JP3591006B2 - Steam generator - Google Patents

Steam generator Download PDF

Info

Publication number
JP3591006B2
JP3591006B2 JP24738294A JP24738294A JP3591006B2 JP 3591006 B2 JP3591006 B2 JP 3591006B2 JP 24738294 A JP24738294 A JP 24738294A JP 24738294 A JP24738294 A JP 24738294A JP 3591006 B2 JP3591006 B2 JP 3591006B2
Authority
JP
Japan
Prior art keywords
steam
water
anode
evaporating dish
supply pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24738294A
Other languages
Japanese (ja)
Other versions
JPH08110001A (en
Inventor
一 斉藤
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP24738294A priority Critical patent/JP3591006B2/en
Publication of JPH08110001A publication Critical patent/JPH08110001A/en
Application granted granted Critical
Publication of JP3591006B2 publication Critical patent/JP3591006B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、少量の過熱蒸気を発生する蒸気発生装置に係わり、特に溶融炭酸塩型燃料電池の発電前処理工程の脱脂工程で蒸気を注入する蒸気発生装置に関する。
【0002】
【従来の技術】
溶融炭酸塩型燃料電池は、高効率で環境への影響が少ないなど、従来の発電装置にない特徴を有しており、水力、火力、原子力に続く発電システムとして注目を集め、現在鋭意研究が進められている。
【0003】
図3は、溶融炭酸塩型燃料電池の模式的構造図である。本図に示すように燃料電池12は、電解質板31と、電解質板31を挟むアノード32(電極)とカソード33(電極)、アノード32にアノードガス2を供給するアノードガス流路34及びカソード33にカソードガス3を供給するカソードガス流路35から構成される。電解質板31は、焼結したセラミックス粉末からなる平板であり、その間隙に炭酸塩を高温の溶融状態で保持するようにしてある。この製造方法は、支持材のLiAlO粉末と炭酸塩の粉末を予め混合して成形する方法と、LiAlO粉末のみで成形して後から炭酸塩を含浸させる方法とがあり、炭酸塩を含浸させる方法がよく用いられる。アノード32及びカソード33は、それぞれ焼結した金属粉末からなる平板で、電解質板31を間に挟持する。単一の電池(単セル)は、アノード32、電解質板31及びカソード33から構成される。アノードガス流路34は導電性を有しアノード32に沿って水素を含むアノードガス2を流す。カソードガス流路35も導電性を有しカソード33に沿って酸素及び炭酸ガスを含むカソードガス3を流す。
【0004】
このような溶融炭酸塩型燃料電池が工場で組立られ、現地に据え付けられた後、発電する前処理工程に電解質板31に対する脱脂工程と炭酸塩を含浸させる含浸工程とがある。脱脂工程は電解質板31を形成するときに使用した結合剤、可塑剤などの有機物が残されているのを除去する工程である。これらの有機物は焼結により炭化された状態で残留しており、蒸気の注入により除去される。
【0005】
図4は従来出力1〜10kw程度の小規な溶融炭酸塩型燃料電池の脱脂工程に用いられた蒸気発生装置を示す。タンク40には純水45を入れ、この純水45を加熱するヒータ41がタンク40周囲に設けられている。タンク40の底部にはアノードガス供給管42が設けられ、頂部には蒸気取出管43が設けられアノードに接続されている。アノードガス供給管42には流量計42aが設けられており、タンク40内の水位より上の位置に圧力計44が設けられている。
【0006】
ヒータ41により加熱してゆくと、タンク40内の圧力によってきまる飽和蒸気が発生する。アノードガスをアノードガス供給管42より供給すると、水中では気泡46となり、この気泡内のアノードガスには飽和蒸気がタンク内の圧力に応じて一定量含まれるようになり、蒸気取出管43よりアノードに供給される。これによりアノードガスの供給量とタンク内圧を計測することによりアノードに供給する蒸気量がわかる。本装置は簡単な構造であるため信頼性が高くかつ安価であるためよく使用されている。
【0007】
【発明が解決しようとする課題】
図4で示した蒸気発生装置の場合、実験室で行う小規模な溶融炭酸塩型燃料電池には適しているが、100kw以上となると必要とされる蒸気量も多くなるり、これに対応出来なくなる。またアノードガスが水中を通過する際の圧損が大きくなる。さらに発生する蒸気が飽和蒸気であるため途中で凝縮しアノードまで届かないものも生じる。
【0008】
本発明は上述の問題点に鑑みてなされたもので、要求される蒸気量に対応でき、過熱蒸気を発生することのできる蒸気発生装置を提供することを目的とする。
【0009】
上記目的を達成するため、本発明によると、小孔を有し上下方向に間隔を設けて配置された複数の蒸発皿と、該蒸発皿を格納する格納容器と、該格納容器を貫通して最上部の蒸発皿に水を供給する給水管と、前記格納容器に設けられた蒸気取出管と、前記格納容器の周囲に設けられ内部を加熱する加熱装置と、を備え、前記蒸発皿に設けられた小孔の数は上方の蒸発皿より下方の蒸発皿にゆくに従い少なくなり、最下層の蒸発皿には小孔が設けられておらず、前記給水管に設けられ、給水管が供給する水の量を水が最下層の蒸発皿に溜まらないように制御する流量制御弁と、前記給水管に設けられ、給水管が供給する水の量を計量する流量計と、をさらに備えることを特徴とする蒸気発生装置が提供される。
【0010】
また、本発明の好ましい実施形態によると、前記蒸気取出管は、燃料電池のアノードに接続され、蒸気取出管から得られる水蒸気は、該燃料電池の脱脂工程に用いられ、前記加熱装置は、水蒸気がアノードに到達するまでに凝縮しないように前記格納容器の内部を加熱する。
【0012】
【作用】
請求項1の発明によると、加熱装置により格納容器内および各蒸発皿は加熱される。最上部の蒸発皿に供給された水は、一部はそこで蒸発し他は小孔より下の蒸発皿に落下し、同様にして落下してゆくにつれ蒸発してゆく。蒸発皿の小孔を通り落下する水滴の量は下にゆくほど少なくなるので、小孔の数もこれに応じて少なくしてゆく。最下層の蒸発皿には小孔を設けないこと構成にし、流量制御弁が、給水管が供給する水の量を水が最下層の蒸発皿に溜まらないように制御することにより、蒸発皿上で全ての水分を蒸発させることができる。格納容器内の温度を発生蒸気の加熱温度とすることにより発生した蒸気は加熱蒸気となり蒸気取出管から取り出される。また、供給された水を流量計により計量し、発生した蒸気は加熱蒸気となって目的地(例えば、アノード)に到達するよう加熱温度を設定すれば、計量した量の蒸気を目的物(アノード)に供給することができる。
【0013】
請求項2の発明によると、蒸気取出管は、燃料電池のアノードに接続され、蒸気取出管から得られる水蒸気は、該燃料電池の脱脂工程に用いられ、加熱装置は、水蒸気がアノードに到達するまでに凝縮しないように前記格納容器の内部を加熱するので、供給された純水は全て蒸発し加熱蒸気となってアノードに到達する。これにより、例えば流量計により水蒸気発生装置に供給される水の量を計量することで計量値がアノードに供給される水蒸気量になる。
【0015】
【実施例】
以下、本発明の実施例について図面を参照して説明する。各図において、共通部分には同一の符号を使用する。図1は、実施例の蒸気発生装置を示し、(A)は断面図、(B)は(A)のX−X断面図である。20は蒸気発生装置を示す。21は格納容器で円筒より構成され、内部に底部を貫通して給水管22が設けられ、先端より少し下がった位置より蒸発皿24がほぼ等間隔で取付けられている。各蒸発皿24の中心を給水管22が貫通し、各蒸発皿24には小孔25が多数設けられている。この小孔25の数は上段より下段にゆくに従い少なくなり、最下段では零となっている。格納容器21の頂部には蒸気取出管26が設けられている。格納容器21の周囲には電気ヒータ27が設けられ、内部を過熱状態にする。なお電気ヒータ27の代わりにガスまたは液体バーナを用いることもできる。給水管22には流量制御弁23と給水量を計量する流量計28が設けられ、予め設定した流量となるように流量制御弁23を制御する。
【0016】
図2は実施例の蒸気発生装置20を燃料電池発電装置に取付けたブロック図である。蒸気発生装置20は燃料電池12のアノードAに接続される。接続時期は発電開始前の脱脂工程であり、脱脂後取り外す。燃料電池発電装置は、天然ガス等を水蒸気8と混合した燃料ガス1を水素を含むアノードガス2に改質する改質器10と、炭酸ガスと酸素を含むカソードガス3と水素を含むアノードガス2とから発電する燃料電池12とを備えており、改質器10で作られるアノードガス2は燃料電池12に供給され、燃料電池12の内でその大部分を消費してアノード排ガス4となり、燃焼用ガスとして改質器10の燃焼室Coへ供給される。
【0017】
改質器10ではアノード排ガス4中の可燃成分(水素、一酸化炭素、メタン等)を燃焼室Coで燃焼して高温の燃焼ガスを生成し、この燃焼ガスにより改質室Reを加熱し、改質室Reで改質触媒により燃料ガス1を改質してアノードガス2とする。アノードガス2は燃料電池12のアノードAに供給される。また燃焼室Coを出た燃焼排ガス5は空気予熱器13で冷却された後、凝縮器14及び気水分離器15により水分を除去され、低温ブロワ16で加圧され、空気6と合流してカソードガス3となる。このカソードガス3はカソードC内をカソード循環ブロワ19により循環し電池反応により発生した熱を除去する。カソードガス3は燃料電池12内で一部が反応して高温のカソード排ガス7となり、その一部は改質器10の燃焼室Coへ供給され、他の一部は空気6を圧縮するタービン圧縮機17で動力を回収した後、さらに排熱回収蒸気発生装置18で熱エネルギを回収して系外に排出される。なお、この排熱回収蒸気発生装置18で発生した水蒸気8が天然ガスと混合されて燃焼ガス1となる。
【0018】
次に図1に示す蒸気発生装置20の動作について説明する。電気ヒータ27により格納容器21内を過熱状態にし、給水管22より純水を供給する。供給量は最下段の蒸発皿24に水が溜まらない程度がよい。水の供給量は蒸気発生量となるので、蒸発皿24の寸法と段数は、計画量の水が供給された場合、最下段の蒸発皿24に水が溜まらない程度となるように決められている。これにより各蒸発皿24より発生した蒸気は格納容器内で過熱蒸気になり、アノードAに供給される。過熱の温度はアノードAに到達するまでに凝縮しないように設定する。水の供給量は流量計28により計量される。供給された純水は全て蒸発し過熱蒸気となってアノードAに到達するので水の計量値が蒸気供給量となる。
【0019】
【発明の効果】
以上の説明より明らかなように、本発明は格納容器内に複数の蒸発皿を上下方向に所定の間隔で設け、蒸発皿には小孔を設けて各蒸発皿に水が伝わるようにし、最上段の蒸発皿へ水を供給するようにして格納容器を加熱し、過熱蒸気を発生するようにしたので、水の供給量に応じて過熱蒸気を発生することができる。
【図面の簡単な説明】
【図1】実施例の蒸気発生装置を示し、(A)は断面図、(B)は(A)のX−X断面図である。
【図2】実施例の蒸気発生装置を燃料電池発電装置に接続した場合のブロック図を示す。
【図3】溶融炭酸塩型燃料電池の模式的構造を示す図である。
【図4】従来の小規模な蒸気発生装置を示す図である。
【符号の説明】
1 燃料ガス
2 アノードガス
3 カソードガス
4 アノード排ガス
5 燃焼排ガス
6 空気
7 カソード排ガス
8 水蒸気
10 改質器
12 燃料電池
13 空気予熱器
14 凝縮器
15 気水分離器
16 低温ブロワ
17 タービン圧縮機
18 排熱回収蒸気発生装置
19 カソード循環ブロワ
20 蒸気発生装置
21 格納容器
22 給水管
23 流量制御弁
24 蒸発皿
25 小孔
26 蒸気取出管
27 電気ヒータ
28 流量計
Co 燃焼室
Re 改質室
[0001]
[Industrial applications]
The present invention relates to a steam generator that generates a small amount of superheated steam, and more particularly to a steam generator that injects steam in a degreasing step of a power generation pretreatment step of a molten carbonate fuel cell.
[0002]
[Prior art]
Molten carbonate fuel cells have features that are not found in conventional power generators, such as high efficiency and little impact on the environment, and have attracted attention as a power generation system following hydro, thermal and nuclear power. Is underway.
[0003]
FIG. 3 is a schematic structural view of a molten carbonate fuel cell. As shown in the figure, the fuel cell 12 includes an electrolyte plate 31, an anode 32 (electrode) and a cathode 33 (electrode) sandwiching the electrolyte plate 31, an anode gas flow path 34 for supplying the anode 32 with the anode gas 2, and a cathode 33. And a cathode gas flow path 35 for supplying the cathode gas 3 to the cathode. The electrolyte plate 31 is a flat plate made of sintered ceramic powder, and the carbonate is held in a gap between the plates in a high-temperature molten state. This production method includes a method in which the LiAlO 2 powder of the support material and the powder of the carbonate are preliminarily mixed and molded, and a method in which only the LiAlO 2 powder is molded and then impregnated with the carbonate. Is often used. The anode 32 and the cathode 33 are flat plates made of sintered metal powder, respectively, and sandwich the electrolyte plate 31 therebetween. A single battery (single cell) includes an anode 32, an electrolyte plate 31, and a cathode 33. The anode gas flow path 34 flows the anode gas 2 which has conductivity and contains hydrogen along the anode 32. The cathode gas channel 35 also has conductivity, and the cathode gas 3 containing oxygen and carbon dioxide gas flows along the cathode 33.
[0004]
After such a molten carbonate fuel cell is assembled in a factory and installed on site, a pretreatment process for generating power includes a degreasing process for the electrolyte plate 31 and an impregnation process for impregnating with a carbonate. The degreasing step is a step of removing organic substances such as a binder and a plasticizer used when forming the electrolyte plate 31. These organic substances remain in a carbonized state by sintering, and are removed by injecting steam.
[0005]
FIG. 4 shows a conventional steam generator used in a degreasing process of a small molten carbonate fuel cell having an output of about 1 to 10 kW. Pure water 45 is put in the tank 40, and a heater 41 for heating the pure water 45 is provided around the tank 40. An anode gas supply pipe 42 is provided at the bottom of the tank 40, and a vapor extraction pipe 43 is provided at the top, and is connected to the anode. The anode gas supply pipe 42 is provided with a flow meter 42a, and a pressure gauge 44 is provided at a position above the water level in the tank 40.
[0006]
When heated by the heater 41, saturated steam determined by the pressure in the tank 40 is generated. When the anode gas is supplied from the anode gas supply pipe 42, bubbles 46 are formed in the water, and the anode gas in the bubbles contains a certain amount of saturated steam in accordance with the pressure in the tank. Supplied to Thus, the amount of steam supplied to the anode can be determined by measuring the supply amount of the anode gas and the tank internal pressure. This device is often used because of its simple structure, high reliability and low cost.
[0007]
[Problems to be solved by the invention]
The steam generator shown in FIG. 4 is suitable for a small-scale molten carbonate fuel cell to be performed in a laboratory, but if it exceeds 100 kW, the required amount of steam increases, and it is possible to cope with this. Disappears. Also, the pressure loss when the anode gas passes through the water increases. Further, since the generated steam is a saturated steam, some of the steam condenses on the way and does not reach the anode.
[0008]
The present invention has been made in view of the above-described problems, and has as its object to provide a steam generator capable of generating a superheated steam that can cope with a required amount of steam.
[0009]
To achieve the above object, according to the present invention, a plurality of evaporating dishes having small holes and arranged at intervals in the vertical direction, a storage container for storing the evaporating dishes, and a penetrating through the storage container are provided. A water supply pipe for supplying water to an uppermost evaporating dish, a steam take-out pipe provided in the containment vessel, and a heating device provided around the containment vessel for heating the inside; provided in the evaporating dish The number of provided small holes decreases as the position goes down from the upper evaporating dish to the lower evaporating dish. The lowermost evaporating dish is not provided with the small holes, but is provided in the water supply pipe and supplied by the water supply pipe. A flow control valve that controls the amount of water so that water does not collect in the lowermost evaporating dish, and a flow meter that is provided in the water supply pipe and measures the amount of water supplied by the water supply pipe, is further provided. A steam generator is provided that features.
[0010]
Further, according to a preferred embodiment of the present invention, the steam extraction pipe is connected to an anode of a fuel cell, and steam obtained from the steam extraction pipe is used in a degreasing step of the fuel cell. The interior of the containment vessel is heated so that it does not condense until it reaches the anode.
[0012]
[Action]
According to the first aspect of the present invention, the inside of the storage container and each evaporating dish are heated by the heating device. Some of the water supplied to the uppermost evaporating dish evaporates there, and the other falls to the evaporating dish below the small hole, and similarly evaporates as it falls. Since the amount of water droplets falling through the small holes of the evaporating dish decreases as it goes down, the number of small holes decreases accordingly. The lowermost evaporating dish has no small holes, and the flow control valve controls the amount of water supplied by the water supply pipe so that water does not collect in the lowermost evaporating dish. Can evaporate all the water. The steam generated by setting the temperature in the storage container to the heating temperature of the generated steam becomes heated steam and is taken out from the steam extraction pipe. Also, if the supplied water is measured by a flow meter and the generated steam becomes heating steam and the heating temperature is set so as to reach the destination (for example, anode), the measured amount of steam can be measured. ) Can be supplied.
[0013]
According to the invention of claim 2, the steam extraction pipe is connected to the anode of the fuel cell, and the steam obtained from the steam extraction pipe is used in the degreasing step of the fuel cell, and the heating device causes the steam to reach the anode. Since the inside of the storage container is heated so as not to be condensed by the time, all the supplied pure water evaporates and becomes heated steam and reaches the anode. Thus, for example, by measuring the amount of water supplied to the steam generator by the flow meter, the measured value becomes the amount of water vapor supplied to the anode.
[0015]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each drawing, the same reference numerals are used for common parts. FIG. 1: shows the steam generator of an Example, (A) is sectional drawing, (B) is XX sectional drawing of (A). Reference numeral 20 denotes a steam generator. Reference numeral 21 denotes a storage container formed of a cylinder, a water supply pipe 22 penetrating the bottom inside, and evaporating dishes 24 attached at substantially equal intervals from a position slightly lower than the tip. The water supply pipe 22 passes through the center of each evaporating dish 24, and each evaporating dish 24 is provided with a number of small holes 25. The number of the small holes 25 decreases as going from the upper stage to the lower stage, and becomes zero at the lowermost stage. A steam extraction pipe 26 is provided at the top of the storage container 21. An electric heater 27 is provided around the storage container 21 to heat the inside of the storage container 21. Note that a gas or liquid burner can be used instead of the electric heater 27. The water supply pipe 22 is provided with a flow control valve 23 and a flow meter 28 for measuring the amount of water supply, and controls the flow control valve 23 so that the flow rate becomes a preset flow rate.
[0016]
FIG. 2 is a block diagram in which the steam generator 20 of the embodiment is attached to a fuel cell power generator. The steam generator 20 is connected to the anode A of the fuel cell 12. The connection time is a degreasing step before the start of power generation, and is removed after degreasing. The fuel cell power generator includes a reformer 10 for reforming a fuel gas 1 in which natural gas or the like is mixed with water vapor 8 into an anode gas 2 containing hydrogen, a cathode gas 3 containing carbon dioxide and oxygen, and an anode gas containing hydrogen. And an anode gas 2 produced in the reformer 10 is supplied to the fuel cell 12 and consumes most of the fuel cell 12 to become an anode exhaust gas 4, The gas for combustion is supplied to the combustion chamber Co of the reformer 10.
[0017]
In the reformer 10, combustible components (hydrogen, carbon monoxide, methane, etc.) in the anode exhaust gas 4 are burned in the combustion chamber Co to generate high-temperature combustion gas, and the combustion gas heats the reforming chamber Re. In the reforming chamber Re, the fuel gas 1 is reformed by the reforming catalyst to obtain the anode gas 2. The anode gas 2 is supplied to the anode A of the fuel cell 12. Further, after the combustion exhaust gas 5 that has exited the combustion chamber Co is cooled by the air preheater 13, the moisture is removed by the condenser 14 and the steam separator 15, and is pressurized by the low-temperature blower 16 and merged with the air 6. It becomes the cathode gas 3. The cathode gas 3 is circulated in the cathode C by the cathode circulation blower 19 to remove heat generated by the battery reaction. A portion of the cathode gas 3 reacts in the fuel cell 12 to become a high-temperature cathode exhaust gas 7, a portion of which is supplied to the combustion chamber Co of the reformer 10, and a portion of which is supplied to a turbine compressor for compressing the air 6. After the power is recovered by the machine 17, the heat energy is further recovered by the exhaust heat recovery steam generator 18 and discharged out of the system. The steam 8 generated by the exhaust heat recovery steam generator 18 is mixed with the natural gas to become the combustion gas 1.
[0018]
Next, the operation of the steam generator 20 shown in FIG. 1 will be described. The inside of the storage container 21 is overheated by the electric heater 27 and pure water is supplied from the water supply pipe 22. The supply amount is preferably such that water does not accumulate in the lowermost evaporating dish 24. Since the amount of supplied water is the amount of generated steam, the dimensions and the number of stages of the evaporating plates 24 are determined so that water does not accumulate in the lowermost evaporating plates 24 when the planned amount of water is supplied. I have. Thereby, the steam generated from each evaporating dish 24 becomes superheated steam in the storage container and is supplied to the anode A. The temperature of the superheating is set so as not to condense before reaching the anode A. The supply amount of water is measured by the flow meter 28. All of the supplied pure water evaporates and becomes superheated steam and reaches the anode A, so that the measured value of the water becomes the steam supply amount.
[0019]
【The invention's effect】
As is clear from the above description, in the present invention, a plurality of evaporating dishes are provided in the storage container at predetermined intervals in the vertical direction, and the evaporating dishes are provided with small holes so that water can be transmitted to each evaporating dish. Since the storage container is heated by supplying water to the upper evaporating dish to generate superheated steam, superheated steam can be generated according to the supply amount of water.
[Brief description of the drawings]
1A and 1B show a steam generator according to an embodiment, in which FIG. 1A is a cross-sectional view, and FIG. 1B is a cross-sectional view of FIG.
FIG. 2 is a block diagram showing a case where the steam generator of the embodiment is connected to a fuel cell power generator.
FIG. 3 is a diagram showing a schematic structure of a molten carbonate fuel cell.
FIG. 4 is a diagram showing a conventional small-scale steam generator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fuel gas 2 Anode gas 3 Cathode gas 4 Anode exhaust gas 5 Combustion exhaust gas 6 Air 7 Cathode exhaust gas 8 Steam 10 Reformer 12 Fuel cell 13 Air preheater 14 Condenser 15 Steam separator 16 Low temperature blower 17 Turbine compressor 18 Exhaust Heat recovery steam generator 19 Cathode circulation blower 20 Steam generator 21 Storage container 22 Water supply pipe 23 Flow control valve 24 Evaporating dish 25 Small hole 26 Steam extraction pipe 27 Electric heater 28 Flow meter Co Combustion chamber Re Reforming chamber

Claims (2)

小孔を有し上下方向に間隔を設けて配置された複数の蒸発皿と、該蒸発皿を格納する格納容器と、該格納容器を貫通して最上部の蒸発皿に水を供給する給水管と、前記格納容器に設けられた蒸気取出管と、前記格納容器の周囲に設けられ内部を加熱する加熱装置と、を備え、
前記蒸発皿に設けられた小孔の数は上方の蒸発皿より下方の蒸発皿にゆくに従い少なくなり、最下層の蒸発皿には小孔が設けられておらず、
前記給水管に設けられ、給水管が供給する水の量を水が最下層の蒸発皿に溜まらないように制御する流量制御弁と、
前記給水管に設けられ、給水管が供給する水の量を計量する流量計と、をさらに備えることを特徴とする蒸気発生装置。
A plurality of evaporating dishes having small holes and arranged at intervals in the vertical direction, a storage container for storing the evaporation dishes, and a water supply pipe penetrating the storage container and supplying water to an uppermost evaporating dish And, a steam extraction pipe provided in the containment vessel, and a heating device provided around the containment vessel and heating the inside ,
The number of small holes provided in the evaporating dish is reduced as the number of the small holes goes down from the upper evaporating dish to the lower evaporating dish, and the lowermost evaporating dish is not provided with the small holes,
A flow control valve that is provided in the water supply pipe and controls the amount of water supplied by the water supply pipe so that water does not accumulate in the lowermost evaporating dish.
A steam generator , further comprising: a flow meter provided in the water supply pipe, for measuring an amount of water supplied by the water supply pipe .
前記蒸気取出管は、燃料電池のアノードに接続され、蒸気取出管から得られる水蒸気は、該燃料電池の脱脂工程に用いられ、The steam extraction pipe is connected to an anode of a fuel cell, and steam obtained from the steam extraction pipe is used in a degreasing step of the fuel cell.
前記加熱装置は、水蒸気がアノードに到達するまでに凝縮しないように前記格納容器の内部を加熱することを特徴とする請求項1に記載の蒸気発生装置。  The steam generator according to claim 1, wherein the heating device heats the inside of the storage container so that the steam does not condense before reaching the anode.
JP24738294A 1994-10-13 1994-10-13 Steam generator Expired - Fee Related JP3591006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24738294A JP3591006B2 (en) 1994-10-13 1994-10-13 Steam generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24738294A JP3591006B2 (en) 1994-10-13 1994-10-13 Steam generator

Publications (2)

Publication Number Publication Date
JPH08110001A JPH08110001A (en) 1996-04-30
JP3591006B2 true JP3591006B2 (en) 2004-11-17

Family

ID=17162605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24738294A Expired - Fee Related JP3591006B2 (en) 1994-10-13 1994-10-13 Steam generator

Country Status (1)

Country Link
JP (1) JP3591006B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100820874B1 (en) * 2006-04-03 2008-04-11 (주)유니벨 Method and Apparatus for Generating Steam
KR100820872B1 (en) * 2007-07-26 2008-04-11 (주)유니벨 Apparatus for generating steam
DE102017125666A1 (en) * 2017-11-02 2019-05-02 Elwema Automotive Gmbh Apparatus and method for cleaning workpieces by means of a steam jet and steam generator therefor

Also Published As

Publication number Publication date
JPH08110001A (en) 1996-04-30

Similar Documents

Publication Publication Date Title
CN102598383B (en) Control the method and apparatus of anode recirculation
JPS5823169A (en) Fuel cell power generating equipment and its operation
JP5109253B2 (en) Fuel cell
US10396377B2 (en) Fuel cell device
KR101009453B1 (en) A thermally self-controllable solid oxide fuel cell system
WO2014136553A1 (en) Fuel cell system
JP2007157479A (en) Fuel cell
CN1791998A (en) Apparatus and method for addition of electrolyte to fuel cells
JP6099408B2 (en) Power generation system and method for operating power generation system
JP3591006B2 (en) Steam generator
KR101721237B1 (en) Solid oxide fuel cell system heated by externel hear source
CN107093757B (en) Proton exchange membrane fuel cell waste heat recovery system and method
Barbir Review of hydrogen conversion technologies
JP2007080761A (en) Fuel cell and its starting method
KR101753335B1 (en) Solid oxide fuel cell system heated by high temperature gas
JPH11214022A (en) Fuel cell power generating device
JP6239229B2 (en) Fuel cell system and fuel cell operating method
JP2018116848A (en) Fuel cell system
KR100726366B1 (en) A water separator of outlet gases in a molten carbonate fuel cell
Cotana et al. A cylindrical molten carbonate fuel cell supplied with landfill biogas
CN220106596U (en) SOFC and PEMFC combined system for direct ammonia fuel
JP2012216371A (en) Solid oxide fuel cell module structure and operation method
JP3582132B2 (en) Plate type reformer
Lu et al. An experimental study of the effects of key operating parameters on the molten carbonate fuel cell performance
JP3365453B2 (en) Fuel cell

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040816

LAPS Cancellation because of no payment of annual fees