.
[0012]
As described above, the oblique fins 23 (1), 23 (2), and 23 (3) are alternately inclined at the first, second, and third cooling passages 6, 7, and 8 on the ventral side 21 so as to be provided to each cooling passage. The oblique fins 24 (1), 24 (2), and 24 (3) are similarly arranged on the back side 22 in the first, second, and third cooling passages 6, 7, and 8, and the inclination is alternately reversed. And the cooling passages are arranged in a plurality of stages, and the fins 23 and 24 on the ventral side 21 and the back side 22 are arranged so that the inclinations thereof are opposite to each other.
[0013]
With the arrangement of the oblique fins, as shown in FIG. 3, in the first cooling passage 6, the region 10 having a high local heat conductivity is located on the rib 4 side of the ventral side 21, and 11 is located on the back side 22. At a distance from the ribs 4. Similarly, in the second cooling passage 7, the cooling air 20 flows in the opposite direction to the first cooling passage 6, and the oblique fins (2) also have a slope opposite to that of the passage 7, as shown in FIG. 10 is near the rib 5, and on the back side 22, the high region 11 is farther from the rib 5 and occurs near the rib 4. Similarly, in the third cooling passage 8, as shown in the figure, 10 on the ventral side 21 is separated from the rib 5, and on the dorsal side 22, 11 is formed near the rib 5.
[0014]
Therefore, the distribution of the region having a high local heat transfer coefficient in the present embodiment is more uniform than that of the conventional example of FIG. 7, and the region with insufficient inner surface cooling in the conventional distribution of FIG. 22 and 12b on the ventral side 21, but such a non-uniform distribution is provided and the ventral side 21 and the dorsal side 22 are uniformly cooled.
[0015]
【The invention's effect】
As described above in detail, according to the present invention, the inclination of the oblique fins in the cooling passage of the gas turbine air-cooling blade is different from that of the conventional one, and the inside of the gas turbine air-cooling blade is divided by the ribs to form a plurality of passages. A plurality of rows are provided, and the passages of the plurality of rows are formed as cooling passages through which cooling air flows in communication with each other, and the inner surfaces of the cooling passage on the ventral side and the back side are formed in the flow direction of the cooling air for improving the heat transfer coefficient. On the other hand, in a gas turbine air-cooling blade provided with a plurality of oblique fins that are inclined in the same direction in the same passage on the ventral side and the back side, the inclination directions of the oblique fins on the same side of the cooling passage inner surface are the same. as the inverse of the slope alternately oblique fins on the same side of the adjacent channel with the same direction in the inner and the back side, each other in the reverse inclined obliquely to the respective oblique fins ventral side of the cooling passage Gas turbine air cooling Becomes uniform local heat transfer coefficient distribution inside by the cooling air, results the metal temperature distribution of the blade it becomes uniform than conventionally as the thermal stress is reduced, in which blade life is increased.
[Brief description of the drawings]
FIG. 1 is a sectional view of a gas turbine air-cooling blade according to an embodiment of the present invention.
FIG. 2 is a sectional view taken along the line AA in FIG.
FIG. 3 is an explanatory diagram of a local heat transfer coefficient distribution on an inner surface of a blade according to an embodiment of the present invention.
FIG. 4 is an explanatory diagram of a local heat transfer coefficient distribution by a conventional oblique fin.
FIG. 5 is a cross-sectional view of a conventional gas turbine air-cooling blade.
FIG. 6 is a sectional view taken along line BB in FIG.
FIG. 7 is an explanatory diagram of a conventional local heat transfer coefficient distribution on the inner surface of a blade.
FIG. 8 is an explanatory diagram of a local heat transfer coefficient distribution on the inner surface of another type of conventional air-cooled blade.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Air-cooling blade 4 Rib 5 Rib 6 First cooling passage 7 Second cooling passage 8 Third cooling passage 20 Cooling air 21 Vent side 22 Back side 23 Oblique fin 24 Oblique fin

Claims (1)

ガスタービン空冷翼の内部をリブにより区切り、通路を複数列設け、かつ同複数列の通路は連通して冷却空気を流す冷却通路とし、同冷却通路の腹側と背側の両内面には熱伝達率を向上させるための前記冷却空気の流れ方向に対して腹側及び背側は同一通路内では各々同一方向に傾斜している斜めフィンを複数段設けたガスタービン空冷翼において、前記冷却通路内面の同じ側の各斜めフィンの傾斜方向は同一通路内では同じ方向にすると共に隣接する通路の同じ側の斜めフィンとは交互に逆の傾斜として、かつ、各冷却通路の前記背側、腹側の各斜めフィンとは互に逆方向の傾斜としたことを特徴とするガスタービン空冷翼。The interior of the gas turbine air-cooling blade is separated by ribs, a plurality of rows of passages are provided, and the plurality of rows of passages are used as cooling passages through which cooling air flows, and heat is applied to both the inner surface on the ventral side and the back side of the cooling passage. In the gas turbine air-cooling blade provided with a plurality of oblique fins each of which is inclined in the same direction in the same passage on the ventral side and the rear side with respect to the flow direction of the cooling air for improving the transmission rate, the cooling passage The inclined directions of the oblique fins on the same side of the inner surface are the same in the same passage, and the slanted fins on the same side of the adjacent passage are alternately inclined in the opposite direction. A gas turbine air-cooling blade characterized by being inclined in the opposite direction to each of the oblique fins on the side.
JP08448694A 1994-04-22 1994-04-22 Gas turbine air-cooled blade Expired - Fee Related JP3592744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08448694A JP3592744B2 (en) 1994-04-22 1994-04-22 Gas turbine air-cooled blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08448694A JP3592744B2 (en) 1994-04-22 1994-04-22 Gas turbine air-cooled blade

Publications (2)

Publication Number Publication Date
JPH07293203A JPH07293203A (en) 1995-11-07
JP3592744B2 true JP3592744B2 (en) 2004-11-24

Family

ID=13831988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08448694A Expired - Fee Related JP3592744B2 (en) 1994-04-22 1994-04-22 Gas turbine air-cooled blade

Country Status (1)

Country Link
JP (1) JP3592744B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0945595A3 (en) 1998-03-26 2001-10-10 Mitsubishi Heavy Industries, Ltd. Gas turbine cooled blade
EP2182169B1 (en) 2007-08-30 2015-11-18 Mitsubishi Hitachi Power Systems, Ltd. Blade cooling structure of gas turbine
EP2378073A1 (en) * 2010-04-14 2011-10-19 Siemens Aktiengesellschaft Blade or vane for a turbomachine

Also Published As

Publication number Publication date
JPH07293203A (en) 1995-11-07

Similar Documents

Publication Publication Date Title
EP1840330B1 (en) Turbulator arrangement for passageways
US6349761B1 (en) Fin-tube heat exchanger with vortex generator
CA2594473C (en) Heat exchanger
CN101115372A (en) Heat exchanger
JPH09133488A (en) Heat exchanger with fin
JPH0112921B2 (en)
US5692561A (en) Fin tube heat exchanger having inclined slats
JP3592744B2 (en) Gas turbine air-cooled blade
JP2000154987A (en) Air heat exchanger
JPH02223602A (en) Turbine blade structure
JPH11173105A (en) Moving blade of gas turbine
US4401154A (en) Heat exchanger core with end covers
US20210389057A1 (en) Heat exchanger
CN113624042A (en) Phase-change cooling heat exchanger
JP3396360B2 (en) Gas turbine cooling blade
JPS6342197B2 (en)
JP2005308311A (en) Fin tube
JPH0493595A (en) Finned heat exchanger
JPH04103802A (en) Heat transfer promoting device and turbine cooling blade
JP2523613B2 (en) Heat exchanger with fins
JPS6235001A (en) Gas turbine air cooled blade
EP1132575A1 (en) Film cooling hole construction in gas turbine moving-vanes
JPS6143927Y2 (en)
JP2508631Y2 (en) Heat exchanger
JPS6266098A (en) Heat exchanger

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040826

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees