JP3589740B2 - Fullerene-containing compound, resin composition and cured product thereof - Google Patents

Fullerene-containing compound, resin composition and cured product thereof Download PDF

Info

Publication number
JP3589740B2
JP3589740B2 JP12455995A JP12455995A JP3589740B2 JP 3589740 B2 JP3589740 B2 JP 3589740B2 JP 12455995 A JP12455995 A JP 12455995A JP 12455995 A JP12455995 A JP 12455995A JP 3589740 B2 JP3589740 B2 JP 3589740B2
Authority
JP
Japan
Prior art keywords
group
fullerene
compound
present
containing compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12455995A
Other languages
Japanese (ja)
Other versions
JPH08295694A (en
Inventor
貴幸 吉田
哲 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP12455995A priority Critical patent/JP3589740B2/en
Publication of JPH08295694A publication Critical patent/JPH08295694A/en
Application granted granted Critical
Publication of JP3589740B2 publication Critical patent/JP3589740B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Silicon Polymers (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、光機能材料に有用なフラーレン含有化合物、該フラーレン含有化合物を必須重合成分とする高分子化合物、それらを含む樹脂組成物、及びそれを硬化してなる硬化物に関する。
【0002】
【従来の技術】
フラーレンは、新たな非線形材料等の光機能材料として注目されている。しかしながらフラーレンは、微粉末でありそのままの状態で光機能材料に用いる事は困難であった。そこで光機能材料に用いるため、CVD(ChemicalVapor Deposition)によるフィルム化が行われている。
【0003】
【発明が解決しようとする課題】
しかしながら、CVDによるフィルムの調製は煩雑な操作手順を要し、歩留まりが悪いという欠点を有している。
【0004】
【課題を解決するための手段】
本発明者らは、前記課題解決を目的に鋭意検討した結果、フラーレンにアルコキシシリル基を導入することにより、容易にフィルム等の賦形化が出来る事を見出し本発明を完成するに至った。
【0005】
すなわち本発明は、
(1)式(1)で表されるフラーレン含有化合物、
【0006】
【化5】

Figure 0003589740
【0007】
(式中、
【0008】
【化6】
Figure 0003589740
【0009】
はフラーレン分子に存在する二重結合の内n個が単結合になった基を表し、nは1以上の整数を表す。R1は直接結合または、炭素数1〜11のアルキレン結合、あるいはアリール結合である。R2、R3、R4は、メトキシ基、エトキシ基、メチル基、あるいはエチル基を表し、互いに同一であっても異なっていてもよいが、少なくとも一つはメトキシ基、あるいはエトキシ基である。Xは−S−、−NH−、−NR、−O−のいずれかを表し、Xが−NR−である場合、Rは炭素1〜6のアルキル基を表す。)
(2)式(2)で表されるフラ−レン含有化合物
【0010】
【化7】
Figure 0003589740
【0011】
(式中、
【0012】
【化8】
Figure 0003589740
【0013】
はフラーレン分子に存在する二重結合の内n個が単結合になった基を表し、nは1以上の整数を表す。R5は炭素数1〜3のアルキレン結合を表し、R6は炭素数1〜6のアルキレン結合を表し、R7、R8、R9はメトキシ基、エトキシ基、メチル基、あるいはエチル基を表し、互いに同一であっても異なっていてもよいが、少なくとも一つはメトキシ基、あるいはエトキシ基である。Xは−S−、−NH−、−NR−、−O−のいずれかを、Yは−S−、−NH−、−NR−、−O−のいずれかを表すがXまたはYが−NR−である場合は、Rは炭素数1〜6のアルキル基を表す。)
【0014】
本発明のフラーレン含有化合物の合成法を以下に詳細に示す。
上記(1)または(2)記載のフラーレン含有化合物において、nは1以上の整数を表すが、好ましくはn=1〜30である。
本発明の出発原料としては、フラーレンであれば特に制限はなく、炭素数60、70、76、78、82等のフラーレンが用いられるが、入手し易さから炭素数60、70のフラーレンが好ましい。
【0015】
本発明におけるアルコキシシリル基は酸、あるいはアルカリ触媒下で加水分解し、ゾルゲル反応を起こすことのできる基であれば特に制限なく、メトキシ基、エトキシ基等が例示される。
【0016】
これらアルコキシシリル基を有する化合物は、フラーレン分子中の二重結合に付加反応をさせるため、同一分子内に活性水素を有する化合物であれば特に制限はない。これら活性水素を持つ反応基の具体例として水酸基、メルカプト基、1級アミノ基、2級アミノ基等が挙げられる。
【0017】
これらアルコキシシリル基と活性水素を有する化合物の用いうる具体例としては、N−(2−アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−アミノプロピルメチルジエトキシシラン、3−ヒドロキシプロピルトリメトキシシラン、(3−メルカプトプロピル)メチルジメトキシシラン、3−メルカプトプロピルトリメトキシシラン等が挙げられ、これらを2種以上併用する事も可能である。以下これらアルコキシシリル基と活性水素を有する化合物を化合物(A)という。
【0018】
化合物(A)のフラーレンへの導入は例えば以下のようにして行う。即ち、活性水素を有する基が1級、あるいは2級アミノ基である場合には、フラーレンをトルエン、あるいはベンゼンに溶解させ溶液とする。この時の溶液のフラーレンの濃度は、通常0.1〜3重量%であり、好ましくは0.5〜2重量%である。この溶液に、化合物(A)をそのまま、あるいはテトラヒドロキシフラン(THF)、メチルイソブチルケトン(MIBK)、エーテル等の非プロトン性の極性溶媒に溶解させたものを加え、10〜110℃で1時間〜48時間撹拌する事により反応を行う。化合物(A)の使用量は、フラーレン1モルに対し活性水素当量で通常1〜80当量であり、好ましくは3〜60当量である。
【0019】
また、反応基が水酸基、あるいはメルカプト基である場合には、例えば次のようにして反応を行う。あらかじめ脱水したTHF、MIBK、エーテル等の溶媒に金属ナトリウム、あるいは水素化ナトリウムを加える。そこへ化合物(A)を室温、あるいは氷冷しながら滴下を行い0〜50℃で30分〜5時間撹拌を行い化合物(A)のナトリウム塩を得る。このナトリウム塩溶液をあらかじめ脱水したトルエン、ベンゼン等の溶媒にフラーレンを溶解した溶液に、室温、あるいは氷冷しながら滴下を行い、滴下終了後10〜80℃で1〜48時間撹拌する事により本発明のフラーレン含有化合物が得られる。この時のフラーレン溶液の濃度は、通常0.1〜3重量、好ましくは0.5〜2重量%である。また、この場合の化合物(A)の使用量は、フラーレン1モルに対し活性水素当量で通常1〜80当量、好ましくは3〜60当量である。
【0020】
本発明の高分子化合物は、上記のようにして得られた本発明フラーレン含有化合物を水中で酸あるいはアルカリを触媒としてゾルゲル反応(重合反応)を行う事により得られる。
【0021】
本発明の高分子化合物は、本発明のフラーレン含有化合物のほかに金属アルコキシ化合物を添加し、共重合しても良い。これら金属アルコキシ化合物は水、及び必要により触媒の存在下で加水分解し、架橋反応するものであれば特に制限はなく、テトラメトキシシラン、テトラエトキシシラン、フェニルトリエトキシシラン、メチルトリエトキシシラン、ジフェニルジエトキシシラン、フェニルメチルジエトキシシラン、ジメチルジエトキシシラン、テトラプロピルチタン、テトラブチルチタン、テトラプロピルジルコニウム、テトラプロピルアルミニウム等が用いうる具体例として挙げられる。これら金属アルコキシ化合物の使用量は、フラーレン含有化合物中のアルコキシシリル基1モルに対し0.1〜300モルであり、好ましくは1〜100モルである。
【0022】
本発明の高分子化合物の合成に用いられる水の使用量は、金属アルコキシ基が加水分解を起こすのに充分な量であれば特に制限はないが金属アルコキシ基1モルに対し0.1〜30モルであり、好ましくは0.5〜25モルである。この場合の金属アルコキシル基とは、本発明のフラーレン含有化合物中のアルコキシシリル基及び必要により用いる金属アルコキシ化合物中の金属アルコキシ基の両者をさす。以下同様。
【0023】
本発明の高分子化合物の合成に用いられる触媒は、金属アルコキシ基の加水分解を促進させるものであれば特に制限はないが、無機酸として塩酸、硫酸、硝酸等が、有機酸として酢酸、シュウ酸等が、無機アルカリとしてアンモニア、水酸化ナトリウム、水酸化カリウム等が用いうる具体例として挙げられる。これら、触媒の使用量は金属アルコキシ基に対し0.009〜3当量である。
【0024】
本発明の高分子化合物の合成においては必要によりアルコール類を用いてもよい。アルコール類としては、室温で液体であれば特に制限はないが、メタノール、エタノールが好ましい具体例として挙げられる。これらアルコール類の使用量は本発明のフラーレン含有化合物及び必要により用いる金属アルコキシ化合物の合計重量100重量部に対し、通常10〜10000重量部、好ましくは80〜5000重量部である。
【0025】
また、フラーレン含有化合物と水、触媒との相溶性を向上させる目的で他の極性有機溶媒を添加しても良い。これら有機溶媒の用いうる具体例としてはTHF、エーテル等が挙げられる。
【0026】
本発明の高分子化合物の合成は、上記各成分を所定の割合で均一に混合した混合物を10〜80℃の条件下で1〜200時間撹拌する事により行う。
【0027】
本発明の樹脂組成物は、本発明のフラーレン含有化合物及び/または本発明の高分子化合物を含有する。本発明の樹脂組成物が本発明のフラーレン含有化合物を含有する場合、本発明の樹脂組成物は、水及び上記触媒を含有する。
また、更に必要により上記の金属アルコキシ化合物、アルコール類、極性有機溶媒を含有してもよい。これら水、触媒、金属アルコキシ化合物、アルコール類、極性有機溶媒の使用量は、上記の本発明の高分子化合物を得る場合と同様である。
また、上記のようにして得られた本発明の高分子化合物を含有する溶液は、そのまま本発明の樹脂組成物とすることができる。この場合必要により更に溶媒(水、アルコール類、極性有機溶媒)を加えてもよいし、溶媒を加熱等により必要量除去してもよい。更に必要により本発明のフラーレン含有化合物、金属アルコキシ化合物を添加してもよい。
【0028】
本発明の硬化物は、本発明の樹脂組成物を加熱あるいは凍結乾燥する事により得られる。加熱乾燥を行う場合、乾燥温度は20〜200℃が好ましい。また、本発明の樹脂組成物を基盤上にキャストし、加熱あるいは凍結乾燥してもよい。この場合、本発明の樹脂組成物は、水等の溶媒を含有する液状であるのが好ましい。また、得られた硬化物を不活性ガス中で加熱しガラス化させても良い。このときの加熱温度は600〜1000℃が好ましい。
【0029】
以下に実施例を挙げて本発明を更に具体的に説明する。
【0030】
実施例1
温度計、撹拌装置、滴下ロート、及び冷却管を取り付けた200mlの四口フラスコに炭素数60のフラーレン(フラーレンC60、以下同様)100mg、トルエン100mlを入れ室温で撹拌しトルエン溶液とした。そこに、3−(2−アミノエチルアミノプロピル)ジメトキシメチルシランの20重量%THF溶液15mlを滴下ロートから徐々に滴下した。滴下終了後、50℃で48時間撹拌し反応させた。反応液を分液ロートに移し、トルエンを100ml加え、油層を水で数回洗浄した。得られたトルエン溶液を無水硫酸マグネシウムで脱水後、溶媒を減圧蒸留で除去した。得られた固形物を再びトルエンに溶解させ、分取クロマトグラフィーにより未反応物から分離精製後、溶媒を減圧蒸留で除去し茶色の粉体(本発明のフラーレン含有化合物、以下化合物(A−1)という。)182mgを得た。
【0031】
得られた粉体は赤外線吸収スペクトル分析の結果、576cm−1と527cm−1にフラーレンC60に由来する吸収、1060cm−1にSi−O−Cに由来する吸収、1100cm−1にC−Nに由来する吸収、1260cm−1にSi−CHに由来する吸収、3060cm−1にC−Hに由来する吸収、3200cm−1にNH−Cに由来する吸収がみられた。
【0032】
また、H−NMR(400MHz,DMSO(ジメチルスルホキシド))による分析の結果、δ=0.92(s,3H,CH),1.23(t,2H,SiCH),1.32(m,2H,CH),2.51(m,2H,CH),3.45(s,3H,CH),3.63(t,2H,CH),4.83(t,1H,NH),6.45(s,1H,C60 C−H)であった。
【0033】
また、13C−NMR(100MHz,DMSO)による分析の結果、δ=0.48(SiCH),1.54(SiCH),23.61(CH),26.87(CH),48.12(NHCH),49.36(NHCH),50.03(NHCH),62.67(SiOCH),65.42,67.55,68.66(C60 CH),141.22〜144.89(C60C)であった。その結果、化合物(A−1)は式(3)で表される構造であった。
【0034】
【化9】
Figure 0003589740
【0035】
(式中nは整数を表し(以下式(4)〜(6)においても同じ)、
【0036】
【化10】
Figure 0003589740
【0037】
は、フラーレンC60中に存在する二重結合のうちn個が単結合になった基を表す(以下式(4)〜(6)においても同じ)。)
【0038】
実施例2
温度計、撹拌装置、滴下ロート、及び冷却管を取り付けた200mlの四口フラスコを窒素置換した後、炭素数60のフラーレン100mg、脱水トルエン100mlを投入し、室温で撹拌し溶解させた。そこに、あらかじめNaHでナトリウムメトキシドとした3−ヒドロキシプロピルトリエトキシシランの20重量%THF溶液12mlを滴下ロートから徐々に滴下した。滴下終了後、25℃で12時間撹拌し反応させた。反応液を分液ロートに移し、トルエンを100ml加え、油層を水で数回洗浄した。トルエン溶液を無水硫酸マグネシウムで脱水後、溶媒を減圧蒸留で除去した。得られた固形物を再びトルエンに溶解させ、分取クロマトグラフィーにより未反応物から分離精製後、溶媒を減圧蒸留で除去し黒色の粉体(本発明のフラーレン含有化合物、以下化合物(A−2)という。)176mgを得た。
【0039】
得られた粉体は赤外線吸収スペクトル分析の結果、576cm−1と527cm−1にフラーレンC60に由来する吸収、1060cm−1にSi−O−Cに由来する吸収、1096cm−1、1300cm−1にC−O−Cに由来する吸収、2950cm−1にC−Hに由来する吸収がみられた。
【0040】
また、H−NMR(400MHz,DMSO)による分析の結果、δ=0.58(t,2H,SiCH),1.21(m,9H,CH),1.48(m,2H,CH),3.21(t,2H,CH),3.42(m,6H,CH),6.78(s,1H,C60 C−H)であった。
【0041】
また、13C−NMR(100MHz,DMSO)による分析の結果、δ=0.48(SiCH),18.98(CH),26.71(CH),62.67(SiOCH),72.42(OCH),67.42,67.65,67.89,68.47,69.81(C60 CH),140.33〜145.72(C60C),であった。その結果、化合物(A−2)は式(4)で表される構造であった。
【0042】
【化11】
Figure 0003589740
【0043】
実施例3
温度計、撹拌装置、滴下ロート、及び冷却管を取り付けた200mlの四口フラスコに炭素数60のフラーレン100mg、トルエン100mlを入れ室温で撹拌しトルエン溶液とした。そこに、3−アミノプロピルメチルジエトキシシランの20重量%THF溶液15mlを滴下ロートから徐々に滴下した。滴下終了後、50℃で48時間撹拌し反応させた。反応液を分液ロートに移し、トルエンを100ml加え、油層を水で数回洗浄した。得られたトルエン溶液を無水硫酸マグネシウムで脱水後、凍結乾燥を行った。得られた固形物を再びトルエンに溶解させ、分取クロマトグラフィーにより未反応物から精製分離後、凍結乾燥し茶色の粉体(本発明のフラーレン含有化合物、以下化合物(A−3)という。)131mgを得た。
【0044】
得られた粉体は赤外線吸収スペクトル分析の結果、576cm−1と527cm−1にフラーレンC60に由来する吸収、1080cm−1にSi−O−Cに由来する吸収、1110cm−1にC−Nに由来する吸収、1250cm−1にSi−CHに由来する吸収、3040cm−1にC−Hに由来する吸収、3210cm−1にNH−Cに由来する吸収がみられた。
【0045】
また、H−NMR(400MHz,DMSO)による分析の結果、δ=0.94(s,3H,SiCH),1.12(t,2H,SiCH),1.19(t,3H,CH),2.04(m,2H,CH),3.18(m,2H,NHCH),3.23(t,2H,SiOCH),3.30(m,2H,NHCH),3.42(m,2H,CH),4.83(m,1H,NH),6.29(s,1H,C60 C−H)であった。
【0046】
また、13C−NMR(100MHz,DMSO)による分析の結果、δ=0.48(SiCH),1.54(SiCH),23.61(CH),26.87(CH),48.12(NHCH),62.67(SiOCH),65.42,67.55,68.66(C60 CH),141.22〜144.89(C60C)であった。その結果、化合物(A−3)は、式(5)で表される構造であった。
【0047】
【化12】
Figure 0003589740
【0048】
実施例4
温度計、撹拌装置、滴下ロート、及び冷却管を取り付けた200mlの四口フラスコを窒素置換した後、炭素数60のフラーレン100mg、脱水トルエン100mlを投入し、室温で撹拌し溶解させた。そこに、あらかじめNaHでナトリウムメトキシドとした3−メルカプトプロピルメチルジエトキシシランの20重量%THF溶液12mlを滴下ロートから徐々に滴下した。滴下終了後、25℃で12時間撹拌し反応させた。反応液を分液ロートに移し、トルエンを100ml加え、油層を水で数回洗浄した。得られたトルエン溶液を無水硫酸マグネシウムで脱水後、凍結乾燥を行った。得られた固形物を再びトルエンに溶解させ、分取クロマトグラフィーにより未反応物から精製分離後、凍結乾燥し黒緑色の粉体(本発明のフラーレン含有化合物、以下化合物(A−4)という。)125mgを得た。
【0049】
得られた粉体は赤外線吸収スペクトル分析の結果、576cm−1と527cm−1にフラーレンC60に由来する吸収、1053cm−1にSi−O−Cに由来する吸収、1253cm−1にSi−CHに由来する吸収、2940cm−1にC−Hに由来する吸収がみられた。
【0050】
また、H−NMR(400MHz,DMSO)による分析の結果、δ=0.91(s,3H,Si−CH),0.98(t,2H,SiCH),1.22(t,3H,CH),1.59(m,2H,CH),2.64(t,2H,SCH),3.31(t,2H,SiOCH),6.11(s,1H,C60 C−H)であった。
【0051】
また、13C−NMR(100MHz,DMSO)による分析の結果、δ=0.48(SiCH),0.95(SiCH),15.61(CH),26.87(CH),38.12(SCH),62.55(SiOCH),65.42,66.45,67.41,68.33,68.71(C60 CH),141.03〜145.36(C60C)であった。その結果、化合物(A−4)は式(6)で表される構造であった。
【0052】
【化13】
Figure 0003589740
【0053】
実施例5
温度計、撹拌装置、及び冷却管を取り付けた100mlの三口フラスコに実施例1で得られた化合物(A−1)0.1g、テトラエトキシシラン3g、水酸化ナトリウム1.0g,水20g,エタノール30mlを投入し、50℃で72時間撹拌しゾルゲル反応を行い、本発明の高分子化合物を得た。得られた反応液をガラス基板上にバーコーターを用いて塗布し、70℃で24時間乾燥し、膜厚0.3mmの硬化膜(B−1)を得た。
【0054】
実施例6
温度計、撹拌装置、及び冷却管を取り付けた100mlの三口フラスコに実施例2で得られた化合物(A−2)0.1g、テトラエトキシシラン3g、12N塩酸2.3ml、水18g、THF10ml、エタノール20mlを投入し、50℃で96時間撹拌しゾルゲル反応を行い、本発明の高分子化合物を得た。得られた反応液をガラス基板上にバーコーターを用いて塗布し、70℃で24時間乾燥し、膜厚0.3mmの硬化膜(B−2)を得た。
【0055】
実施例7
温度計、撹拌装置、及び冷却管を取り付けた100mlの三口フラスコに実施例3で得られた化合物(A−3)0.1g、テトラエトキシシラン3g、ジフェニルジエトキシシラン1g、水酸化ナトリウム1.3g、水20g、エタノール30mlを投入し、60℃で72時間撹拌しゾルゲル反応を行い、本発明の高分子化合物を得た。得られた反応液をガラス基板上にバーコーターを用いて塗布し、50℃で24時間乾燥し、膜厚0.3mmの硬化膜(B−3)を得た。
【0056】
実施例8
温度計、撹拌装置、及び冷却管を取り付けた100mlの三口フラスコに実施例4で得られた化合物(A−4)0.1g、テトラエトキシシラン4g、12N塩酸2.1g、水20g、THF10ml、エタノール20mlを投入し、60℃で80時間撹拌しゾルゲル反応を行い、本発明の高分子化合物を得た。得られた反応液をガラス基板上にバーコーターを用いて塗布し、70℃で24時間乾燥し、膜厚0.3mmの硬化膜(B−4)を得た。
【0057】
試験例
実施例5〜8で得られた硬化膜(B−5),(B−6),(B−7),(B−8)を分光光度計(U−3210形自己分光光度計(日立社製))を用いての光吸収スペクトルの測定を行った。測定結果を表1に示す。
サンプル 吸収波長(nm)
硬化膜(B−1) 327,256,220
硬化膜(B−2) 325,286,218
硬化膜(B−3) 324,261,221,205,190
硬化膜(B−4) 320,268,257,215
【0058】
【発明の効果】
本発明のフラーレン含有化合物は、容易にフラーレン分子を含有する硬化膜を得る事が出来、光触媒、3次非線形光学材料等の光機能材料として有用である。[0001]
[Industrial applications]
The present invention relates to a fullerene-containing compound useful for an optical functional material, a polymer compound containing the fullerene-containing compound as an essential polymerization component, a resin composition containing them, and a cured product obtained by curing the same.
[0002]
[Prior art]
Fullerene has attracted attention as an optical functional material such as a new nonlinear material. However, fullerene is a fine powder, and it is difficult to use it as it is as an optical functional material. Therefore, a film is formed by CVD (Chemical Vapor Deposition) in order to use it as an optical functional material.
[0003]
[Problems to be solved by the invention]
However, preparation of a film by CVD requires a complicated operation procedure, and has a drawback that the yield is poor.
[0004]
[Means for Solving the Problems]
The present inventors have conducted intensive studies for the purpose of solving the above-mentioned problems, and as a result, have found that by introducing an alkoxysilyl group into fullerene, it is possible to easily shape a film or the like, thereby completing the present invention.
[0005]
That is, the present invention
(1) a fullerene-containing compound represented by the formula (1),
[0006]
Embedded image
Figure 0003589740
[0007]
(Where
[0008]
Embedded image
Figure 0003589740
[0009]
Represents a group in which n of the double bonds present in the fullerene molecule have become a single bond, and n represents an integer of 1 or more. R 1 is a direct bond, an alkylene bond having 1 to 11 carbon atoms, or an aryl bond. R 2 , R 3 , and R 4 represent a methoxy group, an ethoxy group, a methyl group, or an ethyl group, and may be the same or different, but at least one is a methoxy group or an ethoxy group . X represents any of -S-, -NH-, -NR, -O-, and when X is -NR-, R represents an alkyl group having 1 to 6 carbon atoms. )
(2) Fullerene-containing compound represented by formula (2)
Embedded image
Figure 0003589740
[0011]
(Where
[0012]
Embedded image
Figure 0003589740
[0013]
Represents a group in which n of the double bonds present in the fullerene molecule have become a single bond, and n represents an integer of 1 or more. R 5 represents an alkylene bond having 1 to 3 carbon atoms, R 6 represents an alkylene bond having 1 to 6 carbon atoms, and R 7 , R 8 , and R 9 represent a methoxy group, an ethoxy group, a methyl group, or an ethyl group. And they may be the same or different, but at least one is a methoxy group or an ethoxy group. X represents any one of -S-, -NH-, -NR-, -O-, and Y represents any one of -S-, -NH-, -NR-, -O-, wherein X or Y is- When it is NR-, R represents an alkyl group having 1 to 6 carbon atoms. )
[0014]
The method for synthesizing the fullerene-containing compound of the present invention will be described in detail below.
In the fullerene-containing compound according to the above (1) or (2), n represents an integer of 1 or more, preferably n = 1 to 30.
The starting material of the present invention is not particularly limited as long as it is a fullerene, and a fullerene having 60, 70, 76, 78, 82 or the like is used. However, a fullerene having 60 or 70 carbon atoms is preferable in terms of availability. .
[0015]
The alkoxysilyl group in the present invention is not particularly limited as long as it can be hydrolyzed under an acid or alkali catalyst to cause a sol-gel reaction, and examples thereof include a methoxy group and an ethoxy group.
[0016]
These compounds having an alkoxysilyl group are not particularly limited as long as they have an active hydrogen in the same molecule because they cause an addition reaction to a double bond in a fullerene molecule. Specific examples of the reactive group having active hydrogen include a hydroxyl group, a mercapto group, a primary amino group, and a secondary amino group.
[0017]
Specific examples of the compounds having an alkoxysilyl group and active hydrogen that can be used include N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxy Silane, 3-aminopropyltriethoxysilane, 3-aminopropylmethyldiethoxysilane, 3-hydroxypropyltrimethoxysilane, (3-mercaptopropyl) methyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, and the like. May be used in combination of two or more. Hereinafter, these compounds having an alkoxysilyl group and active hydrogen are referred to as compound (A).
[0018]
The compound (A) is introduced into fullerene, for example, as follows. That is, when the group having active hydrogen is a primary or secondary amino group, fullerene is dissolved in toluene or benzene to form a solution. The concentration of fullerene in the solution at this time is usually 0.1 to 3% by weight, preferably 0.5 to 2% by weight. To this solution, the compound (A) as it is or a solution prepared by dissolving the compound (A) in an aprotic polar solvent such as tetrahydroxyfuran (THF), methyl isobutyl ketone (MIBK), or ether is added, and the mixture is heated at 10 to 110 ° C. for 1 hour. The reaction is performed by stirring for ~ 48 hours. The amount of compound (A) to be used is generally 1 to 80 equivalents, preferably 3 to 60 equivalents, in terms of active hydrogen equivalent per mol of fullerene.
[0019]
When the reactive group is a hydroxyl group or a mercapto group, the reaction is performed, for example, as follows. Metallic sodium or sodium hydride is added to a solvent such as THF, MIBK, or ether which has been dehydrated in advance. The compound (A) is added dropwise thereto at room temperature or with ice cooling, and the mixture is stirred at 0 to 50 ° C. for 30 minutes to 5 hours to obtain a sodium salt of the compound (A). This sodium salt solution is added dropwise to a solution in which fullerene is dissolved in a solvent such as toluene or benzene, which has been dehydrated in advance, at room temperature or with ice cooling, and after completion of the addition, the mixture is stirred at 10 to 80 ° C. for 1 to 48 hours. The fullerene-containing compound of the invention is obtained. The concentration of the fullerene solution at this time is usually 0.1 to 3% by weight, preferably 0.5 to 2% by weight. In this case, the amount of the compound (A) to be used is generally 1 to 80 equivalents, preferably 3 to 60 equivalents in terms of active hydrogen equivalent per mol of fullerene.
[0020]
The polymer compound of the present invention can be obtained by subjecting the fullerene-containing compound of the present invention obtained as described above to a sol-gel reaction (polymerization reaction) in water using an acid or an alkali as a catalyst.
[0021]
The polymer compound of the present invention may be copolymerized by adding a metal alkoxy compound in addition to the fullerene-containing compound of the present invention. These metal alkoxy compounds are not particularly limited as long as they hydrolyze and crosslink in the presence of water and, if necessary, a catalyst. Tetramethoxysilane, tetraethoxysilane, phenyltriethoxysilane, methyltriethoxysilane, diphenyl Specific examples that can be used include diethoxysilane, phenylmethyldiethoxysilane, dimethyldiethoxysilane, tetrapropyltitanium, tetrabutyltitanium, tetrapropylzirconium, and tetrapropylaluminum. The amount of the metal alkoxy compound to be used is 0.1 to 300 mol, preferably 1 to 100 mol, per 1 mol of the alkoxysilyl group in the fullerene-containing compound.
[0022]
The amount of water used for the synthesis of the polymer compound of the present invention is not particularly limited as long as it is an amount sufficient to cause hydrolysis of the metal alkoxy group. Mol, preferably 0.5 to 25 mol. In this case, the metal alkoxyl group refers to both the alkoxysilyl group in the fullerene-containing compound of the present invention and the metal alkoxy group in the metal alkoxy compound used as required. The same applies hereinafter.
[0023]
The catalyst used for the synthesis of the polymer compound of the present invention is not particularly limited as long as it promotes the hydrolysis of the metal alkoxy group, but hydrochloric acid, sulfuric acid, nitric acid and the like as inorganic acids, and acetic acid and sulfur as organic acids. Acids and the like are specific examples in which ammonia, sodium hydroxide, potassium hydroxide and the like can be used as the inorganic alkali. These catalysts are used in an amount of 0.009 to 3 equivalents to the metal alkoxy group.
[0024]
In the synthesis of the polymer compound of the present invention, alcohols may be used as necessary. The alcohol is not particularly limited as long as it is a liquid at room temperature, but preferred specific examples include methanol and ethanol. The amount of the alcohol to be used is generally 10 to 10000 parts by weight, preferably 80 to 5000 parts by weight, based on 100 parts by weight of the total weight of the fullerene-containing compound of the present invention and the metal alkoxy compound used as required.
[0025]
Further, another polar organic solvent may be added for the purpose of improving the compatibility between the fullerene-containing compound, water and the catalyst. Specific examples of the use of these organic solvents include THF, ether and the like.
[0026]
The synthesis of the polymer compound of the present invention is carried out by stirring a mixture obtained by uniformly mixing the above components at a predetermined ratio at a temperature of 10 to 80 ° C. for 1 to 200 hours.
[0027]
The resin composition of the present invention contains the fullerene-containing compound of the present invention and / or the polymer compound of the present invention. When the resin composition of the present invention contains the fullerene-containing compound of the present invention, the resin composition of the present invention contains water and the above catalyst.
Further, if necessary, the above-mentioned metal alkoxy compound, alcohols and polar organic solvent may be contained. The amounts of these water, catalyst, metal alkoxy compound, alcohol, and polar organic solvent used are the same as in the case of obtaining the above-mentioned polymer compound of the present invention.
Further, the solution containing the polymer compound of the present invention obtained as described above can be directly used as the resin composition of the present invention. In this case, if necessary, a solvent (water, alcohol, polar organic solvent) may be further added, or the necessary amount of the solvent may be removed by heating or the like. If necessary, the fullerene-containing compound and the metal alkoxy compound of the present invention may be added.
[0028]
The cured product of the present invention can be obtained by heating or freeze-drying the resin composition of the present invention. When performing heat drying, the drying temperature is preferably from 20 to 200 ° C. Further, the resin composition of the present invention may be cast on a substrate and heated or freeze-dried. In this case, the resin composition of the present invention is preferably a liquid containing a solvent such as water. Further, the obtained cured product may be heated in an inert gas to be vitrified. The heating temperature at this time is preferably from 600 to 1000C.
[0029]
Hereinafter, the present invention will be described more specifically with reference to examples.
[0030]
Example 1
A 200 ml four-necked flask equipped with a thermometer, a stirrer, a dropping funnel, and a condenser was charged with 100 mg of fullerene having 60 carbon atoms (fullerene C60, the same applies hereinafter) and 100 ml of toluene, and stirred at room temperature to obtain a toluene solution. Thereto, 15 ml of a 20% by weight THF solution of 3- (2-aminoethylaminopropyl) dimethoxymethylsilane was gradually dropped from a dropping funnel. After completion of the dropwise addition, the mixture was stirred at 50 ° C. for 48 hours to be reacted. The reaction solution was transferred to a separating funnel, 100 ml of toluene was added, and the oil layer was washed several times with water. After dehydrating the obtained toluene solution with anhydrous magnesium sulfate, the solvent was removed by distillation under reduced pressure. The obtained solid was dissolved again in toluene, separated and purified from unreacted substances by preparative chromatography, and then the solvent was removed by distillation under reduced pressure to obtain a brown powder (fullerene-containing compound of the present invention; hereinafter, compound (A-1)). 182 mg.
[0031]
The resulting powder infrared absorption spectrum analysis of the results, the absorption derived from fullerene C60 to 576cm -1 and 527cm -1, absorption derived from Si-O-C in 1060 cm -1, the C-N to 1100 cm -1 derived absorption, absorption derived from Si-CH 3 in 1260 cm -1, absorption derived from CH to 3060cm -1, absorption derived from NH-C to 3200 cm -1 was observed.
[0032]
In addition, as a result of analysis by 1 H-NMR (400 MHz, DMSO (dimethyl sulfoxide)), δ = 0.92 (s, 3H, CH 3 ), 1.23 (t, 2H, SiCH 2 ), 1.32 ( m, 2H, CH 2), 2.51 (m, 2H, CH 2), 3.45 (s, 3H, CH 3), 3.63 (t, 2H, CH 2), 4.83 (t, 1H, NH), 6.45 (s, 1H, C60 CH).
[0033]
Further, as a result of analysis by 13 C-NMR (100 MHz, DMSO), δ = 0.48 (SiCH 3 ), 1.54 (SiCH 2 ), 23.61 (CH 2 ), 26.87 (CH 3 ), 48.12 (NHCH 2 ), 49.36 (NHCH 2 ), 50.03 (NHCH 2 ), 62.67 (SiOCH 2 ), 65.42, 67.55, 68.66 (C60 CH), 141. 22 to 144.89 (C60C). As a result, compound (A-1) had a structure represented by formula (3).
[0034]
Embedded image
Figure 0003589740
[0035]
(In the formula, n represents an integer (the same applies to formulas (4) to (6) below),
[0036]
Embedded image
Figure 0003589740
[0037]
Represents a group in which n of the double bonds present in the fullerene C60 have become single bonds (the same applies to the following formulas (4) to (6)). )
[0038]
Example 2
After replacing a 200-ml four-necked flask equipped with a thermometer, a stirrer, a dropping funnel, and a cooling tube with nitrogen, 100 mg of fullerene having 60 carbon atoms and 100 ml of dehydrated toluene were added, and the mixture was stirred and dissolved at room temperature. To this, 12 ml of a 20% by weight THF solution of 3-hydroxypropyltriethoxysilane previously converted to sodium methoxide with NaH was gradually dropped from a dropping funnel. After the completion of the dropwise addition, the mixture was reacted by stirring at 25 ° C. for 12 hours. The reaction solution was transferred to a separating funnel, 100 ml of toluene was added, and the oil layer was washed several times with water. After dehydrating the toluene solution with anhydrous magnesium sulfate, the solvent was removed by distillation under reduced pressure. The obtained solid was dissolved again in toluene, separated and purified from unreacted substances by preparative chromatography, and then the solvent was removed by distillation under reduced pressure to obtain a black powder (fullerene-containing compound of the present invention; hereinafter referred to as compound (A-2)). ) Was obtained.
[0039]
The resulting powder infrared absorption spectrum analysis of the results, the absorption derived from fullerene C60 to 576cm -1 and 527cm -1, absorption derived from Si-O-C in 1060cm -1, 1096cm -1, to 1300 cm -1 Absorption derived from C—O—C and absorption derived from C—H were observed at 2950 cm −1 .
[0040]
In addition, as a result of analysis by 1 H-NMR (400 MHz, DMSO), δ = 0.58 (t, 2H, SiCH 2 ), 1.21 (m, 9H, CH 3 ), 1.48 (m, 2H, CH 2), 3.21 (t, 2H, CH 2), 3.42 (m, 6H, CH 2), was 6.78 (s, 1H, C60 CH ).
[0041]
Further, as a result of analysis by 13 C-NMR (100 MHz, DMSO), δ = 0.48 (SiCH 2 ), 18.98 (CH 2 ), 26.71 (CH 3 ), 62.67 (SiOCH 2 ), 72.42 (OCH 2), 67.42,67.65,67.89,68.47,69.81 ( C60 CH), 140.33~145.72 (C60C), was. As a result, compound (A-2) had a structure represented by formula (4).
[0042]
Embedded image
Figure 0003589740
[0043]
Example 3
A 200 ml four-necked flask equipped with a thermometer, a stirrer, a dropping funnel, and a condenser was charged with 100 mg of fullerene having 60 carbon atoms and 100 ml of toluene, and stirred at room temperature to obtain a toluene solution. Thereto, 15 ml of a 20% by weight THF solution of 3-aminopropylmethyldiethoxysilane was gradually dropped from a dropping funnel. After completion of the dropwise addition, the mixture was stirred at 50 ° C. for 48 hours to be reacted. The reaction solution was transferred to a separating funnel, 100 ml of toluene was added, and the oil layer was washed several times with water. The obtained toluene solution was dehydrated with anhydrous magnesium sulfate, and then freeze-dried. The obtained solid was dissolved again in toluene, purified and separated from unreacted substances by preparative chromatography, and then freeze-dried to obtain a brown powder (fullerene-containing compound of the present invention, hereinafter referred to as compound (A-3)). 131 mg were obtained.
[0044]
The resulting powder infrared absorption spectrum analysis of the results, the absorption derived from fullerene C60 to 576cm -1 and 527cm -1, absorption derived from Si-O-C in 1080 cm -1, the C-N to 1110 cm -1 At 1,250 cm −1 , absorption attributable to Si—CH 3 was observed, at 3040 cm −1 , absorption attributable to C—H, and at 3210 cm −1 , absorption attributable to NH—C was observed.
[0045]
Further, as a result of analysis by 1 H-NMR (400 MHz, DMSO), δ = 0.94 (s, 3H, SiCH 3 ), 1.12 (t, 2H, SiCH 2 ), 1.19 (t, 3H, CH 3), 2.04 (m, 2H, CH 2), 3.18 (m, 2H, NHCH 2), 3.23 (t, 2H, SiOCH 2), 3.30 (m, 2H, NHCH 2 ), 3.42 (m, 2H, CH 2), 4.83 (m, 1H, NH), was 6.29 (s, 1H, C60 CH ).
[0046]
Further, as a result of analysis by 13 C-NMR (100 MHz, DMSO), δ = 0.48 (SiCH 3 ), 1.54 (SiCH 2 ), 23.61 (CH 2 ), 26.87 (CH 3 ), 48.12 (NHCH 2 ), 62.67 (SiOCH 2 ), 65.42, 67.55, 68.66 (C60 CH), 141.22 to 144.89 (C60C). As a result, compound (A-3) had a structure represented by formula (5).
[0047]
Embedded image
Figure 0003589740
[0048]
Example 4
After replacing a 200-ml four-necked flask equipped with a thermometer, a stirrer, a dropping funnel, and a cooling tube with nitrogen, 100 mg of fullerene having 60 carbon atoms and 100 ml of dehydrated toluene were added, and the mixture was stirred and dissolved at room temperature. To this, 12 ml of a 20% by weight THF solution of 3-mercaptopropylmethyldiethoxysilane previously converted to sodium methoxide with NaH was gradually dropped from a dropping funnel. After the completion of the dropwise addition, the mixture was reacted by stirring at 25 ° C. for 12 hours. The reaction solution was transferred to a separating funnel, 100 ml of toluene was added, and the oil layer was washed several times with water. The obtained toluene solution was dehydrated with anhydrous magnesium sulfate, and then freeze-dried. The obtained solid was dissolved again in toluene, purified and separated from unreacted substances by preparative chromatography, freeze-dried, and then turned into a blackish green powder (fullerene-containing compound of the present invention, hereinafter referred to as compound (A-4)). ) 125 mg.
[0049]
The resulting powder infrared absorption spectrum analysis of the results, the absorption derived from fullerene C60 to 576cm -1 and 527cm -1, absorption derived from Si-O-C in 1053cm -1, Si-CH 3 in 1253Cm -1 , And absorption at 2940 cm −1 due to C—H.
[0050]
Also, as a result of analysis by 1 H-NMR (400 MHz, DMSO), δ = 0.91 (s, 3H, Si—CH 3 ), 0.98 (t, 2H, SiCH 2 ), 1.22 (t, 3H, CH 3), 1.59 ( m, 2H, CH 2), 2.64 (t, 2H, SCH 2), 3.31 (t, 2H, SiOCH 2), 6.11 (s, 1H, C60 CH).
[0051]
As a result of analysis by 13 C-NMR (100 MHz, DMSO), δ = 0.48 (SiCH 3 ), 0.95 (SiCH 2 ), 15.61 (CH 2 ), 26.87 (CH 3 ), 38.12 (SCH 2), 62.55 ( SiOCH 2), 65.42,66.45,67.41,68.33,68.71 (C60 CH), 141.03~145.36 (C60C) Met. As a result, the compound (A-4) had a structure represented by the formula (6).
[0052]
Embedded image
Figure 0003589740
[0053]
Example 5
0.1 g of the compound (A-1) obtained in Example 1, 3 g of tetraethoxysilane, 1.0 g of sodium hydroxide, 20 g of water, 20 g of ethanol in a 100 ml three-necked flask equipped with a thermometer, a stirrer, and a condenser. 30 ml was charged, and the mixture was stirred at 50 ° C. for 72 hours to perform a sol-gel reaction, thereby obtaining a polymer compound of the present invention. The obtained reaction liquid was applied on a glass substrate using a bar coater and dried at 70 ° C. for 24 hours to obtain a cured film (B-1) having a thickness of 0.3 mm.
[0054]
Example 6
0.1 g of the compound (A-2) obtained in Example 2, 3 g of tetraethoxysilane, 2.3 ml of 12N hydrochloric acid, 18 g of water, 10 ml of THF were placed in a 100 ml three-necked flask equipped with a thermometer, a stirrer, and a condenser. 20 ml of ethanol was added, and the mixture was stirred at 50 ° C. for 96 hours to perform a sol-gel reaction, thereby obtaining a polymer compound of the present invention. The obtained reaction solution was applied on a glass substrate using a bar coater, and dried at 70 ° C. for 24 hours to obtain a cured film (B-2) having a thickness of 0.3 mm.
[0055]
Example 7
0.1 g of the compound (A-3) obtained in Example 3, 3 g of tetraethoxysilane, 1 g of diphenyldiethoxysilane, 1 g of sodium hydroxide in a 100 ml three-necked flask equipped with a thermometer, a stirrer, and a condenser. 3 g, 20 g of water and 30 ml of ethanol were added, and the mixture was stirred at 60 ° C. for 72 hours to perform a sol-gel reaction, thereby obtaining a polymer compound of the present invention. The obtained reaction liquid was applied on a glass substrate using a bar coater, and dried at 50 ° C. for 24 hours to obtain a cured film (B-3) having a thickness of 0.3 mm.
[0056]
Example 8
0.1 g of the compound (A-4) obtained in Example 4, 4 g of tetraethoxysilane, 2.1 g of 12N hydrochloric acid, 20 g of water, 20 g of THF, 10 ml of THF were placed in a 100 ml three-necked flask equipped with a thermometer, a stirrer, and a condenser. 20 ml of ethanol was added, and the mixture was stirred at 60 ° C. for 80 hours to perform a sol-gel reaction, thereby obtaining a polymer compound of the present invention. The obtained reaction liquid was applied on a glass substrate using a bar coater, and dried at 70 ° C. for 24 hours to obtain a cured film (B-4) having a thickness of 0.3 mm.
[0057]
Test Example The cured films (B-5), (B-6), (B-7), and (B-8) obtained in Examples 5 to 8 were used as spectrophotometers (U-3210 type self-spectrophotometers). The light absorption spectrum was measured using Hitachi). Table 1 shows the measurement results.
Sample absorption wavelength (nm)
Cured film (B-1) 327, 256, 220
Cured film (B-2) 325, 286, 218
Cured film (B-3) 324, 261, 221, 205, 190
Cured film (B-4) 320, 268, 257, 215
[0058]
【The invention's effect】
The fullerene-containing compound of the present invention can easily obtain a cured film containing fullerene molecules and is useful as an optical functional material such as a photocatalyst and a third-order nonlinear optical material.

Claims (5)

式(1)で表されるフラーレン含有化合物。
Figure 0003589740
(式中、
Figure 0003589740
はフラーレン分子に存在する二重結合の内n個が単結合になった基を表し、nは1以上の整数を表す。R1は直接結合または、炭素数1〜11のアルキレン結合、あるいはアリール結合である。R2、R3、R4は、メトキシ基、エトキシ基、メチル基、あるいはエチル基を表し、互いに同一であっても異なっていてもよいが、少なくとも一つはメトキシ基、あるいはエトキシ基である。Xは−S−、−NH−、−NR−、−O−のいずれかを表し、Xが−NR−である場合、Rは炭素数1〜6のアルキル基である。)
A fullerene-containing compound represented by the formula (1).
Figure 0003589740
(Where
Figure 0003589740
Represents a group in which n of the double bonds present in the fullerene molecule have become a single bond, and n represents an integer of 1 or more. R 1 is a direct bond, an alkylene bond having 1 to 11 carbon atoms, or an aryl bond. R 2 , R 3 , and R 4 represent a methoxy group, an ethoxy group, a methyl group, or an ethyl group, and may be the same or different, but at least one is a methoxy group or an ethoxy group . X represents any of -S-, -NH-, -NR-, and -O-, and when X is -NR-, R is an alkyl group having 1 to 6 carbon atoms. )
式(2)で表されるフラーレン含有化合物。
Figure 0003589740
(式中、
Figure 0003589740
はフラーレン分子に存在する二重結合の内n個が単結合になった基を表し、nは1以上の整数を表す。R5は炭素数1〜3のアルキレン結合を表し、R6は炭素数1〜6のアルキレン結合を表し、R7、R8、R9はメトキシ基、エトキシ基、メチル基、あるいはエチル基を表し、互いに同一であっても異なっていてもよいが、少なくとも一つはメトキシ基、あるいはエトキシ基である。Xは−S−、−NH−、−NR−、−O−のいずれかを、Yは−S−、−NH−、−NR−、−O−のいずれかを表すがXまたはYが−NR−である場合は、Rは炭素数1〜6のアルキル基を表す。)
A fullerene-containing compound represented by the formula (2).
Figure 0003589740
(Where
Figure 0003589740
Represents a group in which n of the double bonds present in the fullerene molecule have become a single bond, and n represents an integer of 1 or more. R 5 represents an alkylene bond having 1 to 3 carbon atoms, R 6 represents an alkylene bond having 1 to 6 carbon atoms, and R 7 , R 8 , and R 9 represent a methoxy group, an ethoxy group, a methyl group, or an ethyl group. And they may be the same or different, but at least one is a methoxy group or an ethoxy group. X represents any one of -S-, -NH-, -NR-, -O-, and Y represents any one of -S-, -NH-, -NR-, -O-, wherein X or Y is- When it is NR-, R represents an alkyl group having 1 to 6 carbon atoms. )
請求項1及び/または請求項2記載の化合物を必須重合成分とする高分子化合物。A polymer compound comprising the compound according to claim 1 and / or claim 2 as an essential polymerization component. 請求項1または請求項2記載の化合物、請求項3記載の高分子化合物から選ばれる1種以上を含む樹脂組成物。A resin composition comprising at least one compound selected from the compound according to claim 1 or 2, and the polymer compound according to claim 3. 請求項4記載の樹脂組成物を硬化してなる硬化物。A cured product obtained by curing the resin composition according to claim 4.
JP12455995A 1995-04-26 1995-04-26 Fullerene-containing compound, resin composition and cured product thereof Expired - Fee Related JP3589740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12455995A JP3589740B2 (en) 1995-04-26 1995-04-26 Fullerene-containing compound, resin composition and cured product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12455995A JP3589740B2 (en) 1995-04-26 1995-04-26 Fullerene-containing compound, resin composition and cured product thereof

Publications (2)

Publication Number Publication Date
JPH08295694A JPH08295694A (en) 1996-11-12
JP3589740B2 true JP3589740B2 (en) 2004-11-17

Family

ID=14888482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12455995A Expired - Fee Related JP3589740B2 (en) 1995-04-26 1995-04-26 Fullerene-containing compound, resin composition and cured product thereof

Country Status (1)

Country Link
JP (1) JP3589740B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009235110A (en) * 2006-08-08 2009-10-15 Shiseido Co Ltd Process for producing fullerene/polymer compound, fullerene/polymer compound, and cosmetic preparation containing the same

Also Published As

Publication number Publication date
JPH08295694A (en) 1996-11-12

Similar Documents

Publication Publication Date Title
FR2640801A1 (en) SOLID POLYELECTROLYTE AND PROCESS FOR ITS PREPARATION
JPH0551459A (en) Method for producing organosilicon polymer
JPS58167597A (en) Fluoroaminosilane
PT2944640T (en) Urea-containing silanes, process for preparation thereof and use thereof
Xu et al. Polyhedral oligomeric silsesquioxanes tethered with perfluoroalkylthioether corner groups: facile synthesis and enhancement of hydrophobicity of their polymer blends
JP2005248082A (en) Manufacturing process of polybenzoxazole resin precursor and manufacturing process of polybenzoxazole resin
US5300613A (en) Fluorine-containing organosilicon compounds
JPH02243695A (en) Organosilicon compound
JP3589740B2 (en) Fullerene-containing compound, resin composition and cured product thereof
JP4332708B2 (en) Chlorosilane compound having bissilylamino group and method for producing the same, and method for producing organooxysilane compound having bissilylamino group
JP2001302796A (en) Method for manufacturing basic amino acid modified organopolysiloxane
JP3831437B2 (en) Silane coupling agent and method for producing the same
JP3615263B2 (en) Fullerene derivative, resin composition and cured product thereof
JP3115064B2 (en) Production method of new silane compound
Loy et al. Arylene-and alkylene-bridged siliconates
WO2022180817A1 (en) Sulfobetaine group-containing organosilicon compound and method for producing same
CN113773341B (en) Photochromic silane coupling agent and preparation method and application thereof
JP3226194B2 (en) Corn-type calixarene-based compound derivatives
US6866980B2 (en) Bis-o-aminophenol derivatives, poly-o-hydroxyamides, and polybenzoxazoles, usable in photosensitive compositions, dielectrics, buffer coatings, and microelectronics
JPH01275586A (en) Fluorine-containing silane coupling agent and production thereof
JP2003531942A (en) Curable silicone resin composition and reactive silicon compound
US7125814B2 (en) Bis-o-nitrophenols derivatives and poly-o-hydroxyamides, polybenzoxazoles, materials, and microelectronic devices made therefrom
JPH04252228A (en) Silicone-containing epoxy compound and production thereof
JPH02289590A (en) Organic silicon compound
JP2980250B2 (en) Method for producing 3- (2-oxo-1-pyrrolidinyl) propylsilane compound

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040818

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees