JP3590195B2 - Control device for current source converter - Google Patents

Control device for current source converter Download PDF

Info

Publication number
JP3590195B2
JP3590195B2 JP15005296A JP15005296A JP3590195B2 JP 3590195 B2 JP3590195 B2 JP 3590195B2 JP 15005296 A JP15005296 A JP 15005296A JP 15005296 A JP15005296 A JP 15005296A JP 3590195 B2 JP3590195 B2 JP 3590195B2
Authority
JP
Japan
Prior art keywords
current
voltage
source converter
current source
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15005296A
Other languages
Japanese (ja)
Other versions
JPH09312975A (en
Inventor
信行 松井
隆晴 竹下
浩司 外山
秀喜 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP15005296A priority Critical patent/JP3590195B2/en
Publication of JPH09312975A publication Critical patent/JPH09312975A/en
Application granted granted Critical
Publication of JP3590195B2 publication Critical patent/JP3590195B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Inverter Devices (AREA)
  • Feedback Control In General (AREA)
  • Rectifiers (AREA)
  • Control Of Ac Motors In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、誘導電動機駆動用可変電圧可変周波数装置や各種電源装置などに用いられている交流ー直流変換を行う電流形変換器に係わり、特にPI制御器を具備して電流制御用としてPWM変調を行っている電流形変換器の制御装置に、関するものである。
【0002】
【従来の技術】
一般に、パルス幅変調(PWM変調)を行っている三相交流ー直流変換の電流形変換器は、図4の如く示される。
図4は電流形変換器の構成を示し、11〜13は相電圧、21〜23はリアクトル、31〜33はコンデンサ、41〜46はスイッチング素子、51〜56はダイオード、6は直流リアクトル、7は負荷装置、8は直流電流検出器、9は制御回路である。
制御回路9において、91は減算器、92はPI制御器、93はPWM変調器である。
すなわち図4においては、相電圧11,12,13は三相交流電源の電圧値Eu,
Ev,Ewをもち、コンデンサ31,32,33は電圧値Vu,Vv,Vwをもつ。
ここで、リアクトル21,22,23とコンデンサ31,32,33はフィルタを構成して外部電源からの高調波混入を防ぐとともに、PWM動作を行うことによる高調波が外部に流出することを防いでいる。
【0003】
また、スイッチング素子41,42,43,44,45,46は図示の如くUP〜WNを構成しており、ここではIGBTで示しているが、 GTOや各種トランジスタなども使用される。
ダイオード51,52,53,54,55,56はスイッチング素子41〜46に印加される直流電圧Vdcに耐えるよう逆耐圧特性をもたせるためのものであって、一部の GTOなどのようにスイッチング素子自身が逆耐圧をもつ場合は不用である。
直流リアクトル6は、前述のスイッチング素子部出力を直流電流Idcの電流源化する。
負荷装置7は直流電流Idcを消費し、直流電流検出器8はその直流電流Idcを検出する。
さらには、制御回路9においては、減算器91は直流電流指令Idc*と直流電流Idcの偏差である変化分ΔIdcを出力し、PI制御器92は減算器91出力を受け比例(P)積分(I)演算を行って直流電圧指令Vdc*を信号発生する。
PWM変調器93は、直流電圧Vdcが直流電圧指令Vdc*に一致するよう、各スイッチング素子41〜46のオン幅を定めて点弧制御する。
【0004】
図5は電流形変換器におけるPI制御器の具体例を示すものであって、 921は比例(P)制御部、 922は積分(I)制御部、 923は加算部である。
すなわち、比例制御部 921,積分制御部 922は比例ゲインKp,積分ゲインKiをそれぞれ有し、両者は減算器91出力の変化分ΔIdcをを受けてそれぞれの演算を行い、さらには、その出力が加算器 923にて加算されて直流電圧指令Vdc*が得られる。
この図の信号名は、ラプラス表示となるので大文字で記してある。
なお、PWM変調器93は、三角波比較方式,ヒステリシスコンパレータ方式, CPU演算方式などが一般的に行われているものであって、ここでは本発明に直接関係しないため詳細説明を省略する。
【0005】
【発明が解決しようとする課題】
この種の従来技術においては、直流電流指令Idc*を急変させると、PI制御器における比例制御部の比例ゲインKpのため直流電圧指令Vdc*も急変し、その結果、スイッチング素子部への交流入力電流Iu,Iv,Iwがリアクトルおよびコンデンサのフィルタ作用と相まって高周波の振動波形となり、そのため、電流容量,耐圧,リップル,高調波などさまざまの面から支障をきたしていた。
【0006】
つぎに、この振動の理由を説明する。
図6は電流形変換器の一相分等価回路を示し、Eは相電圧である電圧源、Rf,Lfはそれぞれリアクトルの抵抗成分,インダクタンス成分、Cfはコンデンサ、Iは直流回路部を表す電流源である。
いま、直流電流指令Idc*をステップ状に変化させると、直流電圧指令Vdc*もステップ状に変化するが、ここで、
制御回路が正常に働いていて実際の電流,電圧も指令通りに変化したとし、この時のスイッチング素子部への交流入力電流の高周波変化のみを考えるとすると、図6は図7に置き換えて考えることができる。
【0007】
図7においては、直流電圧Vdcの変化分ΔVdcは図4の直流電流Idcの変化分ΔIdcを電圧源として換算し、直流電流指令Idc*がステップ状に変化した場合、変化分ΔVdcもステップ状に立ち上がる。
なお、基本波のみの電圧源であるEは省略している。
ここで、直流電圧Vdcの変化分ΔVdcは、式(1)となる。ただし、そのZoおよびωn は、式(2),(3)である。
【0008】
【数1】

Figure 0003590195
【0009】
そして、電流It(t)について解くと、つぎの式(4),(5)のようになる。ただし、式(5)では近似を行っており、そのαおよびβは式(6),
(7)である。
この式(5)から明らかなように、このときの電流It(t)は振幅ΔIdc,周波数β,減衰時定数αの振動波形となる、ことがわかる。
かようにして、直流電流指令Idc*の急変時には、スイッチング素子部への交流入力電流Iu,Iv,Iwが振動波形となる。
【0010】
【数2】
Figure 0003590195
【0011】
しかして本発明の目的とするところは、電流形変換器の指令急変時においても交流入力電流等の振動抑制機能を有する格別な装置を提供する、ことにある。
【0012】
【課題を解決するための手段】
本発明は上述したような点に鑑みなされたものであって、つぎの如くに構成したものである。すなわち、
直流電流指令と検出直流電流の誤差を入力として直流電圧指令を得るPI制御器を備え、直流電圧指令によるPWM変調により交流−直流変換を行う電流形変換器において、PI制御器内に比例制御部出力に電圧変化率の制限を設けたリミッタを具備して構成したものである。
【0013】
【発明の実施の形態】
先ず、図1および図2を参照して、説明する。
図1は本発明に係わる電圧指令値のランプ状変化を示し、図2は本発明に係わる電圧指令値の立ち上がり時間と振動電流振幅の関係を示している。
さて、図7における電圧源をステップ状に立ち上がるのではなく、図1の如くに、時間Toをかけて直流電圧Vdcの変化分ΔVdcまで立ち上がるランプ状のものとすると、電流It(t)は、つぎの式(8)のようになる。
ただし、u(t)は単位ステップ関数であり、f(t)は式(9)である。
ここで、リアクトルの抵抗成分Rfは小さいものとして(α≒0)と近似すると、式(9)は、式(10)のように表すことができる。
【0014】
【数3】
Figure 0003590195
【0015】
式(5)と式(10)を比べてみると、振動の振幅は、ΔIdcから
(ΔIdc/ωn ・To)になっている。したがって、(ωn ・To)を大きくすることにより、振動を減らすことが可能である。
図2において、時間Toを(Tn=2π/ωn )で、電流振幅を式(5)の変化分ΔIdcで正規化している。Tsは周期、Vpは最大値である。
かくの如くに、時間Toを大きくすることにより振動電流振幅を小さくし得ることから、時間Toを振動周期Tnと等しくすれば、振動電流振幅をほぼ
(1/3)にすることができる。
【0016】
図3は本発明が適用されたPI制御器の構成例を図5に類して示したものであって、92’はPI制御器である。
PI制御器92’において、 921’は比例制御部、 922’は積分制御部、 923’は加算部、 924はリミッタである。
すなわち、PI制御器92’は図4構成にあって制御回路9のPI制御器92に代えて効用し得るものであり、特に、比例制御部 921’の出力電圧の変化率を制限するリミッタ 924が設けられてなるものである。
【0017】
さて、従来のPI制御器92で高速の直流電流制御系を構成する場合、積分ゲインKiに比べて比例ゲインKpを大きくするのが普通であり、直流電圧指令
Vdc*の変化率は比例制御系で決まっていると言ってよい。
ここで、図3の如くにリミッタ 924が挿入された比例制御部 921’およびリミッタ 924の構成により、大きな電流変化である直流電流Idcの変化分ΔIdcが入力された場合でも、直流電圧指令Vdc*’の変化率を一定値以下に制限することができる。
いま、周期Tsのサンプリング周期にてPI制御を行っているとすると、一周期にて動かすことができる直流電圧指令Vdc*’の最大値Vpを、式(11)のようにすることによっても、かかる技術思想の主旨を実現できることは明らかである。
【0018】
【数4】
Figure 0003590195
【0019】
【発明の効果】
以上詳述したように本発明によれば、交流入力側にLCフィルタをもち、交流入力電圧を直流出力電流に変換して負荷装置に電力を供給する電流形変換器において、PI制御器により直流電流制御を行っている場合に、直流電流指令の急変時にも交流入力電流の振動を効果的に抑制し得る簡便な構成の装置を提供でき、産業上極めて有用である。
【図面の簡単な説明】
【図1】図1は本発明に係わる電圧指令値のランプ状変化を示す説明図である。
【図2】図2は本発明に係わる電圧指令値の立ち上がり時間と振動電流振幅の関係を示す図である。
【図3】図3は本発明が適用されたPI制御器の構成例を示す部分系統図である。
【図4】図4は電流形変換器の構成を示す回路図である。
【図5】図5は電流形変換器におけるPI制御器の従来例を示す部分系統図である。
【図6】図6は電流形変換器の一相分等価回路を示す図である。
【図7】図7は電流形変換器の電圧急変時の一相分等価回路を示す図である。
【符号の説明】
11 相電圧
21 リアクトル
31 コンデンサ
41 スイッチング素子
51 ダイオード
6 直流リアクトル
7 負荷装置
8 直流電流検出器
9 制御回路
92 PI制御器
92’ PI制御器
921’ 比例制御部
922’ 積分制御部
923’ 加算部
924 リミッタ
93 PWM変調器
ΔVdc 直流電圧Vdcの変化分
Vdc* 直流電圧指令
Vdc*’ 直流電圧指令
ΔIdc 直流電流Idcの変化分
Idc* 直流電流指令
Rf リアクトルの抵抗成分
Lf リアクトルのインダクタンス成分
Cf コンデンサ
E 電圧源
I 電流源
To 時間
Ts 周期
Vp 最大値[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a current source converter for performing AC-DC conversion used in a variable voltage variable frequency device for driving an induction motor, various power supply devices, and the like. The present invention relates to a control device for a current source converter that performs the following.
[0002]
[Prior art]
In general, a three-phase AC-DC conversion current source converter performing pulse width modulation (PWM modulation) is shown in FIG.
FIG. 4 shows the configuration of a current source converter, wherein 11 to 13 are phase voltages, 21 to 23 are reactors, 31 to 33 are capacitors, 41 to 46 are switching elements, 51 to 56 are diodes, 6 is a DC reactor, and 7 is a DC reactor. Is a load device, 8 is a DC current detector, and 9 is a control circuit.
In the control circuit 9, 91 is a subtractor, 92 is a PI controller, and 93 is a PWM modulator.
That is, in FIG. 4, the phase voltages 11, 12, and 13 have the voltage values Eu,
Ev, Ew, and the capacitors 31, 32, 33 have voltage values Vu, Vv, Vw.
Here, the reactors 21, 22, 23 and the capacitors 31, 32, 33 constitute a filter to prevent harmonics from being mixed in from an external power supply, and to prevent harmonics from flowing out to the outside due to the PWM operation. I have.
[0003]
The switching elements 41, 42, 43, 44, 45, and 46 constitute UP to WN as shown in the figure, and are shown here as IGBTs, but GTOs and various transistors are also used.
The diodes 51, 52, 53, 54, 55, and 56 are provided to have reverse withstand voltage characteristics so as to withstand the DC voltage Vdc applied to the switching elements 41 to 46, and the switching elements such as some GTOs and the like. It is unnecessary if the device has a reverse withstand voltage.
The DC reactor 6 converts the output of the switching element unit into a current source of the DC current Idc.
The load device 7 consumes the DC current Idc, and the DC current detector 8 detects the DC current Idc.
Further, in the control circuit 9, the subtractor 91 outputs a change ΔIdc which is a deviation between the DC current command Idc * and the DC current Idc, and the PI controller 92 receives the output of the subtractor 91 and performs proportional (P) integration ( I) Perform calculation to generate DC voltage command Vdc *.
The PWM modulator 93 determines the ON width of each of the switching elements 41 to 46 and controls the ignition so that the DC voltage Vdc matches the DC voltage command Vdc *.
[0004]
FIG. 5 shows a specific example of the PI controller in the current source converter. Reference numeral 921 denotes a proportional (P) control unit, 922 denotes an integral (I) control unit, and 923 denotes an addition unit.
That is, the proportional control section 921 and the integral control section 922 have a proportional gain Kp and an integral gain Ki, respectively, and both receive the change ΔIdc of the output of the subtracter 91 and perform respective calculations. The DC voltage command Vdc * is obtained by the addition in the adder 923.
The signal names in this figure are shown in uppercase because they are displayed in Laplace.
Note that the PWM modulator 93 generally uses a triangular wave comparison method, a hysteresis comparator method, a CPU operation method, and the like, and does not directly relate to the present invention.
[0005]
[Problems to be solved by the invention]
In this type of prior art, when the DC current command Idc * is suddenly changed, the DC voltage command Vdc * is also suddenly changed due to the proportional gain Kp of the proportional control unit in the PI controller, and as a result, the AC input to the switching element unit is performed. The currents Iu, Iv, and Iw form a high-frequency vibration waveform in combination with the filter action of the reactor and the capacitor, and thus have various obstacles such as current capacity, withstand voltage, ripple, and harmonics.
[0006]
Next, the reason for this vibration will be described.
FIG. 6 shows an equivalent circuit for one phase of a current source converter, E is a voltage source which is a phase voltage, Rf and Lf are resistance components and inductance components of a reactor, Cf is a capacitor, and I is a current representing a DC circuit portion. Source.
Now, if the DC current command Idc * is changed in steps, the DC voltage command Vdc * also changes in steps.
Assuming that the control circuit is operating normally and the actual current and voltage have changed as instructed, and only the high-frequency change of the AC input current to the switching element unit at this time is considered, FIG. 6 is replaced with FIG. be able to.
[0007]
In FIG. 7, the change ΔVdc in the DC voltage Vdc is obtained by converting the change ΔIdc in the DC current Idc in FIG. 4 as a voltage source, and when the DC current command Idc * changes stepwise, the change ΔVdc also changes stepwise. stand up.
Note that E, which is a voltage source for only the fundamental wave, is omitted.
Here, the variation ΔVdc of the DC voltage Vdc is represented by Expression (1). However, Zo and ωn are represented by the equations (2) and (3).
[0008]
(Equation 1)
Figure 0003590195
[0009]
When the current It (t) is solved, the following equations (4) and (5) are obtained. However, approximation is performed in Expression (5), and α and β thereof are expressed by Expressions (6) and
(7).
As is apparent from the equation (5), it is understood that the current It (t) at this time has an oscillation waveform having an amplitude ΔIdc, a frequency β, and an attenuation time constant α.
In this way, when the DC current command Idc * changes suddenly, the AC input currents Iu, Iv, Iw to the switching element have an oscillating waveform.
[0010]
(Equation 2)
Figure 0003590195
[0011]
SUMMARY OF THE INVENTION It is an object of the present invention to provide a special device having a function of suppressing a vibration of an AC input current or the like even when a command of a current source converter changes suddenly.
[0012]
[Means for Solving the Problems]
The present invention has been made in view of the above points, and has the following configuration. That is,
A current source converter that obtains a DC voltage command by inputting an error between a DC current command and a detected DC current, and performs AC-DC conversion by PWM modulation based on the DC voltage command. The output is provided with a limiter which limits the rate of voltage change.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
First, a description will be given with reference to FIGS.
FIG. 1 shows a ramp-like change of a voltage command value according to the present invention, and FIG. 2 shows a relationship between a rise time of the voltage command value and an oscillating current amplitude according to the present invention.
Now, assuming that the voltage source in FIG. 7 does not rise in a step-like manner, but as shown in FIG. 1 is a ramp-like one that rises to a change ΔVdc in the DC voltage Vdc over time To, the current It (t) becomes The following expression (8) is obtained.
Here, u (t) is a unit step function, and f (t) is Expression (9).
Here, assuming that the resistance component Rf of the reactor is small and approximates (α ≒ 0), Expression (9) can be expressed as Expression (10).
[0014]
(Equation 3)
Figure 0003590195
[0015]
Comparing Expression (5) and Expression (10), the amplitude of the vibration is changed from ΔIdc to (ΔIdc / ωn · To). Therefore, it is possible to reduce the vibration by increasing (ωn · To).
In FIG. 2, the time To is normalized by (Tn = 2π / ωn), and the current amplitude is normalized by the change ΔIdc of Expression (5). Ts is the cycle, and Vp is the maximum value.
As described above, the oscillating current amplitude can be reduced by increasing the time To, so that if the time To is equal to the oscillating period Tn, the oscillating current amplitude can be substantially reduced to (1 /).
[0016]
FIG. 3 shows a configuration example of a PI controller to which the present invention is applied in a manner similar to FIG. 5, and 92 ′ is a PI controller.
In the PI controller 92 ', 921' is a proportional control unit, 922 'is an integral control unit, 923' is an addition unit, and 924 is a limiter.
That is, the PI controller 92 ′ has the configuration shown in FIG. 4 and can be used in place of the PI controller 92 of the control circuit 9. In particular, the limiter 924 limits the rate of change of the output voltage of the proportional control section 921 ′. Is provided.
[0017]
When a high-speed DC current control system is configured by the conventional PI controller 92, it is common that the proportional gain Kp is made larger than the integral gain Ki, and the rate of change of the DC voltage command Vdc * is proportional to the proportional control system. It can be said that it is decided.
Here, due to the configuration of the proportional control unit 921 ′ and the limiter 924 in which the limiter 924 is inserted as shown in FIG. 3, even when the change ΔIdc of the DC current Idc which is a large current change is input, the DC voltage command Vdc * 'Can be limited to a certain rate or less.
Now, assuming that the PI control is performed in the sampling cycle of the cycle Ts, the maximum value Vp of the DC voltage command Vdc * 'that can be moved in one cycle can also be calculated by the following equation (11). It is clear that the gist of the technical idea can be realized.
[0018]
(Equation 4)
Figure 0003590195
[0019]
【The invention's effect】
As described above in detail, according to the present invention, in a current source converter having an LC filter on an AC input side, converting an AC input voltage into a DC output current, and supplying power to a load device, When the current control is performed, a device having a simple configuration that can effectively suppress the vibration of the AC input current even when the DC current command is suddenly changed can be provided, which is extremely useful in industry.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a ramp-shaped change in a voltage command value according to the present invention.
FIG. 2 is a diagram showing a relationship between a rising time of a voltage command value and an oscillating current amplitude according to the present invention.
FIG. 3 is a partial system diagram showing a configuration example of a PI controller to which the present invention is applied;
FIG. 4 is a circuit diagram showing a configuration of a current source converter.
FIG. 5 is a partial system diagram showing a conventional example of a PI controller in a current source converter.
FIG. 6 is a diagram showing an equivalent circuit for one phase of a current source converter.
FIG. 7 is a diagram showing an equivalent circuit for one phase when the voltage of the current source converter changes suddenly.
[Explanation of symbols]
11 Phase voltage 21 Reactor 31 Capacitor 41 Switching element 51 Diode 6 DC reactor 7 Load device 8 DC current detector 9 Control circuit 92 PI controller 92 'PI controller 921' Proportional control unit 922 'Integral control unit 923' Addition unit 924 Limiter 93 PWM modulator ΔVdc DC voltage Vdc change Vdc * DC voltage command Vdc * ′ DC voltage command ΔIdc DC current Idc change Idc * DC current command Rf Reactor resistance component Lf Reactor inductance component Cf Capacitor E Voltage source I Current source To Time Ts Period Vp Maximum value

Claims (1)

直流電流指令値と直流電流検出値の誤差を入力として直流電圧指令値を出力するPI制御器を具備するとともに、該直流電圧指令値によるPWM変調により交流入力側にLCフィルタを有する交流を直流に変換する電流形変換器において、前記PI制御器内に比例制御部出力を入力として該LCフィルタの値を基に決定される電圧変化率を有する信号出力を得るリミッタを設けたことを特徴とする電流形変換器の制御装置。It has a PI controller that outputs a DC voltage command value with an error between a DC current command value and a DC current detection value as an input, and converts an AC having an LC filter on the AC input side to DC by PWM modulation using the DC voltage command value. In the current-source converter for conversion, a limiter is provided in the PI controller to obtain a signal output having a voltage change rate determined based on a value of the LC filter by using an output of the proportional control unit as an input. Control device for current source converter.
JP15005296A 1996-05-21 1996-05-21 Control device for current source converter Expired - Lifetime JP3590195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15005296A JP3590195B2 (en) 1996-05-21 1996-05-21 Control device for current source converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15005296A JP3590195B2 (en) 1996-05-21 1996-05-21 Control device for current source converter

Publications (2)

Publication Number Publication Date
JPH09312975A JPH09312975A (en) 1997-12-02
JP3590195B2 true JP3590195B2 (en) 2004-11-17

Family

ID=15488460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15005296A Expired - Lifetime JP3590195B2 (en) 1996-05-21 1996-05-21 Control device for current source converter

Country Status (1)

Country Link
JP (1) JP3590195B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4652545B2 (en) * 2000-09-20 2011-03-16 独立行政法人 日本原子力研究開発機構 A one-cycle control method for controlling the current and voltage of an AC harmonic filter of a current-type pulse width modulation converter

Also Published As

Publication number Publication date
JPH09312975A (en) 1997-12-02

Similar Documents

Publication Publication Date Title
JP3841282B2 (en) PWM inverter device
EP3012959B1 (en) Control device of neutral-point-clamped power converter apparatus, and control method of neutral-point-clamped power converter apparatus
EP2858233B1 (en) High dynamic control apparatus for current source converter background
US10951152B2 (en) Power conversion apparatus
US20180152123A1 (en) Adaptive pulse width modulation in motor control systems
US5050057A (en) Power source apparatus
WO1997025766A1 (en) Multilevel power converting apparatus
KR102337945B1 (en) power converter
JPH03107373A (en) Power converter and control method thereof
JP3590195B2 (en) Control device for current source converter
JP3323759B2 (en) Pulse width modulation converter device
JP3233097B2 (en) Power converter and control method thereof
JP4842179B2 (en) Power conversion apparatus and control method thereof
JP3672378B2 (en) Control device for voltage source converter
JPH09312978A (en) Controller of dc-ac converter
JP3827286B2 (en) Power converter
JP3408961B2 (en) Power converter
JP2017212869A (en) Control method for power conversion device, and power conversion device
CN113302830B (en) Power conversion device
CN111819781B (en) Rectifying circuit device
JP7356395B2 (en) power converter
JP2003274666A (en) Inverter device and method for controlling the same
JPH10164846A (en) Control device for power conversion apparatus
JPH10164845A (en) Pwm rectifier
JP2024022201A (en) Inverter device and motor drive device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040819

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070827

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 9

EXPY Cancellation because of completion of term