JP3591881B2 - Small relay - Google Patents

Small relay Download PDF

Info

Publication number
JP3591881B2
JP3591881B2 JP20100994A JP20100994A JP3591881B2 JP 3591881 B2 JP3591881 B2 JP 3591881B2 JP 20100994 A JP20100994 A JP 20100994A JP 20100994 A JP20100994 A JP 20100994A JP 3591881 B2 JP3591881 B2 JP 3591881B2
Authority
JP
Japan
Prior art keywords
contact
electromagnet
movable
substrate
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20100994A
Other languages
Japanese (ja)
Other versions
JPH0864052A (en
Inventor
孝志 氏原
一比古 佐藤
誠 宗像
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Tohoku Pioneer Corp
Pioneer Corp
Original Assignee
Japan Science and Technology Agency
Tohoku Pioneer Corp
Pioneer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, Tohoku Pioneer Corp, Pioneer Corp filed Critical Japan Science and Technology Agency
Priority to JP20100994A priority Critical patent/JP3591881B2/en
Publication of JPH0864052A publication Critical patent/JPH0864052A/en
Application granted granted Critical
Publication of JP3591881B2 publication Critical patent/JP3591881B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Micromachines (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、たとえば電子機器の配線切換え用とされる小型リレーに関する。
【0002】
【従来の技術】
電子交換機等に用いられるリレーの主要部品としての役割は重要度を増し、その形態も超小型化、低消費電力化へ移行してきた。主な用途は、回線切換用、電話等である。
【0003】
図1は、リレーの基本的構成の一例を示すものであり、電磁石10に励磁電流が供給されると、可動接点部20側の接触子21が電磁石10に吸着されることにより、可動接点バネ22に設けられている接点23がメーク側の固定接点31に接触し、励磁電流の供給が断たれると可動接点部20は復旧バネ35の付勢力によって回動し可動接点バネ22の接点23がブレーク側の固定接点32に接触するようになっている。
【0004】
【発明が解決しようとする課題】
ところが、上述した従来のリレーでは、電磁石10の電磁作用によって可動接点部20を可動させ、復旧に際しては復旧バネ35の付勢力によって可動接点部20を戻す構成がとられているために、小型薄型化を図る上で妨げとなっている。
【0005】
また、可動接点部20は比較的重量があるばかりか、可動接点部20の戻しは復旧バネ35の付勢力によって行われるため、可動接点部20の動きが緩慢となり、リレー切換えの高速化を図る上で妨げとなっている。
【0006】
更に、多チャンネルにする場合には、複数のリレーを並べて使用しなければならず、装置が大型になるという問題点があった。
【0007】
本発明は、このような事情に対処してなされたもので、小型薄型化、多チャンネル化及びリレー切換えの高速化を図ることができる小型リレーを提供することを目的とする。
【0008】
本発明の小型リレーは、上記目的を達成するために、形状異方性を有する磁性材料を埋没させて磁界発生手段が形成されるとともに、前記磁界発生手段を挟んで第1及び第2可動接点を有する接点出力端子がパターン形成された可撓性フィルム状の可動基板と、前記磁界発生手段と対向する位置に電磁石が保持されるとともに、前記第1及び第2可動接点と対向する位置に固定接点が形成され、該固定接点が形成された面と反対の面に前記電磁石に励磁電流を与える接点信号入力端子がパターン形成された固定基板とが具備され、前記電磁石によって前記磁界発生手段を吸引することにより、前記固定接点を介して前記第1可動接点と前記第2可動接点とを導通させるようにしたことを特徴とする。また、前述の小型リレーにおいて、前記可動基板は、前記固定接点が対向する一対の前記固定基板間に介在され、前記磁界発生手段及び前記接点出力端子がその両面に形成されていることを特徴とする。
【0009】
【作用】
本発明の小型リレーでは、可動基板の磁界発生手段に対し固定基板の電磁石を対向配置させ、更に可動基板の第1及び第2可動接点に対し固定基板の固定接点を対向配置し、電磁石によって磁界発生手段を吸引することにより、固定接点を介して第1可動接点と第2可動接点とが導通されるようにした。
【0010】
したがって、従来のリレー構成のように、電磁石10の電磁作用によって可動接点部20を可動させ、復旧に際しては復旧バネ35の付勢力によって可動接点部20を戻す構成が不要となるばかりか、第1可動接点と第2可動接点がきわめて軽量なものとされることから、これら第1可動接点及び第2可動接点の動きが機敏なものとされる。
【0011】
【実施例】
以下、本発明の実施例の詳細を図面に基づいて説明する。
図2乃至図4は、本発明の小型リレーの一実施例を示すものである。
【0012】
これらの図に示すように、小型リレーには固定基板としての電磁石基板60,70と、スペーサ80を介してこれら電磁石基板60,70間に介在される可動基板としてのレバー接点基板50とが設けられており、たとえば電磁石基板60,70はセラミック製により構成され、レバー接点基板50はたとえばポリイミドにより構成されている。
【0013】
レバー接点基板50は、厚さが約0.1mm程度のフィルム状とされている。レバー接点基板50の略中心部位には、形状異方性を有する磁性材料からなる磁界発生手段としての形状異方性磁石51が埋没されている。更に、レバー接点基板50の上下面側には、形状異方性磁石51を挟んだ状態でAu メッキされた接点出力端子52,53,54,55がパターン形成されている。
【0014】
ここで、形状異方性を有する磁性材料に関するものとして、特開平5−315132号公報には、2次元リソグラフィーによって機能化されているデバイスに、機能性材料を種々のパターンの人工組織として埋設することにより、新たな機能を付加し、さらなるマイクロ化・立体化・高効率化等を図ることのできる新しい形状異方性素子が得られる旨が開示されている。
【0015】
更に、レバー接点基板50には、形状異方性磁石51及び接点出力端子52,53,54,55を挟んだ状態でこれら接点出力端子52,53,54,55と同方向に延びた切欠き溝56が形成されており、この切欠き溝56の形成によって形状異方性磁石51及び接点出力端子52,53,54,55が隣接部分に干渉することなく個別に可撓自在となっている。
【0016】
上方に位置する電磁石基板60の略中心部位である上記の形状異方性磁石51と対応する位置に、φ0.4mm程度の連通孔61が形成されている。連通孔61内部には、Fe からなる電磁石を構成する滋芯62が挿入され、連通孔61の隙間は封止材63によって塞がれている。
【0017】
電磁石基板60の上面側には、上記の各接点出力端子52,53に対応させて接点信号入力端子64,65がパターン形成されている。各接点信号入力端子64,65の端部には、滋芯62に巻回されたコイル68が接続されている。
【0018】
電磁石基板60の下面側の連通孔61を囲んだ位置には、Au メッキされた固定接点としての導通接点69が設けられている。この導通接点69に上記の各接点出力端子52,53が接触することにより、これら接点出力端子52,53の導通がとられるが、この導通については後述する。
【0019】
下方に位置する電磁石基板70には、上記の電磁石基板60と同様に、形状異方性磁石51と対応する位置に、φ0.4mm程度の連通孔71が形成されており、連通孔71内部にはFe からなる滋芯72が挿入され、連通孔71の隙間は封止材73によって塞がれている。
【0020】
電磁石基板70の上面側の連通孔71を囲んだ位置には、導通接点79が設けられている。この導通接点79に上記の各接点出力端子54,55が接触することにより、これら接点出力端子54,55の導通がとられるが、この導通についても後述する。
【0021】
電磁石基板70の下面側には、上記の各接点出力端子54,55に対応させて接点信号入力端子74,75がパターン形成されている。各接点信号入力端子74,75の端部には、滋芯72に巻回されたコイル78が接続されている。更に、電磁石基板60,70間には、Ar 等の不活性ガス100が封入されている。
【0022】
続いて、このような構成の小型リレーの製造方法について説明する。
【0023】
まず、セラミック製の電磁石基板60,70の一面側に接点信号入力端子64,65,74,75を平行にパターン形成した後、各電磁石基板60,70の中間部位であり、且つ各接点信号入力端子64,65,74,75の延設上に連通孔61,71を形成し、それぞれの連通孔61,71内部にコイル68,78の巻回された滋芯62,72を挿入し、それぞれの連通孔61,71の隙間を封止材63,73によって塞ぐ。
【0024】
次いで、レバー接点基板50の両面側に、接点出力端子52,53,54,55を平行にパターン形成し、更に各接点出力端子52,53,54,55間に切欠き溝56を形成する。これにより、形状異方性磁石51部分を中心として各接点出力端子52,53,54,55の形成された部分に可撓性が付与される。
【0025】
切欠き溝56の形成後、レバー接点基板50の中央部分に多数の孔を設け、これらの孔にSm Cos等の硬磁石材を真空蒸着或は微粉を樹脂成形で形成し、複数の形状異方性磁石51を形成する。
【0026】
形状異方性磁石51の形成後、各形状異方性磁石51の上部側をたとえばNに着滋し、その下部側をSに着滋した後、電磁石基板60,70の両端部にスペーサ80を介在させ、更にこれら電磁石基板60,70間にレバー接点基板50を挟持し、電磁石基板60,70間にAr 等の不活性ガス100を封入し、封止して2接点多チャンネルの小型リレーが製造される。
【0027】
そして、このようにして構成された小型リレーに対し、励磁電流が供給されると、次のような動作が行われる。
【0028】
すなわち、レバー接点基板50の各形状異方性磁石51の上部側がNに着滋され、その下部側がSに着滋されている状態においては、電磁石基板60側の滋芯62の下側がSに着滋されるようにコイル68が巻回されており、接点信号入力端子64,65を介してコイル68に励磁電流が供給され滋芯62の下側がSに着滋されると、着滋された滋芯62に対応する形状異方性磁石51が滋芯62側に吸着される。
【0029】
これにより、レバー接点基板50側の接点出力端子52,53が電磁石基板60の下面側の導通接点69に接触することから、この導通接点69を介して接点出力端子52,53の導通がとられる。
【0030】
一方、電磁石基板70側の滋芯72にあっては、上側がNに着滋されるようにコイル78が巻回されており、接点信号入力端子74,75を介してコイル78に励磁電流が供給され滋芯72の上側がNに着滋されると、着滋された滋芯72に対応する形状異方性磁石51が滋芯72側に吸着される。
【0031】
これにより、レバー接点基板50側の接点出力端子54,55が電磁石基板70の上面側の導通接点79に接触することから、この導通接点79を介して接点出力端子54,55の導通がとられる。
【0032】
ちなみに、このような構成の小型リレーのレバー接点基板50における接点出力端子52,53,54,55の切換えに要する時間を実測したところ、100μsという値が得られた。
【0033】
このように、本実施例では、レバー接点基板50の形状異方性磁石51に対し、電磁石基板60又は70側の滋芯62,72を対向配置させ、更にレバー接点基板50の接点出力端子52,53,54,55を対向配置したので、滋芯62,72によって形状異方性磁石51を吸引すると導通接点69,79を介して接点出力端子52,53,54,55の導通がとられる。
【0034】
したがって、従来のリレー構成のように、電磁石10の電磁作用によって可動接点部20を可動させ、復旧に際しては復旧バネ35の付勢力によって可動接点部20を戻す構成が不要となるばかりか、第1可動接点と第2可動接点がきわめて軽量なものとされることから、可動時の動きが機敏なものとされるので、小型薄型化及びリレー切換えの高速化が図れる。
【0035】
【発明の効果】
以上説明したように、本発明の小型リレーによれば、可動基板の磁界発生手段に対し固定基板の電磁石を対向配置させ、更に可動基板の第1及び第2可動接点に対し固定基板の固定接点を対向配置し、電磁石によって磁界発生手段を吸引することにより、固定接点を介して第1可動接点と第2可動接点とが導通されるようにした。
【0036】
したがって、従来のリレー構成のように、電磁石10の電磁作用によって可動接点部20を可動させ、復旧に際しては復旧バネ35の付勢力によって可動接点部20を戻す構成が不要となるばかりか、第1可動接点と第2可動接点がきわめて軽量なものとされることから、これら第1可動接点及び第2可動接点の動きが機敏なものとされる。
【0037】
その結果、小型薄型化及び多チャンネル化が容易であると共にリレー切換えの高速化を図ることができる。
【図面の簡単な説明】
【図1】従来のリレーの基本構成の一例を示す図である。
【図2】本発明の小型リレーの一実施例を示す分解斜視図である。
【図3】図2の小型リレーを示す平面図である。
【図4】図2の小型リレーを示す断面図である。
【符号の説明】
50 レバー接点基板
51 形状異方性磁石
52,53,54,55 接点出力端子
56 切欠き溝
60,70 電磁石基板
61,71 連通孔
62,72 滋芯
63,73 封止材
64,65,74,75 接点信号入力端子
68,78 コイル
69,79 導通接点
80 スペーサ
100 不活性ガス
[0001]
[Industrial applications]
The present invention relates to a small relay used for switching wiring of an electronic device, for example.
[0002]
[Prior art]
The role of relays used in electronic exchanges and the like as main components has become increasingly important, and their forms have also shifted to ultra-miniaturization and low power consumption. The main applications are for line switching, telephones, and the like.
[0003]
FIG. 1 shows an example of a basic configuration of a relay. When an exciting current is supplied to the electromagnet 10, the contact 21 on the movable contact portion 20 side is attracted to the electromagnet 10 so that the movable contact spring is moved. When the contact 23 provided on the contact 22 comes into contact with the fixed contact 31 on the make side and the supply of the exciting current is cut off, the movable contact portion 20 is rotated by the urging force of the recovery spring 35 and the contact 23 of the movable contact spring 22 is rotated. Contact the fixed contact 32 on the break side.
[0004]
[Problems to be solved by the invention]
However, in the above-mentioned conventional relay, the movable contact portion 20 is moved by the electromagnetic action of the electromagnet 10 and the movable contact portion 20 is returned by the urging force of the restoration spring 35 at the time of restoration. This is an obstacle to achieving the goal.
[0005]
In addition, since the movable contact portion 20 is not only relatively heavy but also the return of the movable contact portion 20 is performed by the urging force of the recovery spring 35, the movement of the movable contact portion 20 becomes slow, and the speed of relay switching is increased. Is hindered above.
[0006]
Further, in the case of multi-channel, a plurality of relays must be used side by side, resulting in a problem that the device becomes large.
[0007]
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a small-sized relay capable of realizing a small-sized and thin-shaped, multi-channel, and high-speed relay switching.
[0008]
In order to achieve the above object, the small relay of the present invention has a magnetic field generating means formed by burying a magnetic material having shape anisotropy, and first and second movable contacts sandwiching the magnetic field generating means. An electromagnet is held at a position opposed to the magnetic field generating means, and fixed at a position opposed to the first and second movable contacts. A fixed substrate on which a contact is formed and a contact signal input terminal for applying an exciting current to the electromagnet is formed on a surface opposite to the surface on which the fixed contact is formed, and the magnetic field generating means is attracted by the electromagnet; By doing so, the first movable contact and the second movable contact are electrically connected via the fixed contact. Further, in the above-mentioned small relay, the movable substrate is interposed between the pair of fixed substrates facing the fixed contact, and the magnetic field generating means and the contact output terminal are formed on both surfaces thereof. I do.
[0009]
[Action]
In the small relay of the present invention, the electromagnet of the fixed substrate is arranged to face the magnetic field generating means of the movable substrate, and the fixed contact of the fixed substrate is arranged to face the first and second movable contacts of the movable substrate. By suctioning the generating means, the first movable contact and the second movable contact are electrically connected via the fixed contact.
[0010]
Therefore, unlike the conventional relay configuration, the movable contact portion 20 is moved by the electromagnetic action of the electromagnet 10 and the structure for returning the movable contact portion 20 by the urging force of the restoration spring 35 at the time of restoration becomes unnecessary. Since the movable contact and the second movable contact are extremely lightweight, the movement of the first movable contact and the second movable contact is made agile.
[0011]
【Example】
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
2 to 4 show one embodiment of the small relay of the present invention.
[0012]
As shown in these figures, the small relay is provided with electromagnet substrates 60 and 70 as fixed substrates and a lever contact substrate 50 as a movable substrate interposed between the electromagnet substrates 60 and 70 via a spacer 80. For example, the electromagnet substrates 60 and 70 are made of ceramic, and the lever contact substrate 50 is made of polyimide, for example.
[0013]
The lever contact substrate 50 has a film shape with a thickness of about 0.1 mm. At a substantially central part of the lever contact substrate 50, a shape anisotropic magnet 51 as a magnetic field generating means made of a magnetic material having shape anisotropy is buried. Further, on the upper and lower surfaces of the lever contact substrate 50, Au-plated contact output terminals 52, 53, 54, 55 are formed in a pattern with the shape anisotropic magnet 51 interposed therebetween.
[0014]
As for a magnetic material having shape anisotropy, Japanese Unexamined Patent Publication No. Hei 5-315132 discloses that a functional material is embedded as artificial tissue of various patterns in a device functionalized by two-dimensional lithography. Thus, it is disclosed that a new shape anisotropic element can be obtained which can add a new function and achieve further miniaturization, three-dimensionalization, high efficiency, and the like.
[0015]
Further, the lever contact substrate 50 has a notch extending in the same direction as the contact output terminals 52, 53, 54, 55 with the shape anisotropic magnet 51 and the contact output terminals 52, 53, 54, 55 sandwiched therebetween. A groove 56 is formed, and by forming the notch groove 56, the shape anisotropic magnet 51 and the contact output terminals 52, 53, 54, and 55 can be individually and freely flexible without interfering with adjacent portions. .
[0016]
A communication hole 61 having a diameter of about 0.4 mm is formed at a position corresponding to the shape anisotropic magnet 51, which is a substantially central portion of the electromagnet substrate 60 located above. A core 62 constituting an electromagnet made of Fe 2 is inserted into the communication hole 61, and a gap between the communication holes 61 is closed by a sealing material 63.
[0017]
On the upper surface side of the electromagnet substrate 60, contact signal input terminals 64 and 65 are formed in a pattern corresponding to the contact output terminals 52 and 53 described above. A coil 68 wound around the core 62 is connected to an end of each of the contact signal input terminals 64 and 65.
[0018]
A conductive contact 69 as a Au-plated fixed contact is provided at a position surrounding the communication hole 61 on the lower surface side of the electromagnet substrate 60. The contact output terminals 52 and 53 are brought into conduction by the contact output terminals 52 and 53 being brought into contact with the conduction contact 69. The conduction will be described later.
[0019]
Similarly to the above-described electromagnet substrate 60, a communication hole 71 having a diameter of about 0.4 mm is formed in a position corresponding to the shape anisotropic magnet 51 in the lower electromagnet substrate 70. Is inserted with a ferrite core 72 made of Fe 2, and a gap between the communication holes 71 is closed by a sealing material 73.
[0020]
A conductive contact 79 is provided at a position surrounding the communication hole 71 on the upper surface side of the electromagnet substrate 70. When the contact output terminals 54 and 55 come into contact with the conductive contact 79, the contact output terminals 54 and 55 are brought into conduction. The conduction will be described later.
[0021]
On the lower surface side of the electromagnet substrate 70, contact signal input terminals 74 and 75 are formed in a pattern corresponding to the contact output terminals 54 and 55 described above. A coil 78 wound around the core 72 is connected to an end of each of the contact signal input terminals 74 and 75. Further, an inert gas 100 such as Ar 2 is sealed between the electromagnet substrates 60 and 70.
[0022]
Subsequently, a method of manufacturing a small relay having such a configuration will be described.
[0023]
First, contact signal input terminals 64, 65, 74, and 75 are formed in parallel on one surface of the electromagnet substrates 60 and 70 made of ceramics, and then the intermediate portions of the electromagnet substrates 60 and 70 are used. Communication holes 61 and 71 are formed on the extension of the terminals 64, 65, 74 and 75, and the cores 62 and 72 around which the coils 68 and 78 are wound are inserted into the communication holes 61 and 71, respectively. The gaps between the communication holes 61, 71 are closed by sealing materials 63, 73.
[0024]
Next, contact output terminals 52, 53, 54, and 55 are patterned in parallel on both sides of the lever contact substrate 50, and a notch groove 56 is formed between the contact output terminals 52, 53, 54, and 55. Thereby, flexibility is imparted to the portions where the contact output terminals 52, 53, 54, 55 are formed with the shape anisotropic magnet 51 as the center.
[0025]
After the notch groove 56 is formed, a number of holes are provided in the center of the lever contact substrate 50, and a hard magnet material such as Sm Cos is formed in these holes by vacuum evaporation or fine powder by resin molding. An isotropic magnet 51 is formed.
[0026]
After the shape anisotropic magnets 51 are formed, the upper side of each shape anisotropic magnet 51 is, for example, N, and the lower side thereof is S, and then the spacers 80 are provided on both ends of the electromagnet substrates 60, 70. , A lever contact substrate 50 is sandwiched between the electromagnet substrates 60 and 70, an inert gas 100 such as Ar is sealed between the electromagnet substrates 60 and 70, and sealed to form a two-contact multichannel small-sized relay. Is manufactured.
[0027]
When the exciting current is supplied to the small relay configured as described above, the following operation is performed.
[0028]
That is, in a state where the upper side of each shape anisotropic magnet 51 of the lever contact substrate 50 is attached to N, and the lower side thereof is attached to S, the lower side of the core 62 on the electromagnet substrate 60 is attached to S. The coil 68 is wound so as to be applied, and when an exciting current is supplied to the coil 68 via the contact signal input terminals 64 and 65 and the lower side of the core 62 is attached to the S, the coil 68 is attached. The shape anisotropic magnet 51 corresponding to the core 62 is attracted to the core 62 side.
[0029]
As a result, the contact output terminals 52 and 53 on the lever contact board 50 contact the conductive contacts 69 on the lower surface side of the electromagnet board 60, so that the contact output terminals 52 and 53 are conducted through the conductive contacts 69. .
[0030]
On the other hand, in the core 72 on the electromagnet substrate 70 side, the coil 78 is wound so that the upper side is attached to N, and the exciting current is applied to the coil 78 via the contact signal input terminals 74 and 75. When the upper side of the supplied core 72 is attached to N, the shape anisotropic magnet 51 corresponding to the attached core 72 is attracted to the core 72 side.
[0031]
Thereby, the contact output terminals 54 and 55 on the lever contact board 50 contact the conductive contacts 79 on the upper surface side of the electromagnet board 70, and the contact output terminals 54 and 55 are conducted through the conductive contacts 79. .
[0032]
Incidentally, when the time required for switching the contact output terminals 52, 53, 54, 55 on the lever contact board 50 of the small relay having such a configuration was actually measured, a value of 100 μs was obtained.
[0033]
As described above, in this embodiment, the cores 62, 72 on the electromagnet substrate 60 or 70 side are arranged to face the shape anisotropic magnet 51 of the lever contact substrate 50, and the contact output terminals 52 of the lever contact substrate 50 are further arranged. , 53, 54, 55 are opposed to each other, so that when the shape anisotropic magnet 51 is attracted by the cores 62, 72, the contact output terminals 52, 53, 54, 55 are conducted through the conducting contacts 69, 79. .
[0034]
Therefore, unlike the conventional relay configuration, the movable contact portion 20 is moved by the electromagnetic action of the electromagnet 10 and the structure for returning the movable contact portion 20 by the urging force of the restoration spring 35 at the time of restoration becomes unnecessary. Since the movable contact and the second movable contact are made extremely lightweight, the movement at the time of movement is made agile, so that the size and thickness can be reduced and the speed of switching the relay can be increased.
[0035]
【The invention's effect】
As described above, according to the small-sized relay of the present invention, the electromagnet of the fixed substrate is arranged to face the magnetic field generating means of the movable substrate, and the fixed contact of the fixed substrate is further opposed to the first and second movable contacts of the movable substrate. And the first movable contact and the second movable contact are conducted through the fixed contact by attracting the magnetic field generating means by the electromagnet.
[0036]
Therefore, unlike the conventional relay configuration, the movable contact portion 20 is moved by the electromagnetic action of the electromagnet 10 and the structure for returning the movable contact portion 20 by the urging force of the restoration spring 35 at the time of restoration becomes unnecessary. Since the movable contact and the second movable contact are extremely lightweight, the movement of the first movable contact and the second movable contact is made agile.
[0037]
As a result, it is easy to reduce the size and thickness and increase the number of channels, and it is possible to increase the speed of relay switching.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of a basic configuration of a conventional relay.
FIG. 2 is an exploded perspective view showing one embodiment of the small relay of the present invention.
FIG. 3 is a plan view showing the small relay of FIG. 2;
FIG. 4 is a sectional view showing the small relay of FIG. 2;
[Explanation of symbols]
Reference Signs List 50 lever contact board 51 shape anisotropic magnet 52, 53, 54, 55 contact output terminal 56 cutout groove 60, 70 electromagnet board 61, 71 communication hole 62, 72 core 63, 73 sealing material 64, 65, 74 , 75 Contact signal input terminal 68, 78 Coil 69, 79 Conducting contact 80 Spacer 100 Inert gas

Claims (2)

形状異方性を有する磁性材料を埋没させて磁界発生手段が形成されるとともに、前記磁界発生手段を挟んで第1及び第2可動接点を有する接点出力端子がパターン形成された可撓性フィルム状の可動基板と、
前記磁界発生手段と対向する位置に電磁石が保持されるとともに、前記第1及び第2可動接点と対向する位置に固定接点が形成され、該固定接点が形成された面と反対の面に前記電磁石に励磁電流を与える接点信号入力端子がパターン形成された固定基板とが具備され、
前記電磁石によって前記磁界発生手段を吸引することにより、前記固定接点を介して前記第1可動接点と前記第2可動接点とを導通させるようにしたことを特徴とする小型リレー。
A magnetic film generating means is formed by burying a magnetic material having shape anisotropy, and a contact film output terminal having first and second movable contacts is sandwiched between the magnetic field generating means. And a movable substrate of
An electromagnet is held at a position facing the magnetic field generating means, a fixed contact is formed at a position facing the first and second movable contacts, and the electromagnet is formed on a surface opposite to a surface on which the fixed contact is formed. A fixed substrate on which a contact signal input terminal for applying an exciting current to the pattern is formed ,
A small relay, wherein the first movable contact and the second movable contact are conducted through the fixed contact by attracting the magnetic field generating means by the electromagnet.
前記可動基板は、前記固定接点が対向する一対の前記固定基板間に介在され、前記磁界発生手段及び前記接点出力端子がその両面に形成されていることを特徴とする請求項1に記載された小型リレー。2. The movable substrate according to claim 1, wherein the fixed contact is interposed between the pair of fixed substrates opposed to each other, and the magnetic field generating unit and the contact output terminal are formed on both surfaces thereof. 3. Small relay.
JP20100994A 1994-08-25 1994-08-25 Small relay Expired - Fee Related JP3591881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20100994A JP3591881B2 (en) 1994-08-25 1994-08-25 Small relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20100994A JP3591881B2 (en) 1994-08-25 1994-08-25 Small relay

Publications (2)

Publication Number Publication Date
JPH0864052A JPH0864052A (en) 1996-03-08
JP3591881B2 true JP3591881B2 (en) 2004-11-24

Family

ID=16433987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20100994A Expired - Fee Related JP3591881B2 (en) 1994-08-25 1994-08-25 Small relay

Country Status (1)

Country Link
JP (1) JP3591881B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1805845B1 (en) * 2004-10-29 2008-09-10 Rohde & Schwarz GmbH & Co. KG Electric switching device comprising magnetic and/or fluidic adjusting elements
CN109270477B (en) * 2018-10-10 2023-10-10 康德瑞恩电磁科技(中国)有限公司 Electromagnet reaction time testing device and method

Also Published As

Publication number Publication date
JPH0864052A (en) 1996-03-08

Similar Documents

Publication Publication Date Title
JP4459419B2 (en) Drive device for device having movable electrode and fixed electrode
US6084281A (en) Planar magnetic motor and magnetic microactuator comprising a motor of this type
US5398011A (en) Microrelay and a method for producing the same
US7342473B2 (en) Method and apparatus for reducing cantilever stress in magnetically actuated relays
US20020140533A1 (en) Method of producing an integrated type microswitch
KR20100029782A (en) Microrelay
JPH09198983A (en) Small-sized device
JPH07161274A (en) Silicon microrelay
CA2109700A1 (en) Electromagnetic actuator
KR101023581B1 (en) Microsystem with electromagnetic control
JP3591881B2 (en) Small relay
US7266867B2 (en) Method for laminating electro-mechanical structures
JP4034657B2 (en) Bistable magnetic actuator
JPS63501043A (en) Moving coil electromagnetic actuator and shutter using the same
EP0169714B1 (en) Polarized electromagnetic relay
EP0360271B1 (en) Electromagnetic polar relay
CA1234851A (en) Monostable type relay
GB1496591A (en) Bistable electromagnetic switch comprising strip contacts
JP2525994Y2 (en) Electromagnetic switch
JP2891594B2 (en) relay
KR200251211Y1 (en) RF switch having a improved seesaw mechanism
JPH08293240A (en) Electromagnetic relay
JPH087737A (en) Electromagnetic relay
JPS60211731A (en) Relay
JPS63128516A (en) Polar type electromagnetic relay

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040824

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees