JP3591618B2 - Hollow fiber type separation membrane element - Google Patents

Hollow fiber type separation membrane element Download PDF

Info

Publication number
JP3591618B2
JP3591618B2 JP14774297A JP14774297A JP3591618B2 JP 3591618 B2 JP3591618 B2 JP 3591618B2 JP 14774297 A JP14774297 A JP 14774297A JP 14774297 A JP14774297 A JP 14774297A JP 3591618 B2 JP3591618 B2 JP 3591618B2
Authority
JP
Japan
Prior art keywords
hollow fiber
membrane
reverse osmosis
fiber type
type separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14774297A
Other languages
Japanese (ja)
Other versions
JPH10337448A (en
Inventor
和秀 仁田
潤一郎 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP14774297A priority Critical patent/JP3591618B2/en
Publication of JPH10337448A publication Critical patent/JPH10337448A/en
Application granted granted Critical
Publication of JP3591618B2 publication Critical patent/JP3591618B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、液体混合物からの固体分離あるいは溶質分離に利用される中空糸型逆浸透膜モジュールに関し、特にモジュール当たりの透過水量を向上させしかも耐圧性を向上させた中空糸型逆浸透膜モジュールに関するものである。
【0002】
【従来の技術】
逆浸透膜法による液状混合物の分離・濃縮は、蒸留などの分離技術に較べ省エネルギー法でありかつ物質の状態変化を伴わないことから果汁の濃縮、ビール酵素の分離などの食品分野、海水及びかん水の淡水化による飲料水、工業用水などの製造、電子工業に於ける超純水の製造や医薬品工業や医療分野に於ける無菌水の製造などの水精製分野あるいは工業廃水からの有価物の回収といった多分野に於いて幅広く利用されており、逆浸透膜による水処理は最先端技術を支える不可欠のプロセスとして定着している。
【0003】
例えば、逆浸透膜を用いた海水やかん水の淡水化は、クリーンなプロセスであり、蒸発法・電気透析法と比較して省エネルギー・低コスト・操作の簡便性の点で有利であり、これまでに大きな実績をあげている。特に中空糸型逆浸透膜は、スパイラル型逆浸透膜に比べ単位膜面積当たりの透過水量は小さいが、モジュール当たりの膜面積を大きくとることができるため全体として透過水量を大きくとることができ、容積効率が非常に高いという利点から多く採用されている。
【0004】
このような逆浸透膜を長期間安定して運転するためには、被処理水の殺菌や濁質成分除去を始めとする適切な前処理設備が不可欠である。逆浸透膜表面にファウリング成分が沈着したり、微生物の増殖によるスライムが付着すると著しい性能低下を引き起こすためである。したがって、逆浸透膜の進歩と同時にこれら前処理設備についても最適化が図られてきた。
【0005】
しかしながら、スパイラル型逆浸透膜の場合には、単位膜面積当たりの処理水量が多いため処理水中の濁質成分の影響を受けやすく、中空糸型逆浸透膜においても圧力容器内に中空糸膜本数をできるだけ多く配置して膜面積を増大させているため、中空糸膜間隙に濁質成分が詰まり易く、どちらの場合も濁質成分の影響により重大な性能低下を引き起こすという問題があった。
【0006】
また、濁質成分や逆浸透膜に悪影響を与える溶解成分などを含む処理水から、逆浸透膜に影響がない程度までにこれらの成分を取り除くためには、上記前処理設備が必要不可欠であり、処理水の水質によっては前処理設備が肥大化し、設置面積の増大や造水コストが増大するといった問題があった。
【0007】
中空糸型逆浸透膜間隙に濁質成分が目詰まりし難い、換言すれば濁質成分が逆浸透膜間隙を素抜けしやすい構造を有する中空糸型分離膜素子の例として、特公平3−14492では、中空糸型逆浸透膜を多数本集めた中空糸束を中心部芯管の軸方向に対して5〜60度の螺旋角で巻装し、この中心部芯管の一定位置でかつ同一円周上を順次移動して形成された交差部を持つ中空繊維層からなる中空糸型分離膜モジュールが開示されている。さらに、特公昭60−37029には上記構造を有する中空糸型分離膜素子の製造方法が開示されている。
【0008】
上記構造を採用することにより、耐濁質成分性が向上したばかりでなく中空糸膜層を通過する流体は偏流を作ることなく均一に流れるため濃度分極を起こすことなく高い透過水量と分離性を達成できる。
【0009】
しかしながら、上記交差部を持つ中空繊維層からなる中空糸型分離膜素子では、単位容積内に収める中空糸膜の本数を高く取れず、充填率が低いものしか得られないため、耐濁質成分性には優れるものの透過水量を向上できないといった問題点があった。
【0010】
【発明が解決しようとする課題】
本発明は、かかる問題点を解消しようとするものであり、上記交差部を持つ中空繊維層からなる中空糸型分離膜素子に、外径が細く逆浸透膜性能に優れる中空糸型逆浸透膜を採用することにより、優れた耐濁質成分性を維持したまま、単位容積あたりの造水量と耐圧性を向上させた中空糸型分離膜素子を提供することを目的とする。
【0011】
【課題を解決するための手段】
即ち本発明は、中空糸膜を多数本集めて偏平な中空糸束とし、中心部芯管の軸方向に対して5〜60度の螺旋角で巻装し、同じ螺旋方向の中空糸束はその直前に巻かれた中空糸束と平行に隣接するように配置され、一方反対の螺旋方向の中空糸束とは交互に重なり合って交差部が形成され、該交差部は中空糸束を巻き付けた中心部芯管の一定位置でかつ同一円周上を順次移動して形成され、交差部以外の位置では平行な多数本の中空糸束が層を形成し、反対の螺旋方向の中空糸束が形成する層と交互に積層されてなる中空糸型分離膜素子において、該中空糸膜が外径90〜140μm、内径30〜80μmの逆浸透膜であることを特徴とする中空糸型分離膜素子を提供する。
【0012】
本発明で言う中空糸型分離膜素子とは、軸方向に複数の孔を有する連通芯管の外周には、該流通芯管の軸方向に対して5〜60度の螺旋角で断面偏平状の中空糸束が巻装されており、該中空糸束は多数本の中空繊維からなる断面円形の中空繊維収束体が複数並べられたものであり、その巻き付け状態は、直前に巻かれた同じ螺旋方向の中空糸束と平行に隣接するように巻き付け、反対の螺旋方向の中空糸束とは交互に重なり合って交差部が形成されており、該交差部は中空糸束を巻き付けた該流通芯管の一定位置でかつ同一円周上を順次移動して形成され、交差部以外の位置では平行な多数本の中空糸束が層を形成し、反対の螺旋方向の中空糸束が形成する層と交互に積層されてなる中空糸型分離膜素子であり、その製造法方法に限定されるものでない。
【0013】
また、中空糸膜層を通過する流体は、流通芯管から中空糸膜層外周部に導入されても、中空糸膜層外周部から流通芯管に導入されてもよく、上記構造を採用することによりどちらから流体を導入しても、流体は偏流を作ることなく均一に流れるため濃度分極を起こすことがなく、高い透過水量と分離性を達成できる。
【0014】
本発明でいう中空糸型逆浸透膜とは、外径が90〜140μmで内径が30〜80μmの中空糸よりなる逆浸透膜であり、外径が100〜130μmで内径が40〜70μmの中空糸よりなる逆浸透膜がより好ましい。外径が小さくなると中空繊維間の隙間が過密になるため、分離膜素子の中空糸層に濁質成分が詰まりやすくなり、一方外径が大きくなると単位容積当たりの膜面積を増大できず高い透過水量が得られない。また内径が小さくなると中空糸膜中空部での圧力損失が大きくなるため高い透過水量が得られず、一方内径が大きくなると中空糸膜の耐圧性が低下するため実用に供することのできない中空糸膜となる可能性がある。
【0015】
また、本発明に使用する中空糸型逆浸透膜は、透過水量パラメータが次式
0.25≦FR/OD≦3
(式中FRはl/m・hr・atmで示される25℃での純水の透過水量を表し、ODはμmで示される中空糸膜の外径を表す)
の範囲内であることことが好ましい。
透過水量パラメータが小さいと分離膜素子の透過水量を増大できず、一方透過水量パラメータが大きくなると、単位膜面積当たりのの処理量が増加し処理水中に含まれる濁質成分や溶解成分の影響を受けやすくなるため、使用中に著しい性能低下を引き起こす可能性がある。
【0016】
さらに本発明に使用する中空糸型逆浸透膜を形成する高分子重合体としては、酢酸セルロース類、ポリアミド類、ポリアミドヒドラジド類、ポリ尿素類、ポリビニルアルコール類、ポリスルホン類等が単独あるいは混合して用いられるが、特にこれらに限定されるものではない。水処理プロセスでは塩素殺菌が頻繁に利用されることを考慮すると酢酸セルロース類、ポリアミド類、ポリスルホン類からできた逆浸透膜が好ましい。さらに、ポリアミド類の中では、例えば特開昭62−244404公報に開示されているような耐酸化性の高いポリアミドが好ましい。
【0017】
一般に、逆浸透膜の構造は活性層と支持層よりなり、活性層と支持層が同一素材でできているものは非対称膜と呼ばれ、これらが異なった素材でできているものは複合膜と呼ばれている。非対称膜は相転換法で得ることができ、一方複合膜は非対称膜と同様の操作で支持層となる支持膜を製膜した後、このものの表面にコート法や界面重合法、プラズマ重合法等により薄い活性層を形成させることで得ることができる。本発明に使用される中空糸型逆浸透膜は、これらの構造、製造法には限定されない。
【0018】
かかる本発明による中空糸型分離膜素子は、圧力容器に挿入され実用に供されるが、該圧力容器の材質、構造には限定されない。
【0019】
【実施例】
以下実施例及び比較例を示して本発明を説明するが、ここで揚げる実施例は本発明を規制するものでない。
【0020】
参考例1
三酢酸セルロース(酢化度61.4)40重量部をエチレングリコール18重量部及びN−メチル−2−ピロリドン42重量部よりなる溶液と混合後昇温し製膜原液とした。この溶液を減圧下で脱泡した後、三分割ノズルより空中走行部を経て12〜20℃に冷却した水60重量部、エチレングリコール12重量部及びN−メチル−2−ピロリドン28重量部よりなる凝固液中に吐出させ中空糸膜を得た。ついで中空糸膜を十分水洗した後95〜98℃で20分間熱処理し、表1に示す形状及び性能の中空糸型逆浸透膜を得た。逆浸透膜性能は、それぞれの中空糸膜よりミニモジュールを作成し、供給液中の塩化ナトリウム濃度:35000mg/l、供給液温度:25℃、操作圧力:55Kg/cmの条件で確認した。
【0021】
参考例2
テレフタル酸ジクロリド及び70モル%の4,4’−ジアミノジフェニルスルホン、30モル%のピペラジンより低温溶液重合法で得た共重合ポリアミドを十分に精製した後、このもの36重量部をCaCl4重量部(ポリマーに対して)及びジグリセリン3.6重量部(ポリマーに対して)を含むジメチルアセトアミド溶液に80℃で溶解し、製膜溶液とした。この溶液を減圧下で脱泡した後、3分割ノズルより空中走行部を経て4〜6℃に冷却した凝固液中に吐出させ中空糸型逆浸透膜を得た。ついで得られた中空糸型逆浸透膜を十分水洗した後75〜85℃で30分間熱処理し、表2に示す形状及び性能の中空糸型逆浸透膜を得た。逆浸透膜性能は、それぞれの中空糸膜よりミニモジュールを作成し、供給液中の塩化ナトリウム濃度:1500mg/l、供給液温度:25℃、操作圧力:30Kg/cmの条件で確認した。
【0022】
参考例3
本発明に供する中空糸型分離膜素子の巻き上げ体の例を図1、図2に示す。これらの図において、1は中心部に配置した多数の孔を有する芯管、2は中空糸型逆浸透膜を多数本集めた偏平な中空糸束、3は積層された中空糸層、4は交差部を示す。
【0023】
実施例1〜2、比較例1〜3
参考例1に示した中空糸型逆浸透膜を使用し、以下の手順に従い図2に示した交差部を軸方向に3ケ所持つ中空糸型分離膜素子を作成した。
中空糸型逆浸透膜の単繊維を45〜90本集めて1つの中空糸集合体とし、さらにこの中空糸集合体を複数横に並べて偏平な中空糸束として外径が37mmの多数の孔を有する芯管にトラバースさせながら巻き付けた。この時の巻き付け角度は30℃度とし、巻き上げ体の特定位置の周面上に交差部が形成するように巻き上げた。次にこの巻き上げ体の両端部を接着した後、片側のみ切削して中空糸開口部を形成させ所望の中空糸型分離膜素子を作成した。なお、巻き上げ体の外径は117mmとし、中空糸型分離膜素子の長さは1085mmとした。
【0024】
得られた中空糸型分離膜素子を圧力容器に挿入し、供給液中の塩化ナトリウム濃度:35000mg/l、供給液温度:25℃、操作圧力:55Kg/cm、回収率:30%の条件で逆浸透性能を確認した。また濁質成分に対する耐久性を評価するために、実海水(FI:5〜5.5)での連続運転テストを実施し、評価メジャーとしてモジュール差圧を測定した。これらの結果を表3に示す。
【0025】
実施例1、2は本発明による中空糸型分離素子の例であり、逆浸透膜性能並びに耐濁質性とも満足のいくものであった。比較例1、2は用いた中空糸膜の外径が大きいために膜面積が小さく、透過水量が向上できなかった。また比較例2は中空糸膜内径が大きいために耐圧性が悪く実用に耐えなかった。比較例3は用いた中空糸膜の外径が小さく膜面積は向上できたものの耐濁質性は満足のいくものでなかった。さらに内径が小さいために耐圧性には優れるものの、透過水量は満足のいくものではなかった。
【0026】
実施例3、比較例4〜7
参考例2に示した中空糸型逆浸透膜を使用し、実施例1〜2と同様の手順に従い図2に示した交差部を軸方向に3ケ所持つ中空糸型分離膜素子を作成した。
得られた中空糸型分離膜素子を圧力容器に挿入し、供給液中の塩化ナトリウム濃度:1500mg/l、供給液温度:25℃、操作圧力:30Kg/cm、回収率:75%の条件で逆浸透性能を確認した。結果を表4に示す。
【0027】
実施例3は本発明による中空糸型分離素子の例であり、逆浸透膜性能は満足のいくものであった。比較例4は透過水量は向上したものの、用いた中空糸膜の内径が大きいために耐圧性が悪く実用に供せるものでなかった。比較例5は用いた中空糸膜の外径が大きいために膜面積が小さく、透過水量が向上できなかった。また比較例6は中空糸膜内径は満足するものの外径が大きいために膜面積が小さく、透過水量が向上できなかった。比較例7は用いた中空糸膜の外径は満足できるものの内径が小さく、耐圧性には優れるものの透過水量は満足のいくものではなかった。
【0028】
【表1】

Figure 0003591618
なお、表中の略号は以下の通りである
外径:中空糸膜の外径
内径:中空糸膜の内径
Rj:塩除去率 [ 1−(透過液の電気伝導度)/(供給液の電気伝導度)] ×100
FR1:透過水量
−m:運転開始2時間後及び100時間後の透過水量より求めた透過水量の減少係数
FR2:純水の透過水量
FR2/OD:透過水量パラメータ
【0029】
【表2】
Figure 0003591618
なお、表中の略号は以下の通りである
外径:中空糸膜の外径
内径:中空糸膜の内径
Rj:塩除去率 [ 1−(透過液の電気伝導度)/(供給液の電気伝導度)] ×100
FR1:透過水量
−m:運転開始2時間後及び100時間後の透過水量より求めた透過水量の減少係数
FR2:純水の透過水量
FR2/OD:透過水量パラメータ
【0030】
【表3】
Figure 0003591618
なお、表中の略号は以下の通りである
Rj:塩除去率 [ 1−(透過液の電気伝導度)/(供給液の電気伝導度)] ×100
FR:透過水量
−m:運転開始2時間後及び100時間後の透過水量より求めた透過水量の減少係数
差圧上昇度:運転開始2時間後のモジュール差圧に対する運転開始100時間後のモジュール差圧の比率
【0031】
【表4】
Figure 0003591618
なお、表中の略号は以下の通りである
Rj:塩除去率 [ 1−(透過液の電気伝導度)/(供給液の電気伝導度)] ×100
FR:透過水量
−m:運転開始2時間後及び100時間後の透過水量より求めた透過水量の減少係数
【0032】
【発明の効果】
本発明による中空糸型分離膜素子によれば、高い透過水量や塩除去率、優れた耐圧性といった逆浸透膜性能を有し、しかも処理水中の濁質成分や溶解成分の影響を受け難い耐汚染性に優れる中空糸型分離膜素子を提供することが可能である。かかる本発明による中空糸型分離膜素子は、例えば飲料水や工業用水等の製造を目的とした海水やかん水の脱塩による淡水化に利用される膜分離プロセスに好適に用いることができる。
【図面の簡単な説明】
【図1】本発明に供する中空糸型分離膜素子の巻き上げ体の例を示す図である。
【図2】本発明に供する中空糸型分離膜素子の巻き上げ体の例を示す図である。
【符号の説明】
1 芯管
2 中空糸束
3 中空糸層
4 交差部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hollow fiber type reverse osmosis membrane module used for separation of a solid or a solute from a liquid mixture, and more particularly to a hollow fiber type reverse osmosis membrane module having an improved permeation water amount per module and improved pressure resistance. Things.
[0002]
[Prior art]
Separation and concentration of a liquid mixture by the reverse osmosis membrane method is an energy-saving method compared to separation techniques such as distillation and does not involve a change in the state of substances. The production of drinking water and industrial water by desalination of water, the production of ultrapure water in the electronics industry, the production of sterile water in the pharmaceutical industry and the medical field, and the recovery of valuables from industrial wastewater. Water treatment using reverse osmosis membranes has become established as an indispensable process that supports cutting-edge technology.
[0003]
For example, desalination of seawater or brackish water using a reverse osmosis membrane is a clean process, and is advantageous in terms of energy saving, low cost, and simplicity of operation as compared with evaporation and electrodialysis. Has a great track record. In particular, the hollow fiber type reverse osmosis membrane has a smaller amount of permeated water per unit membrane area than the spiral type reverse osmosis membrane, but can have a larger permeated water amount as a whole because a larger membrane area per module can be obtained. It is often used because of its very high volumetric efficiency.
[0004]
In order to operate such a reverse osmosis membrane stably for a long period of time, appropriate pretreatment facilities such as sterilization of the water to be treated and removal of turbid components are indispensable. This is because if a fouling component is deposited on the surface of the reverse osmosis membrane or slime due to the growth of microorganisms adheres, the performance is significantly reduced. Therefore, at the same time as the progress of reverse osmosis membranes, these pretreatment facilities have been optimized.
[0005]
However, in the case of a spiral reverse osmosis membrane, since the amount of treated water per unit membrane area is large, it is easily affected by suspended components in the treated water. Are arranged as much as possible to increase the membrane area, so that the hollow fiber membrane gap is liable to be clogged with the turbid component, and in both cases, there is a problem that the performance of the turbid component is seriously degraded due to the effect of the turbid component.
[0006]
In order to remove these components from treated water containing turbid components and dissolved components that adversely affect the reverse osmosis membrane to such an extent that the reverse osmosis membrane is not affected, the above pretreatment equipment is indispensable. However, depending on the quality of the treated water, there is a problem that the pretreatment equipment is enlarged, the installation area is increased, and the cost of fresh water is increased.
[0007]
As an example of a hollow fiber type separation membrane element having a structure in which a turbid component is unlikely to be clogged in a hollow fiber type reverse osmosis membrane gap, in other words, a structure in which a turbid component is easily passed through a reverse osmosis membrane gap, Japanese Patent Publication No. In 14492, a hollow fiber bundle obtained by collecting a large number of hollow fiber type reverse osmosis membranes is wound at a helical angle of 5 to 60 degrees with respect to the axial direction of the central core tube, and at a fixed position of the central core tube and A hollow fiber type separation membrane module including a hollow fiber layer having an intersection formed by sequentially moving on the same circumference is disclosed. Further, Japanese Patent Publication No. 60-37029 discloses a method of manufacturing a hollow fiber type separation membrane element having the above structure.
[0008]
By adopting the above structure, not only the turbidity component resistance is improved, but also the fluid passing through the hollow fiber membrane layer flows uniformly without creating a drift, so that high permeated water volume and separation without causing concentration polarization are achieved. Can be achieved.
[0009]
However, in a hollow fiber type separation membrane element comprising a hollow fiber layer having the above-mentioned intersection, the number of hollow fiber membranes contained in a unit volume cannot be increased, and only a low filling rate can be obtained. However, there is a problem that the amount of permeated water cannot be improved although the property is excellent.
[0010]
[Problems to be solved by the invention]
The present invention is intended to solve such a problem, and a hollow fiber type reverse osmosis membrane having a thin outer diameter and excellent reverse osmosis membrane performance is provided in a hollow fiber type separation membrane element comprising a hollow fiber layer having the above-mentioned intersection. It is an object of the present invention to provide a hollow fiber type separation membrane element in which the amount of water produced per unit volume and the pressure resistance are improved while maintaining excellent turbidity component resistance by adopting the method.
[0011]
[Means for Solving the Problems]
That is, in the present invention, a large number of hollow fiber membranes are collected to form a flat hollow fiber bundle, which is wound at a helical angle of 5 to 60 degrees with respect to the axial direction of the central core tube. It is arranged so as to be parallel and adjacent to the hollow fiber bundle wound immediately before, and alternately overlaps with the hollow fiber bundle in the opposite helical direction to form an intersection, and the intersection wound the hollow fiber bundle. It is formed at a certain position of the central core tube and sequentially moved on the same circumference, and at a position other than the intersection, a number of parallel hollow fiber bundles form a layer, and hollow fiber bundles in the opposite spiral direction form a layer. A hollow fiber type separation membrane element, wherein the hollow fiber membrane is a reverse osmosis membrane having an outer diameter of 90 to 140 μm and an inner diameter of 30 to 80 μm, which is alternately laminated with the layers to be formed. I will provide a.
[0012]
The hollow fiber type separation membrane element referred to in the present invention is defined as having a flat cross section around the outer periphery of a communicating core tube having a plurality of holes in the axial direction at a helical angle of 5 to 60 degrees with respect to the axial direction of the flowing core tube. The hollow fiber bundle is wound with a plurality of hollow fiber bundles having a circular cross section composed of a large number of hollow fibers, and the wound state is the same as that wound immediately before. It is wound so as to be adjacent to the hollow fiber bundle in the helical direction in parallel, and alternately overlaps with the hollow fiber bundle in the opposite helical direction to form an intersection, and the intersection is the distribution core around which the hollow fiber bundle is wound. A layer formed by sequentially moving on the same circumference at a fixed position of the tube, and at a position other than the intersection, a number of parallel hollow fiber bundles form a layer, and a hollow fiber bundle of the opposite spiral direction forms. Is a hollow fiber type separation membrane element which is alternately laminated, and is limited to a method for producing the same. Not to.
[0013]
Further, the fluid passing through the hollow fiber membrane layer may be introduced into the outer periphery of the hollow fiber membrane layer from the circulation core tube, or may be introduced into the circulation core tube from the outer periphery of the hollow fiber membrane layer, and employs the above structure. Therefore, whichever fluid is introduced, the fluid flows uniformly without creating a drift, so that concentration polarization does not occur and a high permeated water amount and a high separability can be achieved.
[0014]
The hollow fiber type reverse osmosis membrane referred to in the present invention is a reverse osmosis membrane made of a hollow fiber having an outer diameter of 90 to 140 μm and an inner diameter of 30 to 80 μm, and a hollow fiber having an outer diameter of 100 to 130 μm and an inner diameter of 40 to 70 μm. A reverse osmosis membrane made of yarn is more preferred. When the outer diameter is small, the gap between the hollow fibers becomes too dense, so that the hollow fiber layer of the separation membrane element is liable to be clogged with a turbid component. I can't get enough water. Also, when the inner diameter is small, the pressure loss in the hollow portion of the hollow fiber membrane becomes large, so that a high amount of permeated water cannot be obtained. On the other hand, when the inside diameter is large, the pressure resistance of the hollow fiber membrane decreases, so that the hollow fiber membrane cannot be used practically. It is possible that
[0015]
The hollow fiber type reverse osmosis membrane used in the present invention has a permeated water amount parameter of the following formula: 0.25 ≦ FR / OD ≦ 3
(Where FR represents the amount of permeated pure water at 25 ° C. represented by 1 / m 2 · hr · atm, and OD represents the outer diameter of the hollow fiber membrane represented by μm)
Is preferably within the range.
If the permeate volume parameter is small, the permeate volume of the separation membrane element cannot be increased, while if the permeate volume parameter is large, the throughput per unit membrane area will increase and the effect of turbid components and dissolved components contained in the process water will be reduced. Susceptibility to this can cause significant performance degradation during use.
[0016]
Further, as the polymer for forming the hollow fiber type reverse osmosis membrane used in the present invention, cellulose acetates, polyamides, polyamide hydrazides, polyureas, polyvinyl alcohols, polysulfones, etc., alone or in combination Although it is used, it is not particularly limited to these. Considering that chlorine sterilization is frequently used in the water treatment process, a reverse osmosis membrane made of cellulose acetates, polyamides, and polysulfones is preferable. Further, among the polyamides, polyamides having high oxidation resistance as disclosed in, for example, JP-A-62-244404 are preferable.
[0017]
In general, the structure of a reverse osmosis membrane is composed of an active layer and a support layer, and an active layer and a support layer made of the same material are called an asymmetric membrane, and those made of different materials are called a composite membrane. being called. An asymmetric membrane can be obtained by a phase inversion method, while a composite membrane is prepared by forming a support membrane to be a support layer by the same operation as the asymmetric membrane, and then applying a coating method, an interfacial polymerization method, a plasma polymerization method, etc. It can be obtained by forming a thinner active layer. The hollow fiber type reverse osmosis membrane used in the present invention is not limited to these structures and production methods.
[0018]
Such a hollow fiber type separation membrane element according to the present invention is inserted into a pressure vessel and put to practical use, but the material and structure of the pressure vessel are not limited.
[0019]
【Example】
Hereinafter, the present invention will be described with reference to examples and comparative examples, but the examples described here do not limit the present invention.
[0020]
Reference Example 1
40 parts by weight of cellulose triacetate (degree of acetylation: 61.4) was mixed with a solution composed of 18 parts by weight of ethylene glycol and 42 parts by weight of N-methyl-2-pyrrolidone, and then heated to prepare a film forming stock solution. After defoaming this solution under reduced pressure, it is composed of 60 parts by weight of water, 12 parts by weight of ethylene glycol, and 28 parts by weight of N-methyl-2-pyrrolidone cooled to 12 to 20 ° C. through an aerial traveling part from a three-piece nozzle. The hollow fiber membrane was discharged by discharging into the coagulation liquid. Next, the hollow fiber membrane was sufficiently washed with water and then heat-treated at 95 to 98 ° C. for 20 minutes to obtain a hollow fiber type reverse osmosis membrane having the shape and performance shown in Table 1. The reverse osmosis membrane performance was confirmed by preparing mini-modules from the respective hollow fiber membranes, under the conditions of a sodium chloride concentration in the supply liquid: 35000 mg / l, a supply liquid temperature: 25 ° C., and an operation pressure: 55 kg / cm 2 .
[0021]
Reference Example 2
After sufficiently copolymerizing a copolymer polyamide obtained by a low-temperature solution polymerization method from terephthalic acid dichloride, 70 mol% of 4,4′-diaminodiphenyl sulfone, and 30 mol% of piperazine, 36 parts by weight of the copolymerized polyamide were converted to 4 parts by weight of CaCl 2. The solution was dissolved at 80 ° C. in a dimethylacetamide solution containing 3 parts by weight (based on the polymer) and 3.6 parts by weight of diglycerin (based on the polymer) to obtain a film forming solution. After defoaming the solution under reduced pressure, the solution was discharged from a three-piece nozzle through a aerial traveling section into a coagulation liquid cooled to 4 to 6 ° C. to obtain a hollow fiber type reverse osmosis membrane. Next, the obtained hollow fiber type reverse osmosis membrane was sufficiently washed with water and then heat-treated at 75 to 85 ° C. for 30 minutes to obtain a hollow fiber type reverse osmosis membrane having the shape and performance shown in Table 2. The reverse osmosis membrane performance was confirmed by preparing mini-modules from the respective hollow fiber membranes, and under the conditions of a sodium chloride concentration in the supply liquid: 1500 mg / l, a supply liquid temperature: 25 ° C., and an operation pressure: 30 kg / cm 2 .
[0022]
Reference Example 3
FIGS. 1 and 2 show examples of a rolled-up body of a hollow fiber type separation membrane element to be used in the present invention. In these figures, 1 is a core tube having a large number of holes arranged at the center, 2 is a flat hollow fiber bundle obtained by collecting many hollow fiber type reverse osmosis membranes, 3 is a laminated hollow fiber layer, 4 is Indicates an intersection.
[0023]
Examples 1-2, Comparative Examples 1-3
Using the hollow fiber type reverse osmosis membrane shown in Reference Example 1, a hollow fiber type separation membrane element having three intersections in the axial direction shown in FIG. 2 was prepared according to the following procedure.
45 to 90 single fibers of the hollow fiber type reverse osmosis membrane are collected to form one hollow fiber aggregate, and a plurality of the hollow fiber aggregates are arranged side by side to form a number of holes having an outer diameter of 37 mm as a flat hollow fiber bundle. The core tube was wound while being traversed. The winding angle at this time was set at 30 ° C., and the wound body was wound so as to form an intersection on the peripheral surface at a specific position. Next, after bonding both ends of the rolled body, only one side was cut to form a hollow fiber opening, and a desired hollow fiber type separation membrane element was prepared. The outer diameter of the wound body was 117 mm, and the length of the hollow fiber type separation membrane element was 1085 mm.
[0024]
The obtained hollow fiber type separation membrane element was inserted into a pressure vessel, and the conditions were as follows: the concentration of sodium chloride in the supply liquid: 35000 mg / l, the supply liquid temperature: 25 ° C., the operating pressure: 55 kg / cm 2 , and the recovery rate: 30%. The reverse osmosis performance was confirmed. Further, in order to evaluate the durability against the turbid components, a continuous operation test was performed in actual seawater (FI: 5 to 5.5), and the module differential pressure was measured as an evaluation measure. Table 3 shows the results.
[0025]
Examples 1 and 2 are examples of the hollow fiber type separation element according to the present invention, and the reverse osmosis membrane performance and the turbidity resistance were satisfactory. In Comparative Examples 1 and 2, since the outer diameter of the hollow fiber membrane used was large, the membrane area was small, and the amount of permeated water could not be improved. In Comparative Example 2, since the inner diameter of the hollow fiber membrane was large, the pressure resistance was poor, and it was not practical. In Comparative Example 3, although the outer diameter of the hollow fiber membrane used was small and the membrane area could be improved, the turbidity resistance was not satisfactory. Furthermore, although the inside diameter is small, the pressure resistance is excellent, but the amount of permeated water is not satisfactory.
[0026]
Example 3, Comparative Examples 4 to 7
Using the hollow fiber type reverse osmosis membrane shown in Reference Example 2, a hollow fiber type separation membrane element having three intersections in the axial direction shown in FIG. 2 was produced in the same procedure as in Examples 1 and 2.
The obtained hollow fiber type separation membrane element was inserted into a pressure vessel, and the conditions were as follows: sodium chloride concentration in the supply liquid: 1500 mg / l, supply liquid temperature: 25 ° C., operation pressure: 30 kg / cm 2 , recovery rate: 75%. The reverse osmosis performance was confirmed. Table 4 shows the results.
[0027]
Example 3 is an example of the hollow fiber type separation element according to the present invention, and the reverse osmosis membrane performance was satisfactory. In Comparative Example 4, although the amount of permeated water was improved, the pressure resistance was poor due to the large inner diameter of the hollow fiber membrane used, and it was not practical. In Comparative Example 5, since the outer diameter of the hollow fiber membrane used was large, the membrane area was small, and the amount of permeated water could not be improved. In Comparative Example 6, the inner diameter of the hollow fiber membrane was satisfied, but the outer diameter was large, but the membrane area was small, and the amount of permeated water could not be improved. In Comparative Example 7, although the outer diameter of the hollow fiber membrane used was satisfactory, the inner diameter was small, and although the pressure resistance was excellent, the amount of permeated water was not satisfactory.
[0028]
[Table 1]
Figure 0003591618
The abbreviations in the table are as follows: outer diameter: outer diameter of hollow fiber membrane inner diameter: inner diameter of hollow fiber membrane Rj: salt removal rate [1- (electric conductivity of permeate) / (electricity of feed liquid) Conductivity)] x 100
FR1: Permeated water amount-m: Permeate water reduction coefficient FR2 calculated from permeated water amount at 2 hours and 100 hours after start of operation FR2: Pure water permeated water amount FR2 / OD: Permeated water amount parameter
[Table 2]
Figure 0003591618
The abbreviations in the table are as follows: outer diameter: outer diameter of hollow fiber membrane inner diameter: inner diameter of hollow fiber membrane Rj: salt removal rate [1- (electric conductivity of permeate) / (electricity of feed liquid) Conductivity)] x 100
FR1: Permeate water amount-m: Permeate water decrease coefficient FR2 obtained from the permeate water amount 2 hours and 100 hours after the start of operation FR2: Pure water permeate amount FR2 / OD: Permeate amount parameter
[Table 3]
Figure 0003591618
The abbreviations in the table are as follows: Rj: salt removal rate [1- (electric conductivity of permeate) / (electric conductivity of feed solution)] × 100
FR: permeated water amount-m: reduction coefficient of permeated water amount obtained from the permeated water amount after 2 hours and 100 hours from the start of operation: increase in differential pressure: module difference at 100 hours after start of operation with respect to module differential pressure after 2 hours from start of operation Pressure ratio [0031]
[Table 4]
Figure 0003591618
The abbreviations in the table are as follows: Rj: salt removal rate [1- (electric conductivity of permeate) / (electric conductivity of feed solution)] × 100
FR: permeated water amount-m: reduction coefficient of permeated water amount calculated from permeated water amount 2 hours and 100 hours after the start of operation
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the hollow fiber type separation membrane element by this invention, it has reverse osmosis membrane performance, such as a high permeate water amount, a salt removal rate, and excellent pressure resistance, and also resistant to the influence of turbid components and dissolved components in the treated water. It is possible to provide a hollow fiber type separation membrane element having excellent contamination properties. Such a hollow fiber type separation membrane element according to the present invention can be suitably used in a membrane separation process used for desalination of seawater or brackish water for the purpose of producing drinking water, industrial water, or the like.
[Brief description of the drawings]
FIG. 1 is a view showing an example of a rolled-up body of a hollow fiber type separation membrane element provided for the present invention.
FIG. 2 is a view showing an example of a rolled-up body of a hollow fiber type separation membrane element provided for the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Core tube 2 Hollow fiber bundle 3 Hollow fiber layer 4 Intersection

Claims (5)

中空糸膜を多数本集めて偏平な中空糸束とし、中心部芯管の軸方向に対して5〜60度の螺旋角で巻装し、同じ螺旋方向の中空糸束はその直前に巻かれた中空糸束と平行に隣接するように配置され、一方反対の螺旋方向の中空糸束とは交互に重なり合って交差部が形成され、該交差部は中空糸束を巻き付けた中心部芯管の一定位置でかつ同一円周上を順次移動して形成され、交差部以外の位置では平行な多数本の中空糸束が層を形成し、反対の螺旋方向の中空糸束が形成する層と交互に積層されてなる中空糸型分離膜素子において、該中空糸膜が外径90〜140μm、内径30〜80μmの逆浸透膜であることを特徴とする中空糸型分離膜素子。A large number of hollow fiber membranes are collected to form a flat hollow fiber bundle, wound at a helical angle of 5 to 60 degrees with respect to the axial direction of the central core tube, and the hollow fiber bundle in the same helical direction is wound immediately before. The hollow fiber bundles are arranged so as to be adjacent to each other in parallel with each other, and alternately overlap with the hollow fiber bundles in the opposite helical direction to form an intersection, and the intersection is a central core tube around which the hollow fiber bundle is wound. It is formed at a certain position and sequentially moved on the same circumference, and at a position other than the intersection, a number of parallel hollow fiber bundles form a layer, and alternately with layers formed by hollow fiber bundles in the opposite spiral direction. A hollow fiber type separation membrane element characterized in that the hollow fiber membrane is a reverse osmosis membrane having an outer diameter of 90 to 140 μm and an inner diameter of 30 to 80 μm. 中空糸膜の透過水量パラメータが次式
0.25≦FR/OD≦3
(式中FRはl/m・hr・atmで示される25℃での純水の透過水量を表し、ODはμmで示される中空糸膜の外径を表す)
で示される範囲内である逆浸透膜である請求項1記載の中空糸型分離膜素子。
The permeated water parameter of the hollow fiber membrane is expressed by the following equation: 0.25 ≦ FR / OD ≦ 3
(In the formula, FR represents a permeated water amount of pure water at 25 ° C. represented by 1 / m 2 · hr · atm, and OD represents an outer diameter of the hollow fiber membrane represented by μm.)
The hollow fiber type separation membrane element according to claim 1, which is a reverse osmosis membrane having a range of:
中空糸膜がセルロースエステルからなる逆浸透膜である請求項1又は2記載の中空糸型分離膜素子。3. The hollow fiber separation membrane element according to claim 1, wherein the hollow fiber membrane is a reverse osmosis membrane made of cellulose ester. 中空糸膜が酢酸セルロースからなる逆浸透膜である請求項1又は2記載の中空糸型分離膜素子3. The hollow fiber type separation membrane element according to claim 1, wherein the hollow fiber membrane is a reverse osmosis membrane made of cellulose acetate. 中空糸膜がジアミノジフェニルスルホンとピペラジンおよび/またはジアミノ安息香酸との混合ジアミンからなるアミン成分と芳香族ポリカルボン酸またはその誘導体である酸成分との反応で得られる芳香族系コポリアミドからなる逆浸透膜である請求項1又は2記載の中空糸型分離膜素子。A hollow fiber membrane comprising an aromatic copolyamide obtained by reacting an amine component comprising a mixed diamine of diaminodiphenyl sulfone and piperazine and / or diaminobenzoic acid with an acid component which is an aromatic polycarboxylic acid or a derivative thereof; The hollow fiber type separation membrane element according to claim 1 or 2, which is a permeable membrane.
JP14774297A 1997-06-05 1997-06-05 Hollow fiber type separation membrane element Expired - Fee Related JP3591618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14774297A JP3591618B2 (en) 1997-06-05 1997-06-05 Hollow fiber type separation membrane element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14774297A JP3591618B2 (en) 1997-06-05 1997-06-05 Hollow fiber type separation membrane element

Publications (2)

Publication Number Publication Date
JPH10337448A JPH10337448A (en) 1998-12-22
JP3591618B2 true JP3591618B2 (en) 2004-11-24

Family

ID=15437126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14774297A Expired - Fee Related JP3591618B2 (en) 1997-06-05 1997-06-05 Hollow fiber type separation membrane element

Country Status (1)

Country Link
JP (1) JP3591618B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012026373A1 (en) 2010-08-27 2012-03-01 東洋紡績株式会社 Hollow fiber type reverse osmosis membrane and process for production thereof
WO2013118859A1 (en) 2012-02-09 2013-08-15 東洋紡株式会社 Hollow fiber semipermeable membrane, method for manufacturing same, module, and water treatment method
WO2013125681A1 (en) 2012-02-24 2013-08-29 東洋紡株式会社 Hollow fiber type semipermeable membrane, process for manufacturing same, module and water treatment process
WO2015060286A1 (en) 2013-10-21 2015-04-30 東洋紡株式会社 Hollow-fiber membrane element and membrane module for forward osmosis
US10814289B2 (en) 2014-10-07 2020-10-27 Toyobo Co., Ltd. Separation membrane, separation membrane element and separation membrane module

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000079390A (en) * 1998-06-30 2000-03-21 Kikai Kagaku Kenkyusho:Kk Purified water production
AU2010342762B2 (en) * 2010-01-17 2015-11-26 Kambouris Shares Pty Ltd Recovering water
US9211509B2 (en) * 2011-07-04 2015-12-15 Toyobo Co., Ltd. Reverse osmosis membrane for wastewater treatment
CN111632501A (en) 2013-02-22 2020-09-08 Bl 科技公司 Membrane assembly for supporting biofilm
WO2015142586A2 (en) 2014-03-20 2015-09-24 General Electric Company Wastewater treatment with primary treatment and mbr or mabr-ifas reactor
JP6646461B2 (en) * 2016-02-15 2020-02-14 株式会社ダイセル Hollow fiber membrane

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012026373A1 (en) 2010-08-27 2012-03-01 東洋紡績株式会社 Hollow fiber type reverse osmosis membrane and process for production thereof
WO2013118859A1 (en) 2012-02-09 2013-08-15 東洋紡株式会社 Hollow fiber semipermeable membrane, method for manufacturing same, module, and water treatment method
WO2013125681A1 (en) 2012-02-24 2013-08-29 東洋紡株式会社 Hollow fiber type semipermeable membrane, process for manufacturing same, module and water treatment process
WO2015060286A1 (en) 2013-10-21 2015-04-30 東洋紡株式会社 Hollow-fiber membrane element and membrane module for forward osmosis
US10814289B2 (en) 2014-10-07 2020-10-27 Toyobo Co., Ltd. Separation membrane, separation membrane element and separation membrane module

Also Published As

Publication number Publication date
JPH10337448A (en) 1998-12-22

Similar Documents

Publication Publication Date Title
EP3003540B1 (en) Improved membranes
EP3212693B1 (en) Copolymers for making membranes
KR100523778B1 (en) Hollow fiber membrane cartridge, and hollow fiber membrane module and tank type filtration apparatus which use the cartridge
US8915378B2 (en) Hollow fiber type reverse osmosis membrane and method for manufacturing the same
JP6703522B2 (en) Membrane manufacturing method
JP3591618B2 (en) Hollow fiber type separation membrane element
EP3349886A1 (en) Process for making membranes
EP2992038B1 (en) Block copolymers
JP2016530078A (en) Multi-channel membrane
Aptel et al. Categories of membrane operations
US20110168623A1 (en) Feed side passage material and spiral separation membrane element
JPH0722689B2 (en) Polyamide urethane reverse osmosis membrane
KR20140082532A (en) Method for composite membrane module
JP7155862B2 (en) Hollow fiber membrane element, hollow fiber membrane module and forward osmosis water treatment method
JP6365542B2 (en) Hollow fiber membrane element and membrane module for forward osmosis
JP5630961B2 (en) Hollow fiber porous membrane and water treatment method
JP6565898B2 (en) Hollow fiber membrane element and hollow fiber membrane module
JP2003290632A (en) Hollow fiber membrane module
JP7103711B2 (en) Separation membrane leaf, spiral module and equipment including it
JP4164730B2 (en) Selective separation membrane
JP6149489B2 (en) Operation method of reverse osmosis membrane device
KR102288130B1 (en) Method of detecting defection of seperation memebrane element and apparatus of detecting defection of seperation memebrane element
JP7427190B2 (en) composite semipermeable membrane
KR102342446B1 (en) Method of detecting defection of seperation memebrane element and apparatus of detecting defection of seperation memebrane element
JP4164774B2 (en) Method for producing selective separation membrane

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040818

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070903

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees