JP3588544B2 - Dye remover and method for removing dye from dye-containing water - Google Patents

Dye remover and method for removing dye from dye-containing water Download PDF

Info

Publication number
JP3588544B2
JP3588544B2 JP02094998A JP2094998A JP3588544B2 JP 3588544 B2 JP3588544 B2 JP 3588544B2 JP 02094998 A JP02094998 A JP 02094998A JP 2094998 A JP2094998 A JP 2094998A JP 3588544 B2 JP3588544 B2 JP 3588544B2
Authority
JP
Japan
Prior art keywords
dye
water
condensate
cucurbituril
remover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02094998A
Other languages
Japanese (ja)
Other versions
JPH11217557A (en
Inventor
耕治 竹辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hakuto Co Ltd
Original Assignee
Hakuto Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hakuto Co Ltd filed Critical Hakuto Co Ltd
Priority to JP02094998A priority Critical patent/JP3588544B2/en
Publication of JPH11217557A publication Critical patent/JPH11217557A/en
Application granted granted Critical
Publication of JP3588544B2 publication Critical patent/JP3588544B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、染料除去剤及び染料含有水中の染料を除去する方法に関する。詳しくは、染料を含む水から染料を容易に除去するのに有効な染料除去剤及び染料工場、染色工場から排出される染料含有廃水など染料を含む水中の染料を効果的に除去する方法に関する。
【0002】
【従来の技術】
染料工場、染色・捺染工場など染料を扱う工場から排出される廃水は染料が混入しているため着色しており、河川、海に放流する前に着色成分を除去しなければならない。ところが人間の視覚は色に対して極めて敏感であり、廃水中に極めて微量の染料が存在しても着色として感知され、所謂視覚公害として人々に不快な印象を与える。そのため、この着色成分の完全除去が望まれている。水中の染料などの着色成分を除去するには、無機あるいは有機の凝集剤による凝集処理法、酸化・還元などの化学的処理法、微生物による分解を行わせる微生物処理法などが一般に行われている。
【0003】
【発明が解決しようとする課題】
しかしながら、これら従来の方法のうち凝集処理法では着色成分の完全除去が難しく、化学的処理法では、完全除去はできるが、そのための設備投資、また運転コストが高くなるといった問題があり、微生物処理方法では、染料には生物難分解性のものが多く、着色成分の完全除去が難しく、かつ多額の費用を要しているのが実情であった。
【0004】
一方、染料の製造工場や染色工場においては、染料を扱う容器などの洗浄廃水、染色工程廃液など染料濃度の高い水溶液は、希釈する前に簡単に染料を除去することができれば、後段の負荷を小さくすることができ非常に好ましい。
【0005】
【課題を解決するための手段】
最近、立体的な空間構造を有するククルビツリルをホスト化合物とし、その空間に染料をゲストとして選択的に取り込む包接化を利用して、廃水中の染料を除こうとする方法が提案された〔ブッシュマン(H.J.Bushmann)ら、(ドイツ)繊維加工誌(Textilveredlung)26卷、5月号、153〜162頁、1991年刊〕。
【0006】
本発明者は、ククルビツリル及びその他の包接化合物に着目して検討する過程において、ククルビツリルの前駆物質に、ククルビツリルよりも効率的に染料を取り込む化合物が存在することを見いだし、この知見に基づいて本発明をなすに至った。
【0007】
すなわち、本発明はグリコールウリルとホルムとホルムアルデヒドを1:2〜1:3のモル比で酸性水溶液中で加熱反応させて得られる縮合物であって、これを濃硫酸中で加熱処理することによってククルビツリルに変換しうるククルビツリル前駆物質を有効成分とする染料除去剤並びにこれを用いて染料含有水中の染料を除去する方法である。
【0008】
【発明の実施の形態】
本発明の染料除去剤はグリコールウリルとホルムとホルムアルデヒドを1:2〜1:3のモル比で酸性水溶液中で加熱反応させて得られる縮合物であって、これを濃硫酸中で加熱処理することによってククルビツリルに変換しうるククルビツリル前駆物質を有効成分としてなるものである。
【0009】
グリコールウリルは下記構造式(I)によって表示されるもので、例えばグリオキサール〔OHCCHO〕と尿素〔CO(NH〕とを酸性水溶液中で反応させて容易に合成され、また、試薬としても市販されている。
【0010】
【化1】

Figure 0003588544
【0011】
もう一方の原料であるホルムアルデヒドは、一般の工業用として販売されているもので充分使用可能であり、通常メタノールを安定剤として含んでいるがそのままで実質影響はなく使用できる。またホルムアルデヒド水溶液のかわりにパラホルムアルデヒドを用いることもできる。
【0012】
グリコールウリルとホルムアルデヒドとの反応は、塩酸などの酸性水溶液中、50〜120℃で、10〜60分撹拌することにより達せられる。反応によって生成した縮合物は水溶液から析出してくるので、固液分離によって容易に分離取得できる。グリコールウリルとホルムアルデヒドとの反応モル比は、1:2〜1:3、好ましくは1:2.3〜1:2.9である。反応モル比が1:2より小さいと、反応が不充分となり、また得られる縮合物は染料除去能力が低下、或いは皆無となり、また、モル比が1:3より大きいと、過剰のホルムアルデヒドにより架橋化が進み、生成した縮合物は非常に硬い塊状となり、染料除去能力が減り好ましくない。
【0013】
この縮合物は、水、及びアセトン、エタノール、ジメチルスルホキシド、ベンゼン等の一般的な有機溶媒に殆ど不溶であり、染料を含有する水から染料を除去する資材として非常に有利に取り扱える。
【0014】
一方、ククルビツリルは、同じくグリコールウリルとホルムアルデヒドから製造される化合物であり、グリコールウリル単位6分子からなる大環状化合物である。〔ウイリアム エル モック(William L.Mock)ら、アメリカ化学雑誌(Journal of the American Chemical Society)103巻、7367頁(1981年)〕。さらに、このククルビツリルの環状構造の中には、特定の化合物を取り込む能力を持っていることが知られ、包接化の検討がなされている〔ウイリアム エル モック(William L.Mock)ら、アメリカ有機化学雑誌(Journal of Organic Chemistry)48巻、3618頁(1983年)、51巻、4440頁(1986)など〕。
【0015】
ククルビツリルは、本発明の縮合物を、さらに濃硫酸中で煮沸して、その後冷水で希釈した時に析出した固体、およびその固体を分離した後の反応液を更に煮沸して析出した固体を、塩酸で再結晶精製して得られるものである。赤外分光法(IR)、プロトン核磁気共鳴分光法(1H−NMR)、炭素−13核磁気共鳴分光法(13C−NMR)、示差熱天秤(TG−DTA)、示差走査熱量計(DSC)、マトリックス支援レーザー脱離イオン飛行時間型質量分析計(MALDI−TOF−MS)等を用いて検討した結果では、本発明の縮合物は完全な環状構造を形成するに至らず、グリコールウリルがメチレンで連結したコポリマーであると推定された。すなわち、ククルビツリルの環状構造は、本発明の縮合物を濃硫酸中で煮沸する段階で形成されたものといえる。したがって、本発明の染料除去剤としての縮合物は文献記載のククルビツリルとは構造の異なるものである。
【0016】
本発明の染料除去剤が染料分子を取り込む機構は明らかではないが、ククルビツリルのように完全な環状構造にまで至っていないものの、グリコールウリルがメチレン基で連結し、立体的に大きな構造をとる故に、空間(あるいは隙間)をもった構造となり、その空間に染料分子を取り込むことができるようになったものと推定される。
【0017】
本発明の染料除去剤は、様々な大きさの染料分子を取り込む能力をもち、さらにその能力は、媒体のpHによる影響を殆ど受けないという特徴をもっており、幅広い条件下で除去能力を有していることから、その適用範囲は非常に広いと言える。本発明の染料除去剤は、染料を含有する水に添加、攪拌するなど染料を含有する水に接触させるだけで容易に水中の染料を取り込み、水を無色にすることができる。本発明の染料除去剤は、廃水中に実質溶解することなく分散するのみで水中の染料を取り込むので、接触させた後静置すると染料を取り込んだ染料除去剤は沈澱し、上澄み液は無色となる。本発明の染料除去剤の添加量は、水中の染料濃度により異るが、通常、染料濃度の10〜200倍(重量比)、好ましくは50〜100倍(重量比)である。また、本発明の染料除去剤をカラム状に充填し、上から染料を含有する水を流すことにより、染料がカラムに取り込まれ、下から脱色された水を得ることもできる。
【0018】
本発明の染料除去剤は、媒体のpHが3〜8であればpHによる影響をあまり受けず、効率よく染料を取り込むことができる。このpH範囲の外である強酸性及び強アルカリ性では脱色性能が若干劣るが、実用上は実質pHによる影響を受けずに処理できるといえる。
【0019】
また、処理温度による影響も殆どなく、対象とする水が凍結しない温度であれば問題ない。
【0020】
本発明の染料除去剤は実質水に溶解しないので、染料を含有する水、廃水に適用したとき、脱色した後染料を取り込んだ縮合物は濾過等により容易に分離することができる。また染料を取り込んだ後、250℃〜330℃に加熱することにより、構造中の染料のみが分解し、縮合物は再生使用することができる。本発明の染料除去剤である縮合物の分解点は、およそ350℃であるため、330℃以上に加熱することは好ましくない。また、本発明の染料除去剤は、酸化反応に対して比較的に強いので、染料を取り込んだ後、オゾンなどの酸化反応雰囲気下におくことにより染料分子のみ優先的に酸化分解させ、該縮合物を再生することができる。
【0021】
【実施例】
以下、本発明を実施例によってさらに具体的に説明する。しかし、本発明はこれらの実施例により何等制限されるものではない。
【0022】
1)本発明の染料除去剤(縮合物)及びククルビツリルの合成
[縮合物−1]
水250mLに、グリコールウリル50g(0.35モル)および36%塩酸215mLを加え、攪拌しつつ約60℃まで加熱し、液が透明になった時点で37%ホルムアルデヒド水溶液65.3g(0.81モル)を約30分かけて滴下した。反応液は徐々に白濁してきた。滴下終了後、反応液を100℃まで上げ、還流させた。液が透明になったとき加熱を止め、外部から強制冷却して、約70℃まで下げた後、反応液を2.5Lの清水に注ぎ、しばらく静置して、析出した白色沈殿物を濾過し、水及びメタノールで洗浄した。室温にて減圧乾燥し、目的とする縮合物63gを得た。
【0023】
[縮合物−2]
36%塩酸34mLと水50mLの混合物に、グリコールウリル10g(0.071モル)を加え、ここに35%ホルムアルデヒド液16mL(0.19モル)を加え、ブンゼンバーナーで素早く加熱した。加熱開始後約30分で反応液が濁り始めた時点で加熱を止め、反応液を冷水500mL中に注ぎ、白色沈殿を析出させ、1時間放置した。析出した白色沈殿を濾過によって取り出し、室温にて減圧乾燥し、目的とする縮合物を11.6g得た。
【0024】
[ククルビツリル]
前記ウイリアム エル モック(William L.Mock)らの報告に準じて合成した。
【0025】
合成方法2で得た縮合物25gを60mLの濃硫酸中に加え、130℃のオイルバスで加熱攪拌した。加熱開始15分後に、反応液が赤褐色になった時点で、反応液を1Lの冷水中に注いだ。この時析出した茶色の固体を濾別し、濾液を再び130℃のオイルバスで加熱した。煮沸が始まったとき、直ちに加熱を止め、室温に冷却した。この時析出した茶色固体を濾別し、先に得た茶色固体と合わせて減圧乾燥し、合計14.5gの茶色粉末を得た。
【0026】
このようにして得た茶色粉末を13gとり、36%塩酸15mLと水7mLの混合液中に加え、約70℃に加熱して溶解させ、8mLの冷水を加えて希釈し、析出した固体を濾別し、水で数回洗浄した後、減圧乾燥させ、ククルビツリルを白色粉末として9.4g得た。
【0027】
2)縮合物とククルビツリルの分析
縮合物−1,縮合物−2とククルビツリルについて、赤外線吸収スペクトル(IR)およびプロトン核磁気共鳴スペクトル(1H−NMR)を測定した結果を表1に示す。なお、縮合物−1と,縮合物−2は同じ結果であったのでまとめて示した。
【0028】
【表1】
Figure 0003588544
【0029】
この結果から、本発明の縮合物は文献記載のククルビツリルとは構造的に全く異なったものであることが示された。
【0030】
3)染料水溶液の脱色
[染料水溶液の脱色]
前記縮合物−2を染料除去剤として、水中の染料除去試験を実施した。
【0031】
染料をそれぞれ10ppm濃度の水溶液として調製し、試験用の染料水溶液とした。試験に用いた染料は、次の通りである。
Figure 0003588544
【0032】
これらの染料水溶液に、縮合物またはククルビツリルを染料除去剤とし、それぞれ100ppm,500ppm,1000ppm,2000ppmの濃度になるよう添加し、室温にてマグネティックスターラーで1.5時間攪拌した。沈殿物を濾過によって除去した後、濾液の明度指数(L*)、及びクロマティクネス指数(a*、b*)を色彩色差計にて測定し(日本工業規格 JIS Z−8701、1980)、次式により色差を求めた。
【0033】
【数1】
Figure 0003588544
【0034】
更に色差から次式にて脱色率を求めた。
【数2】
Figure 0003588544
【0035】
この結果を図1〜6に示した。これらの結果から分かるように、いずれの染料に対しても本発明の染料除去剤は、比較として用いたククルビツリルよりも優れた染料除去性能を有し、染料水溶液をほぼ無色透明にまで脱色することができた。
【0036】
[染色工場廃水の脱色]
染色工場の廃水(反応染料を主成分とした濃青色の廃水、pH=7.8)を用いて、脱色試験を実施した。
【0037】
廃水のpHを、塩酸及び水酸化ナトリウム水溶液にて約1〜10まで変化させ、前記縮合物−1を2000ppm添加し、室温にて30分攪拌した。その後上記と同様の方法で脱色率を求めた。結果を図7に示した。この結果から分かるように、pH=3〜8の範囲においては90%以上の脱色率を示し、実用域においては殆どpHの影響を受けずに染料を効率よく除去できることが認められた。
【0038】
【発明の効果】
本発明におけるグリコールウリルとホルムアルデヒドとの縮合物は、染料除去剤として有効であり、染料を含有する各種の水、特に染料工場や染色工場から排出される廃水から染料を効率よく除去し、脱色することができる。本発明の染料除去剤は、対象とする染料含有水に添加し、攪拌するという簡単な操作を行うだけで水中の着色成分を除去し、実用域においてはpHの影響を殆ど受けず、また温度の影響も殆どなく、染料を除去することができる。しかも本発明の染料除去剤は水に不溶であるため脱色後の分離が容易である。
【図面の簡単な説明】
【図1】CDirect Red 80水溶液について、染料除去剤添加量と脱色率との関係を示したグラフである。
【図2】CDirect Blue 71水溶液について、染料除去剤添加量と脱色率との関係を示したグラフである。
【図3】CReactive Blue 2水溶液について、染料除去剤添加量と脱色率との関係を示したグラフである。
【図4】CReactive Blue 19水溶液について、染料除去剤添加量と脱色率との関係を示したグラフである。
【図5】CReactive Violet 5水溶液について、染料除去剤添加量と脱色率との関係を示したグラフである。
【図6】CReactive Orange 16水溶液について、染料除去剤添加量と脱色率との関係を示したグラフである。
【図7】染色工場廃水のpHを変えて、本発明の染料除去剤を2000ppm添加した時の、pHと脱色率との関係を示したグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a dye removing agent and a method for removing a dye in dye-containing water. More specifically, the present invention relates to a dye removing agent effective for easily removing a dye from water containing the dye, and a method for effectively removing a dye in water containing a dye such as a dye factory and a waste water containing the dye discharged from the dye factory.
[0002]
[Prior art]
Wastewater discharged from dyestuff factories, dyeing / printing factories, and other factories that handle dyestuffs is colored due to the contamination of the dyestuffs, and the colored components must be removed before being discharged into rivers and the sea. However, human vision is extremely sensitive to color, and even if a very small amount of dye is present in wastewater, it is perceived as coloring, giving an unpleasant impression to people as so-called visual pollution. Therefore, complete removal of this coloring component is desired. In order to remove coloring components such as dyes in water, a coagulation treatment method using an inorganic or organic coagulant, a chemical treatment method such as oxidation / reduction, and a microbial treatment method for performing decomposition by microorganisms are generally performed. .
[0003]
[Problems to be solved by the invention]
However, among these conventional methods, it is difficult to completely remove the coloring components by the coagulation treatment method, and the chemical treatment method can completely remove the coloring components, but there is a problem that the equipment investment and the operating cost are high, and the microorganism treatment is problematic. According to the method, many of the dyes are hardly biodegradable, and it is difficult to completely remove the coloring components, and the cost is large.
[0004]
On the other hand, in dye manufacturing factories and dyeing factories, aqueous solutions with a high dye concentration, such as washing wastewater for containers handling dyes and wastewater from the dyeing process, can easily remove the dyes before dilution, if the latter load is reduced. It is very preferable because it can be made smaller.
[0005]
[Means for Solving the Problems]
Recently, a method has been proposed in which cucurbituril, which has a three-dimensional spatial structure, is used as a host compound, and the dye in the wastewater is removed by using clathration, which selectively takes the dye into the space as a guest (Bush). HJ Bushmann et al., (Germany) Textiledlung, Vol. 26, May, pages 153-162, 1991].
[0006]
In the process of studying cucurbituril and other clathrate compounds, the present inventors have found that a precursor of cucurbituril includes a compound that incorporates a dye more efficiently than cucurbituril. Invented the invention.
[0007]
That is, the present invention relates to a condensate obtained by heat-reacting glycoluril, form and formaldehyde in a molar ratio of 1: 2 to 1: 3 in an acidic aqueous solution. This is a method for removing a dye in water containing a dye by using a cucurbituril precursor which can be converted into cucurbituril as an active ingredient and a dye removing agent using the same.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The dye remover of the present invention is a condensate obtained by heating and reacting glycoluril, form and formaldehyde in a molar ratio of 1: 2 to 1: 3 in an acidic aqueous solution, which is heat-treated in concentrated sulfuric acid. A cucurbituril precursor which can be converted into cucurbituril by the above method is used as an active ingredient.
[0009]
Glycoluril intended to be displayed by the following structural formula (I), for example a glyoxal [OHCCHO] urea [CO (NH 2) 2] are reacted in an acidic aqueous solution is readily synthesized, and also as a reagent It is commercially available.
[0010]
Embedded image
Figure 0003588544
[0011]
Formaldehyde, which is the other raw material, is commercially available for general use and can be used satisfactorily. Usually, it contains methanol as a stabilizer but can be used without any substantial effect. Paraformaldehyde can also be used in place of the aqueous formaldehyde solution.
[0012]
The reaction between glycoluril and formaldehyde can be achieved by stirring in an acidic aqueous solution such as hydrochloric acid at 50 to 120 ° C for 10 to 60 minutes. Since the condensate generated by the reaction precipitates from the aqueous solution, it can be easily separated and obtained by solid-liquid separation. The reaction molar ratio of glycoluril to formaldehyde is from 1: 2 to 1: 3, preferably from 1: 2.3 to 1: 2.9. When the reaction molar ratio is less than 1: 2, the reaction becomes insufficient, and the obtained condensate has a reduced or no dye removing ability, and when the molar ratio is more than 1: 3, crosslinking occurs due to excess formaldehyde. The formation of the condensate becomes extremely hard and clumpy, and the dye removing ability decreases, which is not preferable.
[0013]
This condensate is almost insoluble in water and common organic solvents such as acetone, ethanol, dimethylsulfoxide, and benzene, and can be treated very advantageously as a material for removing a dye from water containing the dye.
[0014]
On the other hand, cucurbituril is also a compound produced from glycoluril and formaldehyde, and is a macrocyclic compound composed of six glycoluril units. [William L. Mock, et al., Journal of the American Chemical Society, Vol. 103, p. 7367 (1981)]. Further, it is known that the cyclic structure of cucurbituril has the ability to take in a specific compound, and the inclusion of the compound has been studied [William L. Mock et al. Chemical Journal (Journal of Organic Chemistry) 48, 3618 (1983), 51, 4440 (1986), etc.].
[0015]
Cucurbituril is obtained by further boiling the condensate of the present invention in concentrated sulfuric acid and then diluting it with cold water, and the solid precipitated by further boiling the reaction solution after separating the solid is hydrochloric acid, It is obtained by recrystallization purification. Infrared spectroscopy (IR), proton nuclear magnetic resonance spectroscopy (1H-NMR), carbon-13 nuclear magnetic resonance spectroscopy (13C-NMR), differential thermal balance (TG-DTA), differential scanning calorimeter (DSC) As a result of investigation using a matrix-assisted laser desorption ion time-of-flight mass spectrometer (MALDI-TOF-MS) and the like, the condensate of the present invention did not form a complete cyclic structure, It was presumed to be a copolymer linked by That is, it can be said that the cyclic structure of cucurbituril was formed at the stage of boiling the condensate of the present invention in concentrated sulfuric acid. Therefore, the condensate as the dye remover of the present invention has a different structure from cucurbituril described in the literature.
[0016]
Although the mechanism by which the dye removing agent of the present invention takes in dye molecules is not clear, although it does not reach a complete cyclic structure like cucurbituril, glycoluril is linked by a methylene group and takes a three-dimensionally large structure. It is presumed that the structure had a space (or gap), and the dye molecules could be taken into the space.
[0017]
The dye remover of the present invention has an ability to take in dye molecules of various sizes, and furthermore, its ability is hardly affected by the pH of the medium, and has an ability to remove under a wide range of conditions. Therefore, it can be said that the applicable range is very wide. The dye removing agent of the present invention can easily take in the dye in the water and make the water colorless simply by contacting the dye-containing water with the dye-containing water, such as by adding to the dye-containing water and stirring. The dye remover of the present invention takes up the dye in the water only by dispersing it in the wastewater without substantially dissolving it, so that the dye remover incorporating the dye precipitates when left to stand after contact, and the supernatant is colorless. Become. The amount of the dye remover of the present invention varies depending on the dye concentration in water, but is usually 10 to 200 times (weight ratio), preferably 50 to 100 times (weight ratio) the dye concentration. Further, by filling the dye removing agent of the present invention in a column form and flowing water containing the dye from above, the dye is taken into the column and decolorized water can be obtained from below.
[0018]
When the pH of the medium is 3 to 8, the dye remover of the present invention is not significantly affected by the pH and can efficiently take in the dye. Decoloring performance is slightly inferior in strong acidity and strong alkalinity outside this pH range, but it can be said that the treatment can be practically performed without being affected by the pH.
[0019]
Further, there is almost no effect of the treatment temperature, and there is no problem as long as the target water does not freeze.
[0020]
Since the dye remover of the present invention is substantially insoluble in water, when applied to water containing dyes and wastewater, the condensate incorporating the dye after decolorization can be easily separated by filtration or the like. Further, after taking in the dye, by heating to 250 to 330 ° C., only the dye in the structure is decomposed, and the condensate can be reused. Since the decomposition point of the condensate which is the dye remover of the present invention is about 350 ° C., it is not preferable to heat it to 330 ° C. or higher. Further, since the dye removing agent of the present invention is relatively resistant to an oxidation reaction, only the dye molecules are preferentially oxidized and decomposed by placing the dye in an oxidation reaction atmosphere such as ozone after taking in the dye. Things can be regenerated.
[0021]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited in any way by these examples.
[0022]
1) Synthesis of dye remover (condensate) of the present invention and cucurbituril [condensate-1]
To 250 mL of water, 50 g (0.35 mol) of glycoluril and 215 mL of 36% hydrochloric acid were added, and the mixture was heated to about 60 ° C. with stirring. When the liquid became transparent, 65.3 g (0.81 mol) of a 37% aqueous formaldehyde solution was used. Mol) was added dropwise over about 30 minutes. The reaction liquid gradually became cloudy. After completion of the dropwise addition, the reaction solution was heated to 100 ° C. and refluxed. When the solution became transparent, stop heating, forcibly cool it from the outside, cool it down to about 70 ° C, pour the reaction solution into 2.5 L of clear water, let it stand for a while, and filter the precipitated white precipitate. And washed with water and methanol. Drying under reduced pressure at room temperature gave 63 g of the desired condensate.
[0023]
[Condensate-2]
10 g (0.071 mol) of glycoluril was added to a mixture of 34 mL of 36% hydrochloric acid and 50 mL of water, and 16 mL (0.19 mol) of a 35% formaldehyde solution was added thereto, followed by rapid heating with a Bunsen burner. About 30 minutes after the start of heating, when the reaction liquid began to become cloudy, heating was stopped, and the reaction liquid was poured into 500 mL of cold water to precipitate a white precipitate, which was left for 1 hour. The precipitated white precipitate was taken out by filtration and dried under reduced pressure at room temperature to obtain 11.6 g of a desired condensate.
[0024]
[Cucurbituril]
It was synthesized according to the report of William L. Mock et al.
[0025]
25 g of the condensate obtained in Synthesis Method 2 was added to 60 mL of concentrated sulfuric acid, and the mixture was heated and stirred in a 130 ° C. oil bath. Fifteen minutes after the start of heating, when the reaction solution turned reddish brown, the reaction solution was poured into 1 L of cold water. The brown solid precipitated at this time was separated by filtration, and the filtrate was heated again in an oil bath at 130 ° C. When the boiling started, the heating was stopped immediately and cooled to room temperature. The brown solid precipitated at this time was separated by filtration, and dried under reduced pressure together with the previously obtained brown solid to obtain a total of 14.5 g of brown powder.
[0026]
13 g of the brown powder thus obtained was added to a mixture of 15 mL of 36% hydrochloric acid and 7 mL of water, dissolved by heating to about 70 ° C., diluted by adding 8 mL of cold water, and the precipitated solid was filtered. Separately, it was washed several times with water and dried under reduced pressure to obtain 9.4 g of cucurbituril as a white powder.
[0027]
2) Analysis of condensate and cucurbituril Table 1 shows the results of measuring infrared absorption spectrum (IR) and proton nuclear magnetic resonance spectrum (1H-NMR) of condensate-1, condensate-2 and cucurbituril. In addition, since the condensate-1 and the condensate-2 had the same result, they were shown together.
[0028]
[Table 1]
Figure 0003588544
[0029]
The results showed that the condensate of the present invention was structurally completely different from cucurbituril described in the literature.
[0030]
3) Decolorization of aqueous dye solution [Decolorization of aqueous dye solution]
A dye removal test in water was performed using the condensate-2 as a dye remover.
[0031]
Each dye was prepared as an aqueous solution having a concentration of 10 ppm, and used as an aqueous dye solution for testing. The dyes used in the test are as follows.
Figure 0003588544
[0032]
To these dye aqueous solutions, a condensate or cucurbituril was used as a dye remover so as to have a concentration of 100 ppm, 500 ppm, 1000 ppm, and 2000 ppm, respectively, and the mixture was stirred with a magnetic stirrer at room temperature for 1.5 hours. After removing the precipitate by filtration, the lightness index (L *) and the chromaticness index (a *, b *) of the filtrate were measured with a colorimeter (Japanese Industrial Standard JIS Z-8701, 1980). The color difference was determined by the equation.
[0033]
(Equation 1)
Figure 0003588544
[0034]
Further, the decolorization rate was determined from the color difference by the following equation.
(Equation 2)
Figure 0003588544
[0035]
The results are shown in FIGS. As can be seen from these results, the dye remover of the present invention for any of the dyes has better dye removal performance than cucurbituril used for comparison, and decolorizes the aqueous dye solution to almost colorless and transparent. Was completed.
[0036]
[Decolorization of dyeing factory wastewater]
A decolorization test was carried out using wastewater from a dyeing factory (dark blue wastewater containing a reactive dye as a main component, pH = 7.8).
[0037]
The pH of the wastewater was changed to about 1 to 10 with hydrochloric acid and an aqueous solution of sodium hydroxide, 2000 ppm of the condensate-1 was added, and the mixture was stirred at room temperature for 30 minutes. Thereafter, the decolorization rate was determined in the same manner as described above. The results are shown in FIG. As can be seen from these results, a decolorization ratio of 90% or more was exhibited in the range of pH = 3 to 8, and it was recognized that the dye could be efficiently removed almost without being affected by pH in a practical range.
[0038]
【The invention's effect】
The condensate of glycoluril and formaldehyde in the present invention is effective as a dye remover, and efficiently removes and decolorizes dye from various waters containing the dye, particularly wastewater discharged from a dye factory or a dye factory. be able to. The dye-removing agent of the present invention removes coloring components in water simply by adding to the dye-containing water of interest and stirring to remove the coloring components in the water. And the dye can be removed with almost no influence of the dye. Moreover, the dye remover of the present invention is insoluble in water, so that separation after decolorization is easy.
[Brief description of the drawings]
FIG . I. 4 is a graph showing the relationship between the amount of dye remover added and the decolorization ratio for Direct Red 80 aqueous solution.
FIG . I. It is the graph which showed the relationship between the amount of addition of a dye remover, and a decolorization rate about Direct Blue 71 aqueous solution.
FIG . I. 4 is a graph showing the relationship between the amount of a dye remover added and the decolorization rate for a Reactive Blue 2 aqueous solution.
FIG . I. It is the graph which showed the relationship between the amount of addition of a dye remover, and a decolorization rate about Reactive Blue 19 aqueous solution.
FIG . I. It is the graph which showed the relationship between the amount of dye removal agent addition and the decolorization rate about Reactive Violet 5 aqueous solution.
FIG . I. 4 is a graph showing the relationship between the amount of a dye remover added and the decolorization ratio for a Reactive Orange 16 aqueous solution.
FIG. 7 is a graph showing the relationship between the pH and the decolorization rate when the dye removal agent of the present invention was added at 2000 ppm while changing the pH of the wastewater of the dyeing factory.

Claims (2)

グリコールウリルとホルムとホルムアルデヒドを1:2〜1:3のモル比で酸性水溶液中で加熱反応させて得られる縮合物であって、これを濃硫酸中で加熱処理することによってククルビツリルに変換しうるククルビツリル前駆物質を有効成分とする染料除去剤。A condensate obtained by heating and reacting glycoluril, form and formaldehyde in a molar ratio of 1: 2 to 1: 3 in an acidic aqueous solution, which can be converted to cucurbituril by heat treatment in concentrated sulfuric acid. A dye remover containing a cucurbituril precursor as an active ingredient. 請求項1記載の染料除去剤を、染料含有水と接触させることを特徴とする水中の染料を除去する方法。A method for removing dye in water, comprising contacting the dye removing agent according to claim 1 with water containing dye.
JP02094998A 1998-02-02 1998-02-02 Dye remover and method for removing dye from dye-containing water Expired - Fee Related JP3588544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02094998A JP3588544B2 (en) 1998-02-02 1998-02-02 Dye remover and method for removing dye from dye-containing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02094998A JP3588544B2 (en) 1998-02-02 1998-02-02 Dye remover and method for removing dye from dye-containing water

Publications (2)

Publication Number Publication Date
JPH11217557A JPH11217557A (en) 1999-08-10
JP3588544B2 true JP3588544B2 (en) 2004-11-10

Family

ID=12041453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02094998A Expired - Fee Related JP3588544B2 (en) 1998-02-02 1998-02-02 Dye remover and method for removing dye from dye-containing water

Country Status (1)

Country Link
JP (1) JP3588544B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6869466B2 (en) * 1999-05-07 2005-03-22 Unisearch Limited Cucurbiturils and method for binding gases and volatiles using cucurbiturils
EP1094065B1 (en) * 1999-10-21 2003-12-17 Pohang University of Science and Technology Foundation Preparation methods of cucurbituril derivatives
KR100528959B1 (en) * 2003-02-11 2005-11-16 학교법인 포항공과대학교 Silica gel bonded with cucurbiturils
KR100988321B1 (en) 2003-07-26 2010-10-18 포항공과대학교 산학협력단 Polymer comprising cucurbiturils, stationary phase and column using the same

Also Published As

Publication number Publication date
JPH11217557A (en) 1999-08-10

Similar Documents

Publication Publication Date Title
JP3432483B2 (en) Method for producing cucurbituril derivative or cucribituril composition
TWI432220B (en) Dye for hair colorant and composition containing the same
EP0321919A2 (en) Pigments and their use
CN113135969B (en) Two-photon fluorescent probe for detecting pH by taking chitosan as skeleton and preparation method and application thereof
JP3588544B2 (en) Dye remover and method for removing dye from dye-containing water
Fite The staining of acid-fast bacilli in paraffin sections
Chaudhuri et al. First synthesis and structural assessment of alkali-metal triperoxovanadates (V), A [V (O2) 3]
CN108342190B (en) Nano fluorescent probe for detecting HNO in ratio mode and preparation method and application thereof
Zhang et al. Highly selective sensing of lead ion based on α-, β-, γ-, and δ-tetrakis (3, 5-dibromo-2-hydroxylphenyl) porphyrin/β-CD inclusion complex
CN114380792B (en) Off-on type ion detection fluorescent probe, ion detection kit, preparation method and application
KR930010743B1 (en) Preparation of concentrated storage-stable aqueous solutions of yellow stilbene azoxy dyes
CN108774243B (en) Pyrrole-rhodamine acylhydrazone derivative and preparation method and application thereof
RU2280027C1 (en) 2,3-dicarboxy-5,8-dimethoxy-6-sulfoanthraquinone
CN115093361B (en) Novel indole acylhydrazone compound and preparation method and application thereof
JP2000117266A (en) Method for discoloring dyestuff
CN114437048B (en) Detection Ag + Coumarin fluorescent probe, preparation method and application thereof
RU2277084C1 (en) 2,3-dicarboxy-5,8-dimethoxyanthraquinone
DE607768C (en) Process for the representation of dyes
Koelsch Benzo-semiflavanthrene. I. Reduction
DE2322289C3 (en) 3,4,9,10-anthanthrone tetracarboxylic acid, its anhydride and process for their preparation
RU2233857C1 (en) Copper tetra-9,10-anthraquinone-2,3-porphyrazine tetrasulfoacid
Lambert et al. The protonated 4, 4′-diaminotriphenylmethyl cation as a reagent and cyclohexanone as an absorbant for sulphur dioxide determination
SU231052A1 (en) METHOD OF OBTAINING PIGMEPT GREEN
DE537939C (en) Process for the preparation of alkaline dyes of the phenonaphthosafranine series
CN117143063A (en) Coumarin-based ratio type fluorescent probe for detecting mercury ions and preparation method and application thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040816

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070820

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120820

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120820

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120820

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees